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The Jackiw-Rebbi model describes a one-dimensional Dirac field coupled to a soliton field and can be
equivalently thought of as a model describing a Dirac field with a spatially dependent mass term. Neglecting
the dynamics of the soliton field, a kink in the background soliton profile yields a topologically protected
zero-energy mode for the field, which in turn leads to charge fractionalisation. We show here that the model,
in the first quantised form, can be realised in a driven slow-light setup, where photons mimic the Dirac field
and the soliton field can be implemented–and tuned–by adjusting optical parameters such as the
atom-photon detuning. Furthermore, we discuss how the existence of the zero-mode and its topological
stability can be probed naturally by studying the transmission spectrum. We conclude by analysing the
robustness of our approach against possible experimental errors in engineering the Jackiw-Rebbi
Hamiltonian in this optical setup.

Q
uantum simulators first and foremost offer a promising alternative when analytical and numerical
methods fail in analysing models with strong correlations. On the other hand, they can also be used
in probing exotic physical phenomena such as those predicted by relativistic theories. To date, a col-

lection of effects in different fields ranging from condensed matter physics to relativistic quantum theories and
material science have been simulated1, using different platforms such ion traps2, and cold atoms in optical
lattices3.

More recently, the ability to controllably manipulate photons and their interactions with atomic systems
resulted in the birth of a new direction in quantum simulations using photons and polaritons to mimic strongly
correlated phenomena. Coupled cavity QED arrays (CCAs) were initially considered, where photons trapped in
resonators interfaced with two level atoms (real or artificial ones) were shown to be able to reproduce many-body
dynamics4–6. The so-called photon blockade effect was exploited and polariton Mott transitions and effective
spin-models were proposed, introducing what is now known as the Jaynes-Cummings-Hubbard (JCH) model7.
Simultaneously and independently, the possibility for strongly correlated polariton dynamics in CCAs with four-
level atoms and external fields was proposed8, followed soon after by the JCH’s phase diagram9,10 and the
Fractional Hall effect11. More recently one dimensional highly nonlinear waveguides with slow-light nonlinea-
rities12–14 have been considered where effects characterising Tonks-Girardeau gas, Luttinger liquids physics, or
even interacting relativistic theories have been shown to be simulable15–17. The possibility to probe out-of-
equilibrium phenomena has also been explored in driven setups18,19

Quantum simulation has also shown great development in bringing the exotic physics of single particle
relativistic effects into laboratory. These range from numerous theoretical works studying the Dirac equation
and emerging effects such as the trembling motion of the electron (Zitterbewegung) or Klein tunneling to
experimental implementations of those in different platforms covering all three mentioned above. More specif-
ically in ion technologies the Dirac equation in 1 1 1 dimensions has been realised20–23 followed by an imple-
mentation with photons in waveguide arrays, including the random mass Dirac model24–26. Seminal proposals for
the realisation in slow-light systems also exist27–30. Going beyond the Dirac equation, recent works have proposed
to simulate the Majorana equation31,32 and neutrino oscillations33 in trapped ions.

The purpose of this article is to propose a quantum simulation of a historically important relativistic model
known as the Jackiw-Rebbi (J-R) model34 with slow-light. The model describes a one-dimensional Dirac field
coupled to a static background soliton field and can be equivalently thought of as the model describing a massless
Dirac particle under a Lorentz scalar potential. The same model has been studied independently by Su, Schrieffer,
and Heeger (SSH), while studying electron-phonon coupling arising in polyacetylene, in the continuum limit35.
The model is well known for predicting charge fractionalisation36, well before fractional quantum Hall effect was
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discovered, and also for the topological nature of its zero-energy
solution and can be thought of as a precursor to topological insula-
tors, a topic that is being hotly pursued37,38.

There have been proposals to realise the model and observe charge
fractionalisation in an optical lattice setup39,40 and experimental
observation of the soliton which follows the model in a fermionic
superfluid41. Also, there have been proposals to observe topological
bound states analogous to that arising in the model, in quantum walk
and graphene setups42–45. A topological bound state has also been
observed in optically-induced dimer lattices46, where the latter is
closely related to the SSH model. Here, we follow a different route
and propose a photonic implementation of the model in a slow-light
polaritonic setup and show that the topological properties can be
probed straightforwardly in an optical transmission experiment.
We would like to highlight here that the usual experimental difficult-
ies, in realising the photonic nonlinear interaction in slow-light sys-
tems for more complex many body simulations, do not exist in this
case. Therefore we believe the proposal is a good candidate for
directly realising the J-R model and could allow the efficient probing
of its topological properties for the first time.

The Jackiw-Rebbi model and the related model studied by Su,
Schrieffer, and Heeger35 share many features similar to those studied
in topological insulators and might indeed be classified as an AIII-
type chiral topological Dirac insulator under a suitable regularisa-
tion47. Here we describe the Jackiw-Rebbi model and point out the
topological properties and similarities to topological insulators. The
equation of motion considered by Jackiw and Rebbi reads

iLtY~ acpzz
bmc2

k
w zð Þ

� �
Y, ð1Þ

where a and b are the Dirac matrices which in this case can be chosen
to be proportional to two Pauli matrices. For concreteness, we take
them to be a 5 sz and b 5 sy. The real scalar field w(z) is assumed to
obey the Klein-Gordon equation of the form

LmLmw zð Þz l2

2k2
k2{w zð Þ2
� �

~0: ð2Þ

The ground state of the scalar field is degenerate at w(z) 5 6k, which
implies the existence of a soliton that interpolates between 2k at z 5

2‘ and k at z 5 ‘ and corresponding anti-soliton. The soliton
localised at z 5 0 is described by

ws zð Þ~k tanh lzð Þ ð3Þ

When the Dirac field is coupled to such a soliton, a zero-mode (zero
energy state) appears which is localised around the soliton. The
unnormalised spinor wave function of this zero-mode reads

Y0 zð Þ~exp {
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where abx 5 2ix, and is shown in Fig. 1 (solid red curve). Note that
the dynamics of the scalar field is neglected in the above argument,
i.e., the scalar field is treated as a constant background field.

Far away from the kink, the particle and hole bands have an energy
gap m, whereas this gap must close at the point ws(z) 5 0. This
resembles the gap closing at the boundary of a topological insulator
where the bound surface mode develops. The resulting bound state,
the zero-mode, is protected by the topology of the scalar field, whose
existence, irrespective of the local profile of the kink, is guaranteed by
the so-called index theorem34,48. This phenomenon is similar to the
emergence of edge modes in the quantum Hall effect49,50 or topo-
logical insulators37,38, where edge modes appear at the boundary of
two topologically different domains.

Another interesting aspect of the model (when second quantisa-
tion is taken into account) is charge fractionalisation, which we
briefly describe before moving on to a proposal for a photonic imple-
mentation. The ground state of the Dirac field (the vacuum) in the
soliton background may or may not include the zero-mode. Because
of the charge conjugation symmetry of the system, the two degen-
erate ground states must have opposite charges. Moreover, the
charge difference between the two must be 1, as there can be only
one electron occupying the state. The result is that the filled or
unfilled states must have charges 1/2 and 21/2, respectively. This
result can be confirmed by constructing the formal charge operator
in terms of creation and annihilation operators of the eigenmodes.
The vacuum states are the eigenstates of the charge operators which
means that the observed fractional charges are sharp and are not just
a trivial realisation of a distributed charge.

Results
Slow-light realisation of J-R dynamics. The spinor slow-light setup
we employ to realise the J-R model and subsequently observe the
zero-mode is depicted in Fig. 2. This setup was first proposed by
Ruseckas et al.30, to which we refer the reader for a detailed
explanation. The system comprises of a waveguide system coupled
to an ensemble of atoms, which could be realised either in a tapered
fiber51,52 or a hollow-core waveguide53–57. The atoms are characterised
by the three hyperfine ground levels; one populated state jgæ and two
unpopulated states js1æ and js2æ. These ground states are coupled to
the two excited states je1æ and je2æ by the probe and control fields.

Figure 1 | Soliton profile, ws(z) (blue dotted), and the zero-mode wave
function profile, | Y0(z) | 2 (red solid), showing the localisation scale l of
the zero-mode. We have set m 5 c 5 k 5 1 for convenience.

Figure 2 | (a), Schematic diagram of the optical waveguide system,

interfaced with an ensemble of atoms where propagating light fields ~E1 and
~E2 play the role of Dirac spinor components. By adjusting the relevant

optical couplings and detunings, the J-R model can be simulated and its

topological aspects probed by looking at the transmission spectrum.

(b), The level structure of the interfaced atoms.
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The counter-propagating probe beams are described by the electric
field amplitudes E1 and E2, with the respective central frequencies v1

and v2 and drive the transitions jgæ R je1æ and jgæ R je2æ. The
propagation of the probe beams is controlled by two pairs of
counter-propagating control lasers with Rabi frequencies Vj1 and
Vj2 (with j 5 1, 2), driving the transitions from the excited states
to the unpopulated states. A slowly varying amplitude ~Ej r,tð Þ is
associated with the electric field strength Ej of the jth probe field:

Ej z,tð Þ~

ffiffiffiffiffiffi
�hv

20

s
~Ej z,tð Þe{ivj tzikjzzc:c:, ð5Þ

with k1 5 v1 and k2 5 2v2, where the speed of light in an empty
waveguide is taken to be 1.

The propagation of the slowly varying amplitudes is such that they
follow the 1 1 1 dimensional Dirac-like equation

1z
1
v0

1
sin2S

� �
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1
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cos S
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� �
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v0 5 V2/g2n is the group velocity much smaller than 1, where V
. ffiffiffi

2
p

is the Rabi frequency of the control fields, g is the atom-light coupling
strength, and n is the atomic density. The complex Rabi frequencies
are tuned so that S11 5 S22 5 0 and S12 5 S21 5 S where

Vij~V
. ffiffiffi

2
p

exp iSij
� �

. ~E is a column vector of two slowly-varying

field components ~E1 and ~E2, i.e., ~E~ ~E1, ~E2
� �T

and d is the two-
photon detuning. In the limit S 5 p/2, the above equation reduces
to the Dirac equation in 1 1 1 dimension

iLtziv0szLz{dsy

� �
~E~0, ð7Þ

which is equal to the Dirac equation introduced in the previous
section with the identifications c 5 v0 and mc2/k 5 d.

The connection with the J-R model is obvious once we let d be
spatially varying as d(z) 5 d0 tanh(lz). This is possible, for example,
by introducing additional lasers and states to induce AC Stark shift in
the metastable states js1æ and js2æ. Spatial variations in the lasers can
then induce an arbitrary mass profile, including the desired soliton
profile. A similar model has been studied in Ref. 29 with a slightly
different atomic level scheme and the existence of zero-mode has
been briefly commented on, although no connection with the J-R
model has been made nor the topological nature of the zero-mode
mentioned. By making the connection, it is easily seen that there is
interesting physics to be explored in the slow-light system, namely
the topologically protected zero-mode. In the following, we discuss
how the zero-mode and its topological stability can be observed
experimentally.

Probing the zero-mode and its topological stability. Broadly
speaking, there are two possible ways to observe the zero-mode in
this optical setup. The first is an adiabatic method, where a photonic
wave packet is adiabatically loaded to prepare an initial state that
resembles the zero-mode whose evolution is then observed. In this
method, the initial state is prepared by capturing a pulse in the
medium via the usual electromagnetically induced transparency
(EIT) technique, i.e., by slowly turning off the forward-traveling
control fields which are initially on12. Then, all the control fields
are slowly turned on again, including the coupling fields V12 and
V21. At this point, the pulses are trapped as stationary light and go
through the effective evolution governed by the Dirac equation. The
dynamics of the spinor fields then differ significantly, depending on
the initial condition of the wave packets as shown in Fig. 3, where we
have solved the Dirac equation with the initial gaussian wave packet

exp {z2
	

2s2

 �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
p

s�
q

x with s 5 1.2 and x 5 (1, 1)T to mimic the

zero-mode spinor. In the case of the J-R model, i.e., under the soliton
mass profile, the wave packet is trapped around the kink (upper row
of Fig. 3), while under the normal case of constant mass, the wave
packet spreads out (bottom row of Fig. 3).

The second method, better suited for this particular experimental
realisation, is to look at the transmission and reflection of an incident
probe field ~E1 z~0ð Þ. Similar studies have been carried out quite
recently, using transmission to probe strongly interacting effects in
similar polaritonic systems58–60. Consider a monochromatic probe
field ~E1~ae{iDvt impinging from the left, while ~E2 z~Lð Þ~0 where
L is the length of the system. One can study the transmission and
reflection spectrum of this field where the transmitted field will come
out to the right of the waveguide as ~E1 z~Lð Þ~aT e{iDvt , whereas
the reflected part is ~E2 z~0ð Þ~aRe{iDvt as shown in Fig. 2a. The
constant mass case can be solved analytically30 and shows the beha-
viour depicted in Fig. 4a. There is a finite window of perfect reflection
due to the well known band gap proportional to the mass energy.
Upon introducing the spatially dependent mass term discussed earl-

Figure 3 | Dynamics of an optical gaussian wave packet mimicking the
zero-mode wave function (4) in the J-R model (top row), compared with
its evolution under the Dirac equation (bottom row). The overlap between

the zero-mode and the gaussian wave functions is < 0.997. In the first case

the coupling to the background soliton forces the initial wave packet to be

trapped, while the second case shows the expected wave function spreading

for a Dirac particle of mass d0. ~E1 and ~E2 corresponds to the top and bottom

parts of the spinor, respectively.

Figure 4 | The reflection | R | 2 (black) and transmission | T | 2 (red) curves
for the effective Dirac particle (a), without the soliton background and
(b), with a soliton field whose profile is 0.25 tanh(0.02z). (a) shows the

Dirac mass bandgap whereas (b) shows near-unity transmission near the

zero-energy due to the bound zero-mode.

www.nature.com/scientificreports
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ier, i.e. tanh(lz), transmission reappears at the center of the bandgap
as shown in Fig. 4b, which can be attributed to the presence of the
zero-mode. Here and below, we follow Ref. 30 and assume that the
length of the atomic cloud interacting with the propagating light is L
5 300 mm and the latter’s group velocity v0 5 17 m/s. For these
values, the maximum two photon detuning d0 5 0.25v0/L lies well
within the EIT transparency window.

Using this second method, the topological nature of the zero-
mode can be readily probed by looking at the transmission spectrum
while perturbing the mass profile. The latter can be done by tuning
the two photon detunings using standard optical methods, like AC
stark shifting used in slow-light experiments12,13. Changing the
hyperbolic tangent function to the sine function while preserving
the topology of the profile, i.e., the mass term takes the value of
2d0 and 1d0 at z 5 2L/2 and z 5 L/2 respectively and crosses 0
only once at the origin, has little effect on the transmission at the
center of the bandgap as shown in Fig. 5a. The extreme limit where
the ‘kink’ has been straightened out such that the background profile
is linear is also shown in Fig. 5b. The zero-mode persists in this
extreme case, clearly demonstrating the topologically protected
robustness. The zero-mode is also protected from random fluctua-
tions in the mass profile as shown in Fig. 5c and d, where we have
assumed random fluctuations within 20% and 50% of d(z), i.e.,
d zð Þ~d0 tanh 0:02zð Þ 1z zð Þð Þwhere zð Þ is a uniform random with
the resolution of 0.1 mm. Such topological protection holds as long as
the fluctuations do not destroy the topology (two distinct values at
the infinity and one zero-crossing only) of the soliton background.
Unusually large fluctuations that changes the topology could destroy
the zero-mode, but are unlikely in experimental implementations.

Experimentally, it might be difficult to set the phases of the control
fields exactly to the required value of the mixing angle S 5 p/2 in Eq.
(6), in which case the resulting equation deviates from the Dirac
equation. To study the effect of this imperfection, we have set S 5

p/2 1DS whereDS takes 10% and 40% of the desired value, the result
of which is depicted in Fig. 6a and b, respectively. The presence of the

zero-mode persists upon experimental errors in creating the exact
Hamiltonian. Another experimental imperfection that can affect the
transmission spectrum is the loss. The loss from the excited states can
be easily incorporated into the equation of motion by introducing an
extra term 2iceff into Eq. (7)30, where ceff 5 cd2/V2 with c the decay
rate from the excited states. Effects of photon losses are shown in
Fig. 6c and d, where we have used d(z) 5 d0 tanh[0.02z] and
cd2

0

	
V2~0:005 and 0.01, respectively. The transmission peak at

the zero-mode reduces in size with increasing loss rate, but the peak
is still visible at cd2

0

	
V2~0:01. Under normal EIT condition, d0=V,

which along with our numerical analysis indicates that the effect of
the loss should not obstruct the detection of the zero-mode.

Figure 5 | (a), (b), Stability of the zero-mode under changes in the background profile, and (c), (d), random fluctuations in the soliton profile,

implemented via the two photon detunings. (a), Background profile changed to the sine function d(z) 5 0.25 sin(0.01z). (b), Soliton profile changed to

the linear function going from 20.25 to 0.25. In both cases, the response of the system around resonance remains similar to Fig. 4b. (c), (d), Added

random fluctuations where the maximum value of the random fluctuation zð Þ is 0.2 and 0.5. We see that the zero-mode persists in spite of the relatively

large values of fluctuation although the maximum possible transmission is gradually reduced from roughly 95% to 85%.

Figure 6 | (a), (b), Departure from the Dirac equation for different values

of the mixing angle (see Eq. (6)):DS 5 0.1p/2 and 0.4p/2. (c), (d), Effects of

loss from the excited states for cd2
0

	
V2~0:005 and 0.01. The zero-mode

peak survives all these experimental imperfections.
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Discussion
In this work, we have shown that it is possible to simulate the Jackiw-
Rebbi model and probe its topological nature in a driven slow-light
system using current technology. By introducing spatially-
dependent optical detunings, it is possible to simulate the Dirac
equation with a spatially dependent static soliton field, and allows
one to directly probe the topologically protected zero-mode. The
robustness of this zero-mode can be tested by changing the spatial
profile of the detunings, while continuously observing the optical
transmission spectrum of the system. We have also analysed the
effects of experimental imperfections such as deviations from the
ideal model and losses and showed that the observation of zero-mode
survives these imperfections.

Before closing we would like to briefly comment on other types of
models that might be studied in the same system in future works.
Firstly, adding interactions in the system through EIT photon non-
linearities could allow the study of interesting strongly correlated
physics. Intra-species repulsion would make the bosons behave like
fermions in many ways, and it would be interesting to think about
how this affects the (lack of) charge fractionalisation effect in bosons.
Interacting random mass Dirac model is another interesting possibil-
ity as studying the interplay between interactions and randomness is
an important field being actively studied. Yet another possibility is to
think of the mass term as the Lorentz-scalar potential which can act
as a confining potential, given a proper spatial dependence61,62. This
model has been shown to act as a phenomenological model of quark
confinement motivated by the ‘MIT-bag’ model63.
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