Endoscopic Techniques for Gallbladder Drainage: Never without My Endoscopic Ultrasound

Gianmarco Marocchi, Andrea Lisotti, and Pietro Fusaroli

Gastrointestinal Unit, Department of Medical and Surgical Sciences, Hospital of Imola, University of Bologna, Imola, Italy

Article Info

Received February 14, 2021 Accepted February 22, 2021 Published online May 7, 2021

Corresponding Author

Gianmarco Marocchi ORCID https://orcid.org/0000-0001-9925-3486 E-mail gianmarco.marocchi2@gmail.com

To the Editor:

We read with great interest the article by Yoshida et al. published online in January 2021, that described cholangioscopic assistance for endoscopic transpapillary gallbladder drainage (ETGBD) in 101 high-risk surgical patients with acute cholecystitis. The authors reported that the optional use of cholangioscopy could lead to a significantly higher technical success rate than the use of conventional ETGBD alone (94.1% vs 72%). A 4-step classification was also developed to categorize the factors that could complicate ETGBD. The authors conclude that the application of cholangioscopic assistance in a coordinated manner, based on the 4-step classification, represents a valid strategy for improving the success rate of ETGBD, in particular in the early stages, when there is a greater probability of technical failure. However, as stated by the authors, ETGBD is a challenging procedure that requires advanced endoscopic techniques and carries the possibility of adverse events, such as post-ERCP pancreatitis. Furthermore, advancing the guidewire in the presence of tortuosity of the cystic duct remains an unsolved issue, even with cholangioscopic assistance.

Endoscopic ultrasound-guided gallbladder drainage (EUS-GBD) represents a valid alternative that can overcome the abovementioned problems. EUS-GBD is a well described procedure in high-risk surgical patients with acute cholecystitis, either as a bridge to surgery or as a definitive therapy.²⁻⁶ Two recent systematic reviews and metaanalyses reported a significantly higher clinical success rate with EUS-GBD than with ETGBD⁷ and percutaneous gallbladder drainage,⁸ with similar rates of adverse events between the procedures. In the past year, faced with issues related to the COVID-19 (coronavirus disease 2019) pandemic, such as a shortage of operating rooms and intensive care unit beds, our group suggested that EUS-GBD should be considered the intervention of choice in patients with acute cholecystitis to obtain a definitive treatment and allow rapid patient discharge.9 We reported the case of an 80-year-old woman with sepsis due to acute cholecystitis that was successfully managed outside the operating room and intensive care unit. In that patient, gallbladder drainage was achieved by the EUS-guided placement of a 10-mm electrocautery-enhanced lumen-apposing metal stent (LAMS). The procedure lasted 20 minutes and no adverse events occurred. The patient was discharged 4 hours later. 10 Furthermore, we previously reported that in most cases, EUS-GBD could be performed without general anesthesia, avoiding intensive care unit admission and reducing the occurrence of anesthesiology-related adverse events. 11,12 Adverse effects of EUS-GBD, such as bleeding and perforation, have been described in a small percentage of cases.8 In our experience, a conspicuous bleeding due to the puncture of a gallbladder wall arteriole following the insertion of a LAMS was successfully rescued by the deployment of a second LAMS close to the bleeding point, leading to mechanical hemostasis. 13 In that case, contrast-enhanced harmonic

EUS (CH-EUS) played a central role. Although CH-EUS has already been shown to be a useful tool in the diagnostic phase, 14-16 increasing exexperience with CH-EUS guided therapeutic interventions is being reported. In the aforementioned case, CH-EUS was crucial for the identification of the feeding vessel, allowing the deployment of the second LAMS in a targeted manner. Furthermore, the absence of spreading of the contrast dye demonstrated the success of the rescue strategy.

As was brilliantly demonstrated by Yoshida *et al.*, some technological developments can be adopted to simplify complex interventional procedures. In addition to the introduction of dedicated devices for EUS-guided drainage that allow the spread of pancreatic fluid collection or biliary drainage, strategies are available for use in high-risk surgical patients with acute cholecystitis; in our opinion, EUS-GBD seems to offer some marked advantages over ETGBD and percutaneous gallbladder drainage, providing a definitive therapy with high rates of technical and clinical success while requiring less anesthesia and a shorter duration of hospitalization.

CONFLICTS OF INTEREST

No potential conflict of interest relevant to this article was reported.

ORCID

Gianmarco Marocchi

https://orcid.org/0000-0001-9925-3486

Andrea Lisotti https://orcid.org/0000-0002-7724-7402 Pietro Fusaroli https://orcid.org/0000-0002-4397-9314

REFERENCES

- Yoshida M, Naitoh I, Hayashi K, et al. Four-step classification of endoscopic transpapillary gallbladder drainage and the practical efficacy of cholangioscopic assistance. Gut Liver 2021;15:476-485.
- 2. Itoi T, Binmoeller KF, Shah J, et al. Clinical evaluation of a novel lumen-apposing metal stent for endosonography-guided pancreatic pseudocyst and gallbladder drainage (with videos). Gastrointest Endosc 2012;75:870-876.
- 3. Dollhopf M, Larghi A, Will U, et al. EUS-guided gallbladder

- drainage in patients with acute cholecystitis and high surgical risk using an electrocautery-enhanced lumen-apposing metal stent device. Gastrointest Endosc 2017;86:636-643.
- Fusaroli P, Jenssen C, Hocke M, et al. EFSUMB Guidelines on Interventional Ultrasound (INVUS), Part V-EUS-Guided Therapeutic Interventions (short version). Ultraschall Med 2016;37:412-420.
- Mori Y, Itoi T, Baron TH, et al. Tokyo guidelines 2018: management strategies for gallbladder drainage in patients with acute cholecystitis (with videos). J Hepatobiliary Pancreat Sci 2018;25:87-95.
- Fusaroli P, Serrani M, Lisotti A, D'Ercole MC, Ceroni L, Caletti G. Performance of the forward-view echoendoscope for pancreaticobiliary examination in patients with status post-upper gastrointestinal surgery. Endosc Ultrasound 2015;4:336-341.
- Krishnamoorthi R, Jayaraj M, Thoguluva Chandrasekar V, et al. EUS-guided versus endoscopic transpapillary gallbladder drainage in high-risk surgical patients with acute cholecystitis: a systematic review and meta-analysis. Surg Endosc 2020;34:1904-1913.
- Mohan BP, Khan SR, Trakroo S, et al. Endoscopic ultrasound-guided gallbladder drainage, transpapillary drainage, or percutaneous drainage in high risk acute cholecystitis patients: a systematic review and comparative meta-analysis. Endoscopy 2020;52:96-106.
- Lisotti A, Bacchilega I, Linguerri R, Fusaroli P. Endoscopic ultrasound-guided gallbladder drainage as a strategy to overcome shortage of operating rooms and intensive care unit beds during Covid-19 crisis. Endoscopy 2020;52:E263-E264.
- Lisotti A, Fusaroli P. EUS-guided gallbladder drainage during a pandemic crisis: how the COVID-19 outbreak could impact interventional endoscopy. Dig Liver Dis 2020;52:613-614
- 11. Lisotti A, Linguerri R, Bacchilega I, Cominardi A, Marocchi G, Fusaroli P. EUS-guided gallbladder drainage in high-risk surgical patients with acute cholecystitis-procedure outcomes and evaluation of mortality predictors. Surg Endosc. Epub 2021 Jan 28. https://doi.org/10.1007/s00464-021-08318-z.
- Fusaroli P, Serrani M, Sferrazza S, Linguerri R, Jovine E, Lisotti A. Elective cholecystectomy after reversal of septic shock using multimodality endoscopic gallbladder drainage. Endoscopy 2018;50:E299-E300.
- Lisotti A, Cominardi A, Bacchilega I, Fusaroli P. Failed endoscopic ultrasound-guided gallbladder drainage due to severe bleeding immediately rescued by redo-drainage under contrast-harmonic guidance. Endoscopy 2020;52:517-519.
- 14. Fusaroli P, D'Ercole MC, De Giorgio R, Serrani M, Caletti G. Contrast harmonic endoscopic ultrasonography in the characterization of pancreatic metastases (with video). Pancreas

- 2014;43:584-587.
- 15. Kamata K, Takenaka M, Kitano M, et al. Contrast-enhanced harmonic endoscopic ultrasonography for differential diagnosis of localized gallbladder lesions. Dig Endosc 2018;30:98-106.
- 16. Kamata K, Takenaka M, Kitano M, et al. Contrast-enhanced harmonic endoscopic ultrasonography for differential diagnosis of submucosal tumors of the upper gastrointestinal tract. J Gastroenterol Hepatol 2017;32:1686-1692.
- 17. Guo J, Giovannini M, Sahai AV, et al. A multi-institution consensus on how to perform EUS-guided biliary drainage for malignant biliary obstruction. Endosc Ultrasound 2018;7:356-365.
- 18. Guo J, Saftoiu A, Vilmann P, et al. A multi-institutional consensus on how to perform endoscopic ultrasound-guided

- peri-pancreatic fluid collection drainage and endoscopic necrosectomy. Endosc Ultrasound 2017;6:285-291.
- 19. Fusaroli P, Kypraios D, Eloubeidi MA, Caletti G. Levels of evidence in endoscopic ultrasonography: a systematic review. Dig Dis Sci 2012;57:602-609.
- 20. Teoh AYB, Kitano M, Itoi T, et al. Endosonography-guided gallbladder drainage versus percutaneous cholecystostomy in very high-risk surgical patients with acute cholecystitis: an international randomised multicentre controlled superiority trial (DRAC 1). Gut 2020;69:1085-1091.
- 21. Luk SW, Irani S, Krishnamoorthi R, Wong Lau JY, Wai Ng EK, Teoh AY. Endoscopic ultrasound-guided gallbladder drainage versus percutaneous cholecystostomy for high risk surgical patients with acute cholecystitis: a systematic review and meta-analysis. Endoscopy 2019;51:722-732.