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Purpose of review

Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the
fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this
pathogen is considered a potential biological threat agent. This review focuses on the most recent literature
highlighting host innate immune response to B. mallei.

Recent findings

Recent studies focused on elucidating host innate immune responses to the novel mechanisms and virulence
factors employed by B. mallei for survival. Studies suggest that pathogen proteins manipulate various
cellular processes, including host ubiquitination pathways, phagosomal escape, and actin–cytoskeleton
rearrangement. Immune-signaling molecules such as Toll-like receptors, nucleotode-binding oligomerization
domain, myeloid differentiation primary response protein 88, and proinflammatory cytokines such as
interferon-gamma and tumor necrosis factor-a, play key roles in the induction of innate immune responses.
Modifications in B. mallei lipopolysaccharide, in particular, the lipid A acyl groups, stimulate immune
responses via Toll-like receptor4 activation that may contribute to persistent infection.

Summary

Mortality is high because of septicemia and immune pathogenesis with B. mallei exposure. An effective
innate immune response is critical to controlling the acute phase of the infection. Both vaccination and
therapeutic approaches are necessary for complete protection against B. mallei.
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INTRODUCTION

Burkholderia mallei are the etiological agent of a
highly contagious, acute, or chronic, usually fatal
disease of solipeds, known as glanders. This obligate
mammalian, facultative intracellular pathogen
is a Gram-negative, nonmotile, nonspore-forming
bacillus which is widely regarded as a host-adapted
deletion clone of Burkholderia pseudomallei, an
environmental saprophytic pathogen that causes
the disease melioidosis. Although horses, donkeys,
and mules constitute the only known natural reser-
voirs for B. mallei, humans and other mammalian
hosts [e.g., camels, nonhuman primates (NHPs),
goats, dogs, cats, rabbits, hamsters, guinea pigs,
and mice] are susceptible to infection and display
similar disease progression and disease [1–7]. Glan-
ders transmits amongst animals via respiratory
secretions and exudates from skin lesions. In human
infections, the primary modes of B. mallei trans-
mission are via direct contact with damaged skin,
invasion of mucous membranes, and deposition
into the lung. Depending on the route of exposure,
the disease course of glanders infection can range
from acute to chronic and manifest in multiple
uthor(s). Published by Wolters Kluwe
forms, such as localized, pulmonary, disseminated,
and septicemic. The clinical and pathological pres-
entation of B. mallei infections bare a striking resem-
blance to B. pseudomallei infections, including their
ability to remain quiescent and persist in the host
following apparent clinical resolution [8]. Owing to
the reasons above, in addition to their highly infec-
tious nature as an aerosol, both pathogens are
classified as Tier 1 select agents by the federal select
agent program. Currently, no licensed vaccines are
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KEY POINTS

� B. mallei proteins interact with multifunctional host
proteins that have large number of interacting partners
to broadly influence host cellular mechanisms such as
ubiquitin-mediated proteolysis and focal adhesion.

� Compared with other Burkholderia spp., B. mallei
displays unique manipulation of host-signaling
architectures and mechanisms of evading host innate
immune responses.

� The biological activity of B. mallei LPS is directly
correlated with the acylation status of its lipid
A molecule.

� MyD88-targeted postexposure therapy may be a
potential strategy against B. mallei infection.

� Live attenuated B. mallei mutants may be promising
candidates for vaccine development against acute
glanders.

Pathogenesis and immune response
available for either disease, and medical therapeutic
options are limited.

Both B. pseudomallei and B. mallei thrive intra-
cellularly via modulation of host immune
responses, which attributes to their resilience
against current medical countermeasures. Despite
the characterization of many B. pseudomallei
virulence factors, its strategies for circumventing
intracellular host defenses remain ill defined. Com-
paratively, even less is known for B. mallei. Limited
understanding of these survival tactics poses a major
challenge in the development of effective thera-
peutics. Thus, delineating the specific molecular
mechanisms utilized by these pathogens to dysre-
gulate host immune responses is paramount. The
majority of research and review articles are focused
on host immune responses to B. pseudomallei. This
review will concentrate on recent advances in char-
acterizing B. mallei-specific host immune responses,
specifically innate immune responses.
HOST–PATHOGEN INTERACTIONS AND
INNATE IMMUNE RECOGNITION OF
BURKHOLDERIA MALLEI

Although mechanisms can vary among Burkholderia
spp., adhesion and invasion of host epithelial cells
are vital steps during infection and appear to con-
tribute to the overall virulence [9

&

]. For successful
infection of host cells, B. mallei depend on the
strategic utilization of a multitude of virulence fac-
tors and mechanisms to manipulate many host
processes and pathways. Recently, a combined com-
putational and experimental approach was utilized
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to systemically assess nine B. mallei virulence factors
and their interactions with host proteins to eluci-
date mechanisms of B. mallei pathogenicity [10

&&

].
Topological analyses of B. mallei–host protein–
protein interactions suggest that B. mallei targets
multifunctional intracellular host proteins, host
proteins that interact with each other, and proteins
with a large number of interacting partners. Host
processes broadly influenced by these protein–
protein interactions include the ubiquitination
degradation system and focal adhesion pathways
[10

&&

]. These results are consistent with the previous
work that reported TssN protein interactions with
the polyubiquitin-B protein and with the cullin-1a
protein. These host proteins interact with tumor
necrosis factor (TNF) receptor-associated factor 6
and IkB inhibitor-a, components central to Toll-like
receptor (TLR) signaling [11]. These studies provide
some insights into B. mallei pathogenesis, and on
the proposed hypothesis that B. mallei modulate
innate immune responses by interfering with host
ubiquitination directly or in combination with
other pathogen proteins.

A comprehensive assessment of murine macro-
phages infected with a diverse panel of Burkholderia
spp. resulted in the uniform production of cytokines
interleukin1 b(IL-1b), tumornecrosis factora (TNFa),
and murine keratinocyte-derived protein chemo-
kine, a murine homolog of human IL-8 [12]. Com-
pared with B. pseudomallei-infected macrophages, B.
mallei-infected macrophages secreted significantly
higher levels of IL-6 and IL-10, which suggest these
two pathogens differentially modulated host signal-
ing cascades. Additionally, macrophages expressed
lL-1b, IL-10, TNF receptor superfamily member 1B,
and IL-36a mRNA, at significantly higher levels when
infected with B. mallei compare with the other Bur-
kholderia spp. [12], suggesting the existence of gene-
based differences in the host inflammatory response
that is unique to B. mallei.

Infected macrophages further assessed for
changes in their host-signaling dynamics showed
increased phosphorylation of adenosine mono-
phosphate-activated protein kinase; regulators of
nuclear factor-kappa B signaling pathway (e.g., IkB
inhibitor-a, Glycogen synthase kinase (GSK)3b, Src,
and STAT1) and mitogen-activated protein kinases
(e.g., p38, Extracellular-signal regulated kinase 1/2,
and c-Myc) [13

&

]. The degrees in which target host
proteins or processes are modulated correlated to
the differences in pathogenicity observed amongst
Burkholderia species. In infected macrophages,
B. mallei were a stronger inducer of Inducible nitric
oxide synthase expression and interferon-gamma
(IFNb) production compared with B. pseudomallei.
Based on these data, in addition to current
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knowledge of signaling transduction, a representi-
tive network of signaling pathways and axes was
constructed to illustrate the activation of signaling
cascades in response to Burkholderia spp infection
[13

&

]. Based on canonical pathways downstream of
TLR4, induction of phosphorylated forms of adeno-
sine monophosphate-activated protein kinase-a1,
GSK3b, and Src play key roles in regulating the
inflammatory response of Burkholderia spp. infec-
tions.

Lipopolysaccharide (LPS) is a major component
of the outer membrane of Gram-negative bacteria,
and a potent stimulator of host innate immune
responses. Structure–activity relationship studies
of TLR4 agonist suggest the biological activity of
LPS correlates with the composition of its lipid A
moiety [14]. Evaluation of B. mallei LPS showed the
acylation of lipid A had a greater effect on its bio-
logical activity than their length [15

&&

]. Thus, overall
differential macrophage activation may be related to
B. mallei LPS, which is similar to the B. pseudomallei
LPS and bares a penta-acylated lipid A with 4-amino-
4-deoxyarabinose in almost half of its molecules,
and appears to be a weaker macrophage activator as
compared with enterobacterial LPS. Consistent with
this, a significant reduction in mRNA expression or
secretion of IL-6, TNFa, and IL-1b is exhibited when
stimulated with purified B. mallei LPS compared
with E. coli LPS-treated macrophages. Compared
with E. coli-infected macrophages, B. mallei-infected
macrophages also produce reduced levels of both
IFN-dependent genes and mediators (IFNb and
Nitric oxide) and cytokines [TNFa, IL-6, IL-10,
Granalocyte-macrophage colony stimulating factor
(GM-CSF), and regulated on activation normal T cell
expressed and secreted (RANTES)].

B. mallei must overcome a gamut of antibacterial
mechanisms and products (e.g., Adenosine mono-
phosphates and reactive oxygen and nitrogen
species) critical to innate immunity to establish
persistent infection. B. mallei Frederick Memorial
Hospital (FMH) isolates collected from mice spleens
60 days postinfection showed attenuated abilities to
replicate and induce cytotoxicity in macrophage
assays [16]. One B. mallei isolate displayed a change
in its LPS phenotype, from smooth to rough, result-
ing from the loss of its O-polysaccharide (OPS)
during the course infection [16]. These phenotypic
changes were conceived to stem from the infection
shifting from an acute to a chronic or subclinical
form, which is less prone to stimulate host
immune responses. Earlier studies highlighted that
genetic and phenotypic characteristics potentially
associated with persistence of both B. pseudomallei
and B. mallei [17,18]. Further studies, including
sequencing the OPS biosynthetic gene cluster of
0951-7375 Copyright � 2017 The Author(s). Published by Wolters Kluwe
this B. mallei FMH strain may provide insight into
the genetic basis for the loss of OPS. Intriguingly,
OPS modification and loss is a hallmark of chronic
Pseudomonas aeruginosa infection [19].
CYTOKINES AND CHEMOKINE
REGULATING INNATE IMMUNITY TO
B. MALLEI INFECTION
Highlighting the susceptibility of B. mallei to cell-
mediated immune responses, previous studies
compared the survival rates of infected BALB/c
and IFNg knockout mice. BALB/c mice survived
more than 37 days longer than IFNg knockout mice
and showed significantly lower levels of bacterial
colonization, which illustrates the importance of
IFNg-mediated immunity for control of infection
[20]. Macrophages and human pulmonary alveolar
type II cells contribute to innate immunity by
secreting inflammatory cytokines during B. mallei
infection [21]. When exposed to heat-killed B.
mallei, primary Peripheral blood Mononuclear Cells
(PBMCs) from NHPs and humans elicit the strong
production of IFNg, TNFa, IL-6, and IL-1b [22

&&

].
Cytokine responses varied among the NHPs, in
which the African green monkey appears to be most
responsive, compared with Rhesus or Cynomologus
species, suggesting the inflammatory responses vary
within mammalian species [22

&&

]. Similar results
were observed with aerosol exposure of B. mallei
FMH 23344 strain to NHPs conducted at USAMRIID,
where most of the African green monkeys died but
all Rhesus or Cynomologous species survived
(Personal communication). The immune-signaling
mechanism for the strong cellular response demon-
strated that myeloid differentiation primary
response protein 88 (MyD88)-mediated signaling
contributes to proinflammatory cytokine responses
[22

&&

]. These results were consistent with earlier
reports which showed that MyD88�/� mice were
highly susceptible to pulmonary challenges with
B. mallei and had significantly short survival time,
increased bacterial burdens, and severe organ path-
ology compared with wild-type mice [23]. Recruit-
ment of inflammatory monocytes and Dendritic
Cells to the lungs and local production of IL-12,
followed by Natural killer cell cell production of
IFNg, are the key cellular responses required for early
protection from B. mallei infection.
LACK OF AUTOPHAGY AND
PERSISTENCE OF B. MALLEI

B. pseudomallei demonstrate an ability to escape
autophagosomes in host phagocyte in vitro as
well as in murine models and human cases of
r Health, Inc. www.co-infectiousdiseases.com 299



Pathogenesis and immune response
melioidosis, thus avoiding immune responses [24].
The recurring illness of melioidosis patients in
endemic areas can potentially be because of relapse
or reinfection. Bacteria can become quiescent and
subclinical to avoid host immune mechanisms of
clearance. An earlier report indicated that nonfunc-
tional mutations in BPSS0180, a type VI cluster-
associated gene capable of inducing autophagy in
both phagocytic and nonphagocytic mammalian
cells, resulted in significant colocalization of B.
pseudomallei with autophagy marker light chain3
and impaired intracellular survival [25]. A recent
report suggests that B. pseudomallei evade autophagy
[26]. Consistent with these earlier reports, recent
results from our laboratory also suggest that lack
of autophagy correlate with intracellular persistence
of bacteria with aerosol exposure not only of B.
pseudomallei but also B. mallei in spleens of BALB/
c and C57/BL6 mice with chronic infection (Alam
et al. 2016; manuscript submitted). Memisevic et al.
[10

&&

] suggests that multiple B. mallei virulence
factors such as BMAA1865, BMAA0728 (TssN), and
BMAA0553 influence critical host processes related
to modulation of host ubiquitination, phagosome
escape, interference with host cycloskeleton re-
arrangement, and focal adhesion and a means to
modulate and adapt the host cell environment to
advance infection. Further studies may shed light on
whether any of these B. mallei proteins are directly or
indirectly linked in the evasion of host autophagy
processes.
POTENTIAL THERAPEUTIC AND
PREVENTIVE STRATEGY TO GLANDERS
Antibiotic resistance associated with Burkholderia
infection is on the rise [27]. Even with optimal
antibiotic treatment, the mortality from acute
severe melioidosis is high (30–50% in Thailand,
19% Australia) and mortality rates can be as high
as 40% for cases of glanders [28–30]. Recently, Waag
[31] reported that mice experimentally exposed to B.
mallei suggest that although antibiotics can be effi-
cacious after prolonged interval between exposure
and treatment, but only if the animals were pre-
viously vaccinated. Thus, it is likely that both
vaccination against B. mallei and postexposure
therapeutic approaches would be required for com-
plete protection against B. mallei exposure.
THERAPEUTIC STRATEGY: MyD88-
TARGETED THERAPY IN PREVENTING
PERTURBED INFLAMMATION AND
SEPTICEMIA
Primary cellular responses by analyses of IL-1b

and other inflammatory cytokine responses by
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comparison with E. coli LPS, African green monkeys
appears to be most responsive to B. mallei or B pseu-
domallei than Cynomolgus or Rhesus [22

&&

]. Charac-
terization of the immune-signaling mechanism
for cellular inflammatory response revealed that
MyD88-mediated signaling contributed to the B.
mallei and B. pseudomallei induced proinflammatory
responses. Notably, B. mallei, B. pseudomallei, or
purified LPS from these pathogens induced
MyD88-mediated reporter activity was inhibited
and inflammatory cytokine production was attenu-
ated by a MyD88 inhibitor [22

&&

]. In the scenario of
dysregulating inflammatory responses with estab-
lished B. mallei infection that often leads to septice-
mia and immune pathogenesis, thus MyD88-targeted
therapeutic intervention may be a potential strategy
for therapy.
VACCINE STRATEGY: VACCINE
MODULATION OF INNATE IMMUNITY
For complete protection against Burkholderia patho-
gens, previous vaccine efforts focused on inducing
both cellular and humoral immune responses [32].
Possible candidates include whole-cell killed, sub-
unit glycoconjugate, and live attenuated vaccines,
as recently reviewed by Aschenbroich et al. [33].
These vaccines showed limited efficacy that resulted
in partial protection and bacterial dissemination
in murine models of infection. Live attenuated
recombinant Salmonella expressing B. mallei LPS O
antigen showed protection in a murine infection
model of B. thilandensis, a surrogate for biothreat
Burkholderia spp., and suggest a promising platform
for vaccine development [34].

Recently, two live attenuated B. mallei strains
consisting of mutations in ubiquitination and phag-
osomal escape (DtssN) or iron transport (DtonB)
show protection against lethal challenges in models
of murine glanders [35

&

,36
&&

]. Analysis of the
immune responses observed in vaccination-
challenge studies was performed to understand
how these mutants modulate immune responses.
BALB/c mice surviving exposure to aerosolized DtssN
showed elevated expression of proinflammatory
cytokines and chemokines: IL-1a, IL-1b, IL-2, IL-4,
IL-10, IL-12, MIG, macrophage inhibitory protein-
1a, and TNFa, and Vascular endothelial groth factor
[35

&

]. This modulation of host responses showed
DtssN capable of inducing prolonged innate immun-
ity despite its high degree of attenuation. Mice
immunization with DtssN demonstrated 67% sur-
vival rates at 21 days postwild-type challenge [35

&

].
Authors suggested the partial protection afforded by
DtssN immunization was mainly driven by innate
immunity as BALB/c mice failed to show increased
Volume 30 � Number 3 � June 2017
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expression of proinflammatory cytokines and
chemokines after DtssN prime and boost regimens.

BALB/c mice immunized with DtonB provided
up to 100% survival at 21 days postwild-type
challenge [36

&&

]. Compared with controls, immu-
nized mice expressed moderated inflammatory
cytokine/chemokine profiles with significant
reductions reported in IL-6, GM-CSF, monocyte
chemoattractant protein -1, and RANTES [36

&&

].
Authors correlated these results with reduced
immune-mediated tissue damage observed in immu-
nized mice. In cross-protection studies, DtonB-immu-
nized mice challenged with B. pseudomallei K96243
demonstrated 75% survival 36 days postinfection
[36

&&

]. Although these studies displayed protection
and resulted in wild-type clearance, DtonB immuniz-
ation was noted to result in persistence infection of
the live attenuated mutant in the spleens of surviving
mice. Despite persistence, the B. mallei tonB mutant
shows potential as a candidate for further vaccine
development and optimization.
CONCLUSION

B. mallei target intracellular host immune-signal-
ing pathways for intracellular survival. Recent
studies provide some understanding of pathogen–
host protein interactions, dysregulation of macro-
phage activation, and immune evasion by B. mal-
lei. Still, considerable gaps exist regarding the
understanding of specific B. mallei protein(s) and
signaling pathways that likely contribute to intra-
cellular survival and evasion of host immune
effector mechanisms. More focused research in
delineating the molecular basis for host inability
or dysregulation of the host immune effector
mechanism manipulated by this pathogen is
needed. This may limit persistent infection, and
likely provide direction toward developing medical
countermeasures.
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