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SUMMARY

Approximately 90% of pre-clinically validated drugs fail in clinical trials owing to unanticipated clinical

outcomes, costing over several hundred million US dollars per drug. Despite such critical importance,

translating pre-clinical data to clinical outcomes remain a major challenge. Herein, we designed a mo-

dality-independent and unbiased approach to predict clinical outcomes of drugs. The approach ex-

ploits their multi-organ transcriptome patterns induced in mice and a unique mouse-transcriptome

database ‘‘humanized’’ by machine learning algorithms and human clinical outcome datasets. The

cross-validation with small-molecule, antibody, and peptide drugs shows effective and efficient iden-

tification of the previously known outcomes of 5,519 adverse events and 11,312 therapeutic indica-

tions. In addition, the approach is adaptable to deducing potential molecular mechanisms underlying

these outcomes. Furthermore, the approach identifies previously unsuspected repositioning targets.

These results, together with the fact that it requires no prior structural or mechanistic information of

drugs, illustrate its versatile applications to drug development process.

INTRODUCTION

Unexpected adverse events (AEs) and/or the lack of the expected efficacy in human subjects fails drug

development. The average success rate of drug candidates through clinical trials is 13.8% (Wong et al.,

2019). This low success rate costs US$161M–1.8B per drug candidate on drug developers (e.g., pharmaceu-

tical and biotech companies) (Morgan et al., 2011), leading to drug price hike and rising medical cost.

Hence, effective prediction of clinical outcomes from the pre-clinical studies improves the success rate

of drug development and reduces the drug price and medical cost.

A major impediment in drug development is the unpredictability of human outcomes on the basis of the

pre-clinical results using cells, organs, and/or animal models. To overcome this problem, numerous tech-

nological solutions, both experimental and computational approaches, are currently undertaken. The uses

of human cells and organs in vitro and in vivo models are among such approaches. Human cells such as

induced human pluripotent cells (human iPSCs) (Elitt et al., 2018; Ko and Gelb, 2014; Meseguer-Ripolles

et al., 2018) and an organ(s)-on-a-chip consisting of human cells (Oleaga et al., 2016; Rezaei Kolahchi et

al., 2016) are currently utilized as drug screening and in vitro toxicity assays. As in vivomodels, partially hu-

manized mouse models, such as those where the liver is nearly 100% composed of human cells, is exploited

(Tateno et al., 2004). In addition to such experimental approaches, computational tools are also invented

and used. In particular, applications of machine learning algorithms for predicting clinical outcomes are in

fashion (Shah et al., 2019; Vamathevan et al., 2019). They exploit the big-data sets representing structural

and functional features of drugs and their target information.

Although both of such experimental and computational approaches have shown some success and prom-

ise, there are certain limitations with these existing approaches. The existing machine learning approaches

require prior knowledge about the characteristics (such as structure) of drugs and their mechanisms of ac-

tions (such as target molecules). In addition, many of the computational approaches are specialized for the

drugs of specific modality such as small-molecule compounds (i.e., mixed structures and mechanisms).

Hence, they have difficulty dealing with the mixture of compounds. The existing experimental approaches

are often ‘‘biased’’, as they can design assay system according to what the testers want to examine. For

example, the testers need to know which organ(s) or phenotype(s) to examine for the drug effect(s) prior

to designing the experiment(s). Furthermore, these presently available experimental and computational

approaches fail to recapitulate the organismal level body-wide drug effects in human. Hence, an approach

that recapitulates organismal biology but does not require any prior knowledge about the drug structure or
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mechanisms (i.e., modality-independent and unbiased) is expected to advance and facilitate the drug

development process.

At the whole-body level, drugs could act on not only one or a few specific organ(s), but also multiple organs

showing complex effects (Berger and Iyengar, 2011). Drugs could also act on one organ that influences the

functions of other organs via inter-organ cross talks (Droujinine and Perrimon, 2013, 2016). Hence,

measuring the drug effects on large number of organs may provide useful features that could be exploited

in predicting the drug effects at the whole-body level. However, this assay is only possible with animal

models but not with human subjects.

We previously conducted multi-organ multi-model transcriptome studies and identified model-specific

and organ-specific transcriptome patterns in mice (Kozawa et al., 2018). Furthermore, weighted correlation

network analysis (WGCNA) of the gene expression across multiple organs identified a number of putative

organ-to-organ cross talks, some of which we genetically validated (Kozawa et al., 2018). On the basis of this

previous study, we considered that such multi-organ transcriptome patterns could be exploited as the

unique features of drugs at the whole-body level to predict its clinical outcomes. Furthermore, if successful,

the approach provides a modality-independent and unbiased system requiring no prior knowledge of the

structures/mechanisms of drugs, as the only requirement is that the drugs can be administered to mouse.

In the current study, we develop and show the performance of such system.We design a hybrid approach of

experimental and machine-learning methods to utilize the multi-organ transcriptome patterns induced by

drugs in mice to predict their clinical outcomes in human. We evaluate its prediction performance for both

AEs and therapeutic indications by cross-validation. In addition, we also test whether the approach could

be adapted to deducing molecular and cellular mechanisms underlying such predictions. Furthermore, we

illustrate a possibility of applying this approach to identifying drug repositioning targets.
RESULTS

‘‘Humanizing’’ Mouse Datasets

The concept of our approach is described in Figure 1. First, we generate transcriptome data across 24 or-

gans from the mice to which we administer each drug with known clinical outcomes. Next, for each human

clinical criterion (e.g., AE, therapeutic indication), we train a machine learning model with the 24-organ

transcriptome data induced by the drug in mice and its known outcomes in human. The outcome data

are classified according to the demographic profiles (e.g., sex, age) of the individuals. Consequently,

the drug-induced 24-organ mouse transcriptome patterns are associated with the individualized

human clinical outcomes in the machine learning model/database, hence referred to as ‘‘humanized

Mouse-DataBase, individualized (hMDB-i).’’ To predict clinical outcomes of a new drug candidate X, we

generate the 24-organ transcriptome data from the mice to which X is administered. Such data are used

as the input data into hMDB-i to predict X’s putative individualized clinical outcomes (i.e., the output).
AEs Prediction by Support Vector Machine Algorithm

We generated the 24-organ transcriptome datasets with 15 drugs of various modalities (i.e., small mol-

ecules, antibody, and peptide) with diverse known therapeutic indications (see Transparent Methods,

Figure 1 and Table S1). The incidence of AEs reported for each drug in each sex and each age group

were compiled from US Food and Drug (FDA) Adverse Event Reporting System (FAERS). For each AE

(a total of 5,519 AEs is reported for one or more of the 15 drugs), we train a support vector machine

(SVM) algorithm with the drug-induced 24-organ transcriptome patterns to predict the individualized

outcomes.

We performed cross-validation to evaluate the effectiveness of this approach to predict the outcomes of

the AEs (see Transparent Methods, Figure 2A). We first train an SVM algorithm with the 14 drug-induced

24-organ mouse transcriptome data. We then input the 24-organ mouse transcriptome data of the omitted

drug as ‘‘an unseen drug data’’ (see Transparent Methods, Figure 2A). We performed such evaluations for

all 15 drugs by omitting one drug at a time from the training data. We used an SVM classifier to predict

whether each AE would be observed by each drug for each sex and age-group (see Transparent Methods).

The scores of accuracy, precision, recall, and F-measure of the prediction result of the AEs reported for

each sex and age group for each drug are summarized in Figure 2B and Table S2.
2 iScience 23, 100791, February 21, 2020



Figure 1. Conceptual Framework of hMDB-i

See text for the description.
The result shows that the accuracy scores are over 0.7 for the 200 of 264 sex/age-groups across the 15 drugs

and over 0.9 for the 52 sex/age-groups. This indicates that more than 70% of the AEs predicted to either

appear or not appear for the drug are indeed reported or not reported, respectively, in these sex/age-

groups. The precision scores are over 0.5 for the 156 of the 264 sex/age-groups, indicating that more

than 50% of the AEs predicted to appear for the drug are indeed reported in these sex/age-groups. If

the question is whether an AE predicted to appear for a drug is indeed reported in at least one or more

of the sex/age group, 13 drugs (alendronate, acetaminophen, aripiprazole, cisplatin, clozapine, doxycy-

cline, empagliflozin, lenalidomide, olanzapine, evolocumab [Repatha], risedronate, sofosbuvir, teripara-

tide) show the precision scores of over 0.5 (see ‘‘All’’ row in each drug in Figure 2B), indicating that more

than 50% of the AEs predicted to appear for these drugs are indeed reported at some sex/age groups.

Furthermore, for nine drugs (alendronate, acetaminophen, aripiprazole, cisplatin, clozapine, doxycycline,

lenalidomide, olanzapine, teriparatide), the precision scores of 0.9–1.0 are found at least in one or more the

sex/age groups. The recall score indicates howmany of the reported AEs are indeed predicted for the drug

in each sex/age group. The recall scores are relatively lower across all drugs and sex/age groups, indicating

that the approach misses many of the reported AEs. However, for such drugs (asenapine and lurasidone),

the recall scores of 0.7–1.0 are found for certain sex/age groups. Sample size differences among different
iScience 23, 100791, February 21, 2020 3
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Figure 2. Summary of the AE Prediction Results by SVM/hMDB-i

(A) Hold-out scheme.

(B) Confusion matrix summarizing the AE prediction results for each drug. Scores of accuracy (Accuracy), precision (Precision), recall (Recall), and F-measure

(F measure) for each drug (Drug) are indicated by bars (light blue) for each age group (Age) and sex (Sex). The scale of the scores (0.0–1.0) are indicated at the

bottom. The black filledboxes across all scores indicate that no AEs are reported for this drug in this sex/age group. When the denominator is 0 in the

F-measure calculation, the score is incalculable, hence shown as black filled box.

(C) The prediction results of death event for each drug (Drug) are summarized for each age group (Age) and sex (Sex) using FAERS. The reported outcomes

(Reported) are shown as orange and light-blue filled boxes indicating death event is reported and not-reported, respectively. The prediction results

(Predicted) are shown as orange and light-blue filled boxes indicating death event is predicted to occur and not-to-occur, respectively. The age groups are

10: 10–19 years old, 20: 20–29 years old, 30: 30–39 years old, 40: 40–49 years old, 50: 50–59 years old, 60: 60–69 years old, 70: 70–79 years old, 80: 80–89 years

old, 90: 90–99 years old, All: 10–99 years old. F, females; M, males; APAP, Acetaminophen; Dox, doxycycline; EMPA, empagliflozin; Repatha, evolocumab.

The raw data are available as Table S2.

(D) The confusion matrix showing the prediction result using SIDER4.1 reference database. The raw data are available as Table S3.
sex/age groups and the number of the reports for each AE may significantly impact on the accuracy, pre-

cision, and recall scores. In fact, the number of the reported AEs for asenapine and lurasidone is signifi-

cantly smaller than those of the other drugs and their precision is lower.

In FAERS, many of the AEs (e.g., diarrhea, abdominal pain) are common amongmany drugs. The outcomes

of rare but serious AEs (SAEs) are often more important to know in advance to clinical trials. Hence, we as-

sessed the prediction performance on SAEs. The top of such SAE hierarchy is ‘‘death event’’ (Sonawane

et al., 2018). The result shows that the correct outcomes of death event are predicted for 148 of 204 sex/

age groups across the 15 drugs (Figure 2C). The death events are reported in a total of 141 sex/age groups,

and our prediction approach missed its incidence only in 12 groups (Figure 2C).

To examine potential influences of reference-specific errors, biases, and/or cofounders that are often

found in any real-world data such as FAERS (Harpaz et al., 2013; Tatonetti et al., 2012), we validated our

prediction with another reference, Side Effect Resource (SIDER) (http://sideeffects.embl.de). Several differ-

ences between FAERS and SIDER must be noted. SIDER4.1 version does not include evolocumab (Repa-

tha). The outcomes reported in SIDER4.1 are not classified according to sex/age groups. The SEs and

AEs are not necessarily represented by the same terms. Considering these differences, we examined the

outcome predictions for 14 drugs (i.e., 15 drugs minus evolocumab) without the sex/age group classifica-

tions. In addition, the SEs/AEs common to both reference databases were analyzed. The result, 0.677–0.827

accuracy, 0.023–0.523 precision, and 0.571–0.963 recall, is comparable with that with FAERS (Figure 2D, the

full and raw data for the confusion matrix is available as Table S3), further supporting the effectiveness of

our method.

Next, we evaluated the necessity of multiple organ transcriptome. Figure 3 shows the SAEs that the 24-or-

gan transcriptome correctly predicts the outcome for each drug (Figure 3 and Table S4). The predictions of

these SAEs by individual-organ transcriptome data in the cross-validation scheme show variable results

among different organs (Figure 3). Although this result indicates that some of the individual-organ datasets

are sufficient to predict the correct outcomes, which individual-organ dataset(s) is(are) necessary varies

among which SAEs to be predicted (Figure 3). Hence, it appears beneficial to collect all 24-organ transcrip-

tome data.
AE Prediction by Random Forest Algorithm

We tested another machine learning algorithm, random forest (RF), to predict the AE outcomes. We

compared the prediction results for death event outcomes (Figure 4 and Table S5). The result shows

that both SVM and RF provides the same predictions for all sex/age groups (Figure 4A). The calcu-

lations of accuracy, precision, recall, and F-measure scores by both algorithms show the similar re-

sults for all 15 drugs (Figure 4B). For all drugs except asenapine, empagliflozin, and lurasidone, all

scores of accuracy/precision/recall are 0.5–1.0. Although the accuracy and the precision scores for

asenapine, empagliflozin, and lurasidone are 0.2–0.4, the recall scores for these three drugs by

both SVM and RF are 1.0 (asenapine, empagliflozin) and 0.667 (lurasidone), indicating that the occur-

rence of death event by these three drugs are efficiently predicted across all sex/age groups (i.e., not

missing the possible occurrence of death event). The results indicate that both algorithms are equiv-

alent in predicting AE outcomes.
iScience 23, 100791, February 21, 2020 5
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Figure 3. The Comparison of the Prediction Results by the 24-Organ and Individual-Organ Transcriptome Data

Each serious adverse event is described (SAE). The reported outcomes (Reported) are shown as orange and light-blue filled boxes indicating the SAE is

reported and not-reported, respectively. The prediction results (Predicted) are shown as orange and light-blue filled boxes indicating the SAE is predicted to

occur and not-to-occur, respectively. The prediction results of with the 24-organ (Predicted by all 24 organs) and individual-organ (Predicted by organ name)
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Figure 3. Continued

data are shown. AdrenalG, adrenal gland; BM, bone marrow; WAT, gonadal white adipose tissue; ParotidG, parotid gland; PituitaryG, pituitary gland;

SkMuscle, skeletal muscle; ThyroidG, thyroid gland. The age groups are 10: 10–19 years old, 20: 20–29 years old, 30: 30–39 years old, 40: 40–49 years old,

50: 50–59 years old, 60: 60–69 years old, 70: 70–79 years old, 80: 80–89 years old, 90: 90–99 years old. F, females; M, males; APAP, Acetaminophen; Dox,

doxycycline; EMPA, empagliflozin; Repatha, evolocumab. The result is also included in Table S4.
AE Prediction by Majority Decision Framework

Although the performance with two different algorithms (SVM and RF) were equivalent (Figure 4), we obtained

differential results with the 24-organ and the individual-organ approaches (Figures 2 and 3). In the case of the

individual-organ approach, which individual-organ dataset(s) to be used was critical for predicting the correct

outcomes (Figure 3). Hence, it may be beneficial to conduct predictions with both the 24-organ and all individ-

ual-organs to maximize the effectiveness of the hMDB-i approach. For this purpose, we designed a majority

decision framework and evaluated its effectiveness for predicting death event outcomes with alendronate

and lenalidomide in female/20s group where the SVM approach with the 24-organ transcriptome

dataset alone failed to predict its occurrence (see Methods for the detailed description, Figure 4C). The result

shows that this majority decision framework effectively predicts the correct outcomes (Figure 4C).
AE Prediction by Link-Prediction Framework

Next, we tested the power of hMDB-i for the prediction of AE outcomes in a different framework. The rela-

tionship between the adverse effects and therapeutic indications has previously been exploited for clinical

outcome predictions (Zhang et al., 2013). Hence, we examined whether such data could be utilized to

enhance the prediction capability of hMDB-i. For this purpose, we devised a link-prediction (LP) framework

as shown in Figure 5A (see Transparent Methods for the detailed description). Three training datasets are

used: (1) the 24-organ transcriptome data of each of the 15 drugs, (2) AEs reported for each of all drugs in

FAERS, and (3) all AEs reported in FAERS for each of all indications in FAERS (Figure 5A). In the LP frame-

work, one-class SVM algorithm is used to train the models and the presence/absence of a link of an un-

trained drug (Drug Candidate X in Figure 5A), based on its 24-organ transcriptome pattern, to each AE

is determined (see Transparent Methods for the detailed description).

The LP prediction of all AEs for three drugs, alendronate, clozapine, and evolocumab (Repatha), was con-

ducted, and the result is summarized as a confusionmatrix (Figure 5B, Table S6). Although the accuracy and

precision scores are slightly better with hMDB-i alone (SVM), the LP framework (LP) improves hMDB-i in the

recall scores (Figure 5B). This result indicates two properties of these two approaches: (1) The AE outcomes

predicted by hMDB-i alone is more likely to be observed than those with the LP framework; (2) The LP

framework is superior to hMDB-i alone in not missing the occurrence of potential AEs. The examples of

such superior property of the LP framework are shown in Figure 5C listing some of the reported SAEs

that are missed by the hMDB-i alone but captured by the LP framework. The full list of such can be found

in Table S6.
Biological Insights into the AE Mechanisms

Insights into the biological mechanisms underlying AEs provide opportunities for designing the strategies

to reduce the incidence of AEs during the drug development processes. For this purpose, RF algorithm is

useful as it calculates feature importance of organ-gene datasets for the correct outcome predictions.

Tables 1 and 2 show organs and cellular/molecular pathways that were found important for predicting

the correct outcomes of the death event for males at 50s for aripiprazole. Top 5 and Top 8 organ-pathway

combinations identified by REACTOME (Table 1) and KEGG (Table 2), respectively, are shown. The results

for this and other drugs and age/sex groups are summarized in Tables S7 and S8. The result indicates a

possibility that the hMDB-i is also useful for deducing mechanisms underlying the predicted AE outcomes.
Predicting the Outcome Dynamics over Ages

Information regarding the quantitative differences of the AE occurrence among the sex/age group(s)

would be beneficial for designing efficient clinical trials. It allows for selecting target subjects with less

chance of observing an AE in the trial. Hence, we next evaluated the performance for predicting quantita-

tive changes for the outcome incidences of AEs (see Transparent Methods for the detailed description, Fig-

ure 6, Table S9). For this purpose, we applied support vector regressor (SVR) and random forest regressor

(RFR) algorithms to the hMDB-i framework. The number of death event reports changes over age to
iScience 23, 100791, February 21, 2020 7
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Figure 4. The Comparison of Death Event Prediction Results by SVM and RF Algorithms

(A) The prediction results of death event for each drug by SVM and RF algorithms are summarized for each age group (Age) and sex (Sex). The reported

outcomes (Reported) are shown as orange and light-blue filled boxes indicating death event is reported and not-reported, respectively. The prediction

results (Predicted by SVM/RF) are shown as orange and light-blue filled boxes indicating death event is predicted to occur and not-to-occur, respectively.

The age groups are 10: 10–19 years old, 20: 20–29 years old, 30: 30–39 years old, 40: 40–49 years old, 50: 50–59 years old, 60: 60–69 years old, 70: 70–79 years

old, 80: 80–89 years old, 90: 90–99 years old. F, females; M, males.

(B) The prediction results for each drug by SVM and RF are summarized as a confusion matrix. Scores of accuracy (Accuracy), precision (Precision), recall

(Recall), and F-measure (F measure) for each drug (Drug) are indicated by bars (light blue) for each age group (Age) and sex (Sex). The scale of the scores

(0.0–1.0) are indicated at the bottom. APAP, Acetaminophen; Dox, doxycycline; EMPA, empagliflozin; Repatha, evolocumab. The results of the RF prediction

are also available as Table S5.

(C) Majority decision approach for death event prediction. ‘‘Voting’’ (i.e., majority decision) by both SVM and RF methods using the 24-organ and all

individual-organ transcriptome data are conducted. The reported outcomes (Reported) are shown as orange filled box indicating death event is reported.

The prediction results with the 24-organ data (Predicted by SVM with all 24 organs) are shown as light-blue filled boxes indicating ‘‘death event’’ is predicted

to not-to-occur. Themajority decisions (Majority decision) by counting all votes are shown as orange filled box voting for death event to occur. The number of

‘‘votes’’ for ‘‘to-occur’’ (Predicted results) and ‘‘not-to-occur’’ (Predicted results) is indicated by the numbers.
variable degrees for each drug (‘‘Reported’’ in Figure 6). There also appears that the sex difference exists

(F versus M in Figure 6). The comparison of the predictions by both algorithms (SVR and RFR) to the re-

ported (Reported) incidence (death/all reported AEs) shows that the predictions by both algorithms effi-

ciently capture the general trends of the quantitative changes of death event incidence over age for

drugs/sex such as alendronate/female, doxycycline/male, aripiprazole/female (Figure 6, Table S9). On

the other hand, the predictions for other drugs (e.g., clozapine: both sexes, empagliflozin:female, teripar-

atide:female) appear less efficient (Figure 6, Table S9). Although further improvements are necessary, the

result suggests that the approach could be exploited to select specific sex/age groups as target subjects in

clinical trials of at least some drugs.
Predicting Therapeutic Indications

Identifying an appropriate therapeutic indication(s) (TIs) is also critical in drug development. Hence, we

evaluated the utility of the multi-organ transcriptome datasets for predicting TIs. For this purpose, we

adapted the LP framework (Figure 7A). Three training datasets are used: (1) the 24-organ transcriptome

data of each drug of the 15 drugs, (2) all indications reported for each of the 15 drugs in FAERS, and (3)

incidence of all AEs reported in FAERS for each of indications in FAERS (Figure 7A). In the LP framework,

one-class SVM algorithm is used to train the models and the presence/absence of a link of an untrained

drug (Drug Candidate X in Figure 7A), based on its 24-organ transcriptome data, to each TI is determined

(see Transparent Methods for the detailed description, Figure 7A).

We evaluated the performance of this framework by omitting the data of one drug from all training datasets

at a time and repeating this for all 15 drugs to evaluate the performance of predicting potential TIs of each

omitted drug (Figure 7B). The result is shown as a confusionmatrix (Figure 7B), and the full list is available as

Table S10. The accuracy scores are high (>0.78) for all 15 drugs (Figure 7B), indicating that more than 78% of

the indications or non-indications predicted are indeed reported or not to be reported as the indications

for each drug, respectively. The recall scores are also high (>0.8) for alendronate, aripiprazole, asenapine,

clozapine, empagliflozin, lurasidone, olanzapine, evolocumab (Repatha), risedronate, sofosbuvir, and ter-

iparatide (Figure 7B), indicating that over 80% of the reported indications are predicted for these 11 drugs

by the method. The recall score of doxycycline is 0.527 (Figure 7B), indicating approximately 50% of the

reported indications are predicted for this drug by the method. The recall scores are low for acetamino-

phen (0.141), cisplatin (0), and lenalidomide (0) (Figure 7B), indicating that this method fails to capture

many reported indications for these drugs, as expressed by relatively smaller number of false-negatives

(FNs) as compared with that of true-positives (TPs) for these drugs (Figure 7B). Only acetaminophen

(APAP) shows high precision score (1.000), and all the others show low precision scores (<0.35). Both

cisplatin and lenalidomide show 0 TP and 0 FN, thus the precision and the F-measure scores were unable

to be calculated (Figure 7B). Such low precision scores for many drugs are mainly due to a large number of

false-positives (FPs) as compared with that of TPs (Figure 7B). The result illustrates a possibly useful appli-

cation of this LP framework to the prediction of drug TIs (see further in Discussion).
Application to Drug Repositioning

We also evaluated the utility of the multi-organ transcriptome datasets for drug repositioning. In the

scheme described in Figure 7B, the FP TIs (yellow highlight in Figure 7B) (the full list as Table S10)
iScience 23, 100791, February 21, 2020 9



Figure 5. AE Prediction by LP Framework

(A) LP framework to predict AEs. See the text for the description.

(B) The comparison of all AEs prediction by SVM/hMDB-i and the LP approaches. The results are summarized as a

confusion matrix. Scores of accuracy (Accuracy), precision (Precision), recall (Recall), and F-measure (F measure) for

each drug (Drug) are indicated by bars (light blue) for each method (Methods). The scale of the scores (0.0–1.0)

are indicated at the bottom. SVM, SVM/hMDB-i framework; LP, LP framework. The raw data are also available as

Table S6.

(C) The list of SAEs that are correctly predicted for alendronate, clozapine, and evolocumab (Repatha) by the LP but not by

SVM/hMDB-i framework. The reported outcomes (Reported) are shown as orange and light-blue filled boxes indicating

the SAE is reported and not-reported, respectively. The prediction results (Predicted by SVM/LP) are shown as orange

and light-blue filled boxes indicating the SAE is predicted to occur and not-to-occur, respectively. The results are also

available as Table S6.
could include repositioning targets for the drugs (see further in Discussion). However, in drug

repositioning, drug X does not exist. Hence, we used the same LP framework but did not omit the data

of any drugs, i.e., the datasets of the drug of the prediction target is also included in the training datasets

(Figure 7C).

The result is shown as a confusion matrix (Figure 7C) and the full list is available as Table S11. The result

shows the increased number of TPs and decreased number of FNs for all drugs, resulting in the improved

recall scores (Figure 7C). In this scheme, both accuracy and recall scores for all drugs are 0.770–1.000 (Fig-

ure 7C), indicating the approach can capture over 77% of both reported and non-reported indications. The

precision scores for all drugs remain relatively low due to the large number of FPs as compared with that of
10 iScience 23, 100791, February 21, 2020



Organ Pathway Entities FDR

Stomach Detoxification of reactive oxygen species 0.00038

AdrenalG PPARA activates gene expression 0.00062

AdrenalG Regulation of lipid metabolism by Peroxisome proliferator-

activated receptor alpha (PPARalpha)

0.00062

AdrenalG Lipophagy 0.00282

WAT Chaperone mediated autophagy 0.00282

Table 1. Enriched Pathways in REACTOME

The top 5-organ pathways for aripiprazole/male/50s are shown.
TPs (Figure 7C and Table S11). The indications found in FP (yellow highlight in Figure 7C) (the full list as

Table S11) could include repositioning targets (see further in Discussion).

As the number of FPs are relatively large, calculating decision function values of each indication found in FP

in both schemes could facilitate the ranking of each indication according to their likeliness as repositioning

targets. Hence, the decision function values of all indications in both Figures 7B and 7C are shown in Tables

S10 and S11. These tables could serve as a useful reference for selecting potential repositioning targets for

further investigational evaluations (see further in Discussion).

We also validated our indication prediction with SIDER4.1 version. The result, 0.402–0.998 accuracy and

0.135–1 recall (omitting cisplatin and lenalidomide for the reason described above for the FAERS result

in the leave-one-out cross-validation), is comparable with that with FAERS (Figures 7B and 7C, the full

and raw data for the confusion matrix are available as Tables S12 and S13). The precision is 0.003–0.069,

appears slightly lower than those with FAERS (Figures 7B and 7C), owing to the larger number of FPs.

This may be caused by the larger total number of indications reported in FAERS (11,312 indications) as

compared with that in SIDER (2,088 indications), contributing to the reduced precision with SIDER

reference.
Side-by-Side Comparisons of Our Methods to Other Multi-Features-Based Prediction

Methods

Some other in silico approaches predicting SEs/AEs are previously reported (Pauwels et al., 2011; Wang

et al., 2016). In particular, Wang et al. reported an SEs/AEs prediction method by combining multi-features

(cell morphological features, MACCS chemical fragments, L1000 landmark genes) with adverse drug reac-

tions labels (http://maayanlab.net/SEP-L1000/index.html#) (Wang et al., 2016). We compared the SEs/AEs

prediction performance of our method with theirs side by side (Figure 8A, Table S14). Of 15 drugs that we

analyzed, 9 drugs (alendronate, aripiprazole, acetaminophen, asenapine, cisplatin, clozapine, doxycycline,

lenalidomide, olanzapine) are covered by their method. Their method is applicable to only small-molecule

drugs, hence SEs/AEs of biologics/antibody drugs (evolocumab/Repatha in our study) or peptide drugs

(teriparatide in our study) can be predicted only by our method, illustrating the advantage of our drug mo-

dality-independent approach.

We performed side-by-side comparisons of our method with theirs with these nine drugs represented by

bothmethods (Figure 8A, Table S14). With seven drugs (alendronate, acetaminophen, asenapine, cisplatin,

clozapine, doxycycline, olanzapine), our method detects far more SEs/AEs labeled in SIDER or the

processed FAERS (Figure 8A, Table S14). Even with the other two drugs (aripiprazole, lenalidomide),

our method identifies a large number of SEs/AEs (aripiprazole: 93 in SIDER and 37 in the processed

FAERS, lenalidomide: 71 in SIDER and 50 in processed FAERS) that are missed by their method (Figure 8A,

Table S14).

Prediction of TIs of small-molecule drugs on the basis of their structural information, targets, and interac-

tions is previously reported (Li and Lu, 2012). We performed side-by-side comparisons of our method to

theirs in predicting TIs (Figure 8B, Table S15). Of 15 drugs that we studied, 6 drugs (alendronate,
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Organ Pathway P, Adjusted

Spleen Glycosphingolipid biosynthesis—ganglio series 0.00174

Eye Salivary secretion 0.00904

AdrenalG PPAR signaling pathway 0.01008

Stomach Glutathione metabolism 0.01032

Stomach Thyroid hormone synthesis 0.01032

Stomach Arachidonic acid metabolism 0.01032

ThyroidG Proteasome 0.01066

ThyroidG Epstein-Barr virus infection 0.02666

Table 2. Enriched Pathways in KEGG

The top 8-organ pathways for aripiprazole/male/50s are shown.
acetaminophen, cisplatin, clozapine, doxycycline, risedronate) are covered by their method. Like the SEs/

AEs prediction, our method is modality free; hence, we can predict TIs of biologics/antibody drugs (evo-

locumab/Repatha) and peptide drugs (teriparatide), which their small-molecule-based prediction method

fails. This again illustrates the advantage of our drugmodality-independent approach. We performed side-

by-side comparisons of our method to theirs with these six drugs represented by both methods (Figure 8B,

Table S15) and show that our method detects far more TIs labeled in SIDER or FAERS with all six drugs

(Figure 8B, Table S15).

DISCUSSION

The difficulty of predicting human clinical outcomes during pre-clinical studies is the major hindrance in

drug development. This is mainly due to the animal models versus human difference in the outcomes.

To overcome this problem, numerous experimental and computational approaches are currently used (Elitt

et al., 2018; Ko and Gelb, 2014; Meseguer-Ripolles et al., 2018; Oleaga et al., 2016; Rezaei Kolahchi et al.,

2016; Shah et al., 2019; Tateno et al., 2004; Vamathevan et al., 2019). Some approaches use transcriptome

and/or other omics data to predict clinical outcomes (Ho et al., 2016). However, they use only cells and

limited types of organs/tissues and none exploit the whole-body level biological features such as the

body-wide multi-organ transcriptome data for clinical outcome prediction.

In the current study, we exploit multi-organ transcriptome datasets in mice to predict human clinical out-

comes (Figure 1). We ‘‘humanize’’ the mouse data by training machine learning models with multi-organ

transcriptome data derived from the mouse and human clinical datasets (Figure 1). Our evaluation illus-

trates advantages and effectiveness of this approach in several applications to the outcome prediction

of both AEs and TIs (Figures 2, 3, 4, 5, 6, and 7).

Several other in silico approaches predicting SEs/AEs and TIs have been previously reported (Li and Lu,

2012; Pauwels et al., 2011; Wang et al., 2016). The side-by-side comparisons of our methods with theirs

shows that our method detects far more SEs/AEs and TIs than theirs with most of the 15 drugs evaluated

here (Figure 8). Even with the drugs that both methods are comparable (aripiprazole and lenalidomide in

the SE/AE prediction), our method detected the outcomes that are missed by theirs (Figure 8A). These re-

sults illustrate a usefulness of exploiting multi-organ transcriptome datasets in predicting drug SEs/AEs

and TIs.

Potential associations of SEs with diseases are computed on the basis of drug fingerprints/targets and

their known SEs/potential disease indications and reported as an integrated table (https://astro.temple.

edu/�tua87106/druganalysis.html) (Zhang et al., 2013). Although, by using this table, they suggest that

drug-repositioning candidates could be identified, they fail to explicitly tabulate specific drug-reposition-

ing targets or validate them. In this paper, we exploit potential SE/AE-TI association and combined it with

our body-wide multi-organ transcriptome approach in the LP framework to compute drug TIs and explicitly

tabulate them (Figure 7). We, furthermore, evaluate the effectiveness and the efficiency of our method by

cross-validation (Figure 7B).
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Figure 6. Prediction of Quantitative Dynamics of Death Events Over Age

The results of predicting quantitative dynamics of death events at each age group for each drug are summarized. The

results by SVM regressor (SVM) and RF regressor (RF) are shown. The age groups are 30: 30–39 years old, 40: 40–49 years

old, 50: 50–59 years old, 60: 60–69 years old, 70: 70–79 years old, 80: 80–89 years old. The results are also available as

Table S9.
There are two major advantages of our approach over the other in silico prediction methods. The first is its

drug-modality independence. This is illustrated by the effective predictions for small-molecule (alendro-

nate, acetaminophen, aripiprazole, asenapine, cisplatin, clozapine, doxycycline, empagliflozin, lenalido-

mide, lurasidone, olanzapine, risedronate, sofosbuvir), antibody (evolocumab/Repatha), and peptide

(teriparatide) drugs. In principle, our approach is expected to be as effective for other modalities such

as nucleic acid, gene, and cell therapeutics and also for their mixtures, as the approach does not use
iScience 23, 100791, February 21, 2020 13
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Figure 7. Prediction of Therapeutic Indications

(A) LP framework to predict therapeutic indications. See text for the detailed description.

(B) Cross-validation with FAERS and SIDER references. The hold-out scheme is shown at the top. The results are shown as a confusion matrix. The scores are

indicated as light blue bars. Scores of precision and F-measure for cisplatin and lenalidomide are incalculable (black filled cells) as both TP and FP scores

are 0. The results are also available as Tables S10 (FAERS) and S12 (SIDER).

(C) Repositioning prediction. The scheme is shown at the top. The results with FAERS and SIDER references are shown as a confusion matrix. The scores are

indicated as light blue bars. TP, true positive; TN, true negative; FP, false positive; FN, false negative. The scale of the scores (0.0–1.0) are indicated at the

bottom. FP as potential repositioning targets are yellow highlighted. The results are also available as Tables S11 (FAERS) and S13 (SIDER).
any structural features of the drugs for the predictions. The other advantage is the fact that the approach

requires no prior knowledge about the molecular or cellular targets of the drugs or the mechanisms of their

actions. Hence, the only requirement of our approach is that the test drug can be administered to the

mouse.

In our approach, the effective prediction is critically dependent on identifying common transcriptome fea-

tures between the drugs in the models and the target/test drug (i.e., drug X). The 15-drug group in the cur-

rent study consists of those with diverse AE and indication patterns. Despite such complex clinical outcome

patterns, the datasets from such a small number of drugs are surprisingly sufficient to effectively predict the

outcomes of many AEs and TIs for most of the drugs in the cross-validation studies (Figures 2, 3, 4, 5, 6, 7,

and 8). This may be due to the presence of many possibly useful features in the multi-organ transcriptome

data for the predictions that could not be identified in the transcriptome or other omics data of the cells

and the limited types of organs/tissues.

Although the use of the 24-organ transcriptome data (i.e., hMDB-i approach) is generally effective in pre-

dicting AEs, we find the differential performance by using all 24-organ data together or using them as in-

dividual-organ datasets (Figure 3). We also observed differential performance depending on which of the

24 individual-organ datasets is used (Figure 3). To address these issues, we suggest that majority decision

approach could be beneficial and illustrate such examples (Figure 4C). Furthermore, the use of hMDB-i

approach without and within the LP framework appears to influence the prediction consequence (Figures

5B and 5C). The accuracy and precision scores are better without the LP framework, but the recall scores are

better with the LP framework. Hence, it may be beneficial to select the framework (i.e., with/without the LP

framework) according to the objective of the prediction (e.g., to be more confident about the predicted

AEs versus to capture all possible AEs).

Drug repositioning is a strategy to develop the existing drug for an additional therapeutic indication(s)

(Pushpakom et al., 2019). The advantage is that the properties (such as pharmacokinetics) of such drugs

are already determined. Furthermore, their safety in human is secured; hence, phase I trials could often

be bypassed (Pushpakom et al., 2019). Such advantage of drug repositioning results in the overall cost-

and time-saving in the development, as compared with new drug development (Pushpakom et al.,

2019). We examined the potential utility of our approach to predict TIs for drug repositioning (Figure 7).

The potential therapeutic targets for the repositioning of each drug are those that are labeled as ‘‘FP’’

in Figures 7B and 7C and Tables S10 and S11. The examination of the list identified many common FP in-

dications shared among the drugs of the same or related mechanisms of actions (Tables S10 and S11). For

alendronate and risedronate, both bisphosphonate medications for treating osteoporosis, Addison’s dis-

ease and amyloidosis are among those predicated as FP targets with high decision function values. For clo-

zapine and aripiprazole, both atypical anti-psychotic medications antagonizing related neurotransmitter

receptors, coagulopathy and ulcer are examples of such FP targets. Although their investigational valida-

tions must await the future clinical trials, such targets shared among the related medications could be

among the leading candidates for the repositioning.

In the study of predicting TIs, we show that both cisplatin and lenalidomide failed to identify true positive

targets (Figure 7B). On the other hand, including these two drugs in the training data for the same predic-

tion framework resulted in the improved identification of the true-positive targets (Figure 7C). These results

may suggest that the gene expression patterns of these two drugs include distinguishing features that are

unique to each of these two drugs; hence, such features could not be exploited by the scheme shown in

Figure 7B (i.e., the data of these drugs are omitted from the training data for their predictions). This point

is supported by the fact that the inclusion of the transcriptome data of these two drugs in the training data-

sets lead to the effective outcome predictions for the other drugs (Figure 7B). Furthermore, such unique
iScience 23, 100791, February 21, 2020 15



Figure 8. Side-by-Side Comparisons of Our Methods with Other Multi-Features-Based Prediction Methods

The comparisons are shown as Venn diagrams for SE/AE (A) and TI (B) predictions. The description of the diagrams is

shown as ‘‘Legend’’ diagram located at the right bottom in each panel. The number of the SEs/AEs and TIs predicted only

by our method (A: hMDB, B: hMDB/LP), only by the existing methods (A: multiple-features/L1000, B: fingerprints/targets/

Interactions), and by both methods are indicated accordingly in the diagrams. Our methods (A: hMDB, B: hMDB/LP) are

compared with multiple-features/L1000 method (A) and fingerprints/targets/Interactions method (B), respectively. The

predictions for the drugs that are not represented or cannot be predicted by the other methods are indicated as 0. Of SEs/

AEs and TIs predicted only by our methods, those labeled in SIDER, FAERS, and the processed FAERS databases are also

indicated. SEs for evolocumab/Repatha do not exist in SIDER; hence, it is indicated as 0. The table forms of the Venn

diagrams and their full searchable raw data are available as Tables S14 (A) and S15 (B).
features can be effectively exploited when included in the training data, resulting in the successful identi-

fication of the true-positives (Figure 7C).

In drug development and clinical trials, it would be important and beneficial to understand themechanisms

of the outcomes. Such mechanistic understanding could serve as a basis for further improvement on the

drug designs and also designing the pre-clinical and clinical studies. Furthermore, availability of the

mechanisms facilitates the regulatory approval processes and also improves ethical responsibilities

providing an explanation to the study subjects and patients. Using RF algorithm allows us to identify
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specific molecular/cellular pathways that contributed to the AE predictions of the drug, and the examples

are shown in Tables 1 and 2 and the full lists are available in Tables S7 and S8. Although such pathways are

those modulated by the drugs in mice and may not necessarily be the same in human, many are conserved

across animal species. Hence, they could serve as at least, if not at all, as clues for deducing possible mech-

anisms underlying the AEs and/or generating working hypothesis for further experimental and clinical

studies for the validation.

The current study illustrates beneficial utilities of applying body-wide multi-organ transcriptome data

obtained from mice to predict human clinical outcomes. The further inclusion of other drugs’ multi-organ

transcriptome and their clinical outcome data in hMDB-i and other relevant data, such as individuals’ ge-

notypes and lifestyle information, as training datasets may improve the current performance where some

limitations are observed with some drugs and/or some outcomes. With such refinements in the training da-

tasets, further improvements in the individualized predictions is expected in the future, contributing to the

realization of the ultimate virtual precision medicine.
Limitations of the Study

In the prediction study of therapeutic indications, we used all therapeutic indications associated with each

drug in FAERS as training data. Thus, no distinction can be made between the effective and ineffective

treatments. Furthermore, all indications for which each drug was used are included as the training data

for that particular drug, i.e., the indications for which other drug(s) was/were used for the purpose of treat-

ments and drug X as simply an accompanying drug were included as ‘‘reported’’ therapeutic indications for

drug X in the training data. For example, acetaminophen is used to attenuate pain associated with osteo-

porosis; hence, both pain and osteoporosis were included as the indications for this drug. Furthermore, we

also used all AE labels associated with each drug and/or indication. Hence, no distinctions were made be-

tween those of causative relationships and of simple association. Currently, using FAERS, it is difficult to

make such distinctions for all drugs in a systematic manner. Some distinction may be possible by using

other public database such as clinicaltrials.gov, but the number of reports is limited and not sufficient

for our machine-learning approach. Despite such compromise, the fact that our approach predicts many

human clinical outcomes according to the quality of the input training data indicates that, with further

refinement in the input training datasets, it is reasonable to expect that our method generates more so-

phisticated predictions. In fact, we validated our predictions with a drug-label based reference, SIDER.

The results show that both SE/AE and TI predictions with SIDER are comparable with those with FAERS

(Figures 2D, 7B, and 7C, Tables S3, S12, and S13). These results further support the effectiveness and use-

fulness of our approach.

Owing to the experimental cost necessary to perform the 24-organ transcriptome analyses, the current

study is limited to the evaluation of 15 drugs. There are 3,732 approved drugs (https://www.drugbank.ca/

stats), and it would be extremely expensive to perform the 24-organ transcriptome analyses with most,

if not all, of these drugs. With the current cost for the transcriptome analyses, we estimate such cost

would be US$20–30 million. This is expensive for one laboratory scale but possibly realistic as a

consortium effort. Considering the expensiveness of drug development, this might be a worthy

investment. In fact, we may not need all drug data, as we show even the 15-drug datasets were

sufficient for many of the outcome predictions, despite their diverse modalities and TIs (Figures 2, 3,

4, 5, 6, 7, and 8).
METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
DATA AND CODE AVAILABILITY

The accession number for the RNA-seq data reported in this paper is GEO: GSE142068. Hyperparameters

are available at https://www.hmdb.karydo-tx.com/. The code for our algorithm is available for non-profit

use with Material Transfer Agreement.
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.100791.
iScience 23, 100791, February 21, 2020 17

http://clinicaltrials.gov
https://www.drugbank.ca/stats
https://www.drugbank.ca/stats
https://www.hmdb.karydo-tx.com/
https://doi.org/10.1016/j.isci.2019.100791


ACKNOWLEDGMENTS

Wethank S.Keiko, R. Takahashi, andE.Kojima for administrative assistance.Weare alsograteful to themembers

ofKarydoTherapeutiX, Inc. andSato labatATR for adviceanddiscussion throughout the courseof thiswork. This

work was supported by funds from Public Interest Incorporated Foundation KYOTO Industrial Support Organi-

zation 21 (T.N.S.) and JST ERATO Grant Number JPMJER1303 (T.N.S.).

AUTHOR CONTRIBUTIONS

T.N.S. conceived the idea of the project, designed the overall experiments and in silico analyses, and su-

pervised the overall research project. S.K. designed and performed the in silico analyses. F.S., S.E.,

G.M.D.A., and Y.M. contributed to designing the experiments and performed the experiments. T.N.S.,

S.K., F.S., and S.E. wrote the manuscript.

DECLARATION OF INTERESTS

T.N.S. is the inventor of the patents filed on hMDB-i and is the scientific founder of and holds shares of Kar-

ydo TherapeutiX, Inc., which owns the right to this patent. S.K., S.F., S.E., G.M.D.A., and Y.M. are employees

of Karydo TherapeutiX, Inc. Correspondence and requests for materials should be addressed to T.N.S

(island1005@gmail.com).

Received: August 31, 2019

Revised: October 17, 2019

Accepted: December 16, 2019

Published: January 9, 2020
REFERENCES

Berger, S.I., and Iyengar, R. (2011). Role of
systems pharmacology in understanding drug
adverse events. Wiley Interdiscip. Rev. Syst. Biol.
Med. 3, 129–135.

Droujinine, I.A., and Perrimon, N. (2013). Defining
the interorgan communication network: systemic
coordination of organismal cellular processes
under homeostasis and localized stress. Front.
Cell. Infect. Microbiol. 3, 82.

Droujinine, I.A., and Perrimon, N. (2016).
Interorgan communication pathways in
physiology: focus on Drosophila. Annu. Rev.
Genet. 50, 539–570.

Elitt, M.S., Barbar, L., and Tesar, P.J. (2018). Drug
screening for human genetic diseases using iPSC
models. Hum. Mol. Genet. 27, R89–R98.

Harpaz, R., DuMouchel, W., LePendu, P., Bauer-
Mehren, A., Ryan, P., and Shah, N.H. (2013).
Performance of pharmacovigilance signal-
detection algorithms for the FDA adverse event
reporting system. Clin. Pharmacol. Ther. 93,
539–546.

Ho, T.B., Le, L., Thai, D.T., and Taewijit, S. (2016).
Data-driven approach to detect and predict
adverse drug reactions. Curr. Pharm. Des. 22,
3498–3526.

Ko, H.C., and Gelb, B.D. (2014). Concise review:
drug discovery in the age of the induced
pluripotent stem cell. Stem Cells Transl. Med. 3,
500–509.

Kozawa, S., Ueda, R., Urayama, K., Sagawa, F.,
Endo, S., Shiizaki, K., Kurosu, H., Maria de
Almeida, G., Hasan, S.M., Nakazato, K., et al.
(2018). The body-wide transcriptome landscape
of disease models. iScience 2, 238–268.
18 iScience 23, 100791, February 21, 2020
Li, J., and Lu, Z. (2012). A new method for
computational drug repositioning using drug
pairwise similarity. Proceedings (IEEE Int. Conf.
Bioinformatics Biomed.) 2012, 1–4.

Meseguer-Ripolles, J., Khetani, S.R., Blanco, J.G.,
Iredale, M., and Hay, D.C. (2018). Correction to:
pluripotent stem cell-derived human tissue:
platforms to evaluate drug metabolism and
safety. AAPS J. 20, 30.

Morgan, S., Grootendorst, P., Lexchin, J.,
Cunningham, C., andGreyson, D. (2011). The cost
of drug development: a systematic review. Health
Policy 100, 4–17.

Oleaga, C., Bernabini, C., Smith, A.S., Srinivasan, B.,
Jackson, M., McLamb,W., Platt, V., Bridges, R., Cai,
Y., Santhanam, N., et al. (2016). Multi-Organ toxicity
demonstration in a functional human in vitro system
composed of four organs. Sci. Rep. 6, 20030.

Pauwels, E., Stoven, V., and Yamanishi, Y. (2011).
Predicting drug side-effect profiles: a chemical
fragment-based approach. BMC Bioinformatics
12, 169.

Pushpakom, S., Iorio, F., Eyers, P.A., Escott, K.J.,
Hopper, S., Wells, A., Doig, A., Guilliams, T.,
Latimer, J., McNamee, C., et al. (2019). Drug
repurposing: progress, challenges and
recommendations. Nat. Rev. Drug Discov. 18,
41–58.

Rezaei Kolahchi, A., Khadem Mohtaram, N.,
Pezeshgi Modarres, H., Mohammadi, M.H.,
Geraili, A., Jafari, P., Akbari, M., and Sanati-
Nezhad, A. (2016). Microfluidic-based multi-
organ platforms for drug discovery.
Micromachines (Basel) 7, 162.

Shah, P., Kendall, F., Khozin, S., Goosen, R., Hu, J.,
Laramie, J., Ringel, M., and Schork, N. (2019).
Artificial intelligence and machine learning in
clinical development: a translational perspective.
NPJ Digit. Med. 2, 69.

Sonawane, K.B., Cheng, N., and Hansen, R.A.
(2018). Serious adverse drug events reported to
the FDA: analysis of the FDA adverse event
reporting system 2006-2014 database. J. Manag.
Care Spec. Pharm. 24, 682–690.

Tateno, C., Yoshizane, Y., Saito, N., Kataoka, M.,
Utoh, R., Yamasaki, C., Tachibana, A., Soeno, Y.,
Asahina, K., Hino, H., et al. (2004). Near
completely humanized liver in mice shows
human-type metabolic responses to drugs. Am.
J. Pathol. 165, 901–912.

Tatonetti, N.P., Ye, P.P., Daneshjou, R., and
Altman, R.B. (2012). Data-driven prediction of
drug effects and interactions. Sci. Transl. Med. 4,
125ra131.

Vamathevan, J., Clark, D., Czodrowski, P.,
Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi,
A., Shah, P., Spitzer, M., et al. (2019). Applications
of machine learning in drug discovery and
development. Nat. Rev. Drug Discov. 18,
463–477.

Wang, Z., Clark, N.R., and Ma’ayan, A. (2016).
Drug-induced adverse events prediction with the
LINCS L1000 data. Bioinformatics 32, 2338–2345.

Wong, C.H., Siah, K.W., and Lo, A.W. (2019).
Estimation of clinical trial success rates and
related parameters. Biostatistics 20, 273–286.

Zhang, P., Wang, F., Hu, J., and Sorrentino, R.
(2013). Exploring the relationship between drug
side-effects and therapeutic indications. AMIA
Annu. Symp. Proc. 2013, 1568–1577.

mailto:island1005@gmail.com
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref1
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref1
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref1
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref1
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref2
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref2
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref2
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref2
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref2
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref3
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref3
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref3
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref3
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref4
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref4
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref4
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref5
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref5
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref5
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref5
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref5
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref5
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref6
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref6
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref6
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref6
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref7
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref7
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref7
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref7
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref8
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref8
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref8
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref8
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref8
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref9
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref9
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref9
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref9
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref10
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref10
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref10
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref10
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref10
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref11
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref11
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref11
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref11
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref12
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref12
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref12
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref12
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref12
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref13
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref13
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref13
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref13
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref14
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref14
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref14
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref14
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref14
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref14
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref15
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref15
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref15
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref15
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref15
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref15
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref16
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref16
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref16
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref16
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref16
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref17
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref17
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref17
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref17
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref17
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref18
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref18
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref18
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref18
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref18
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref18
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref19
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref19
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref19
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref19
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref20
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref20
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref20
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref20
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref20
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref20
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref21
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref21
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref21
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref22
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref22
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref22
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref23
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref23
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref23
http://refhub.elsevier.com/S2589-0042(19)30536-X/sref23


iScience, Volume 23
Supplemental Information
Predicting Human Clinical Outcomes

Using Mouse Multi-Organ Transcriptome

Satoshi Kozawa, Fumihiko Sagawa, Satsuki Endo, Glicia Maria De Almeida, Yuto
Mitsuishi, and Thomas N. Sato



Supplementary Figure 
 

 
 
Figure S1. The patterns of differentially expressed genes in each organ of the mice treated with 
each drug, Related to Figure 1. Y-axis: (the number of differentially expressed genes for the drug) / 
(the number of differentially expressed genes for all drugs) for each organ. The differentially expressed 
genes are those with adjusted p<0.0001 by DESeq2 analysis. The DESeq2 data are available as 
Supplementary Table 1. The raw RNAseq sequence data are available at https://www.hmdb.karydo-
tx.com/hMDB_freeDL/. 
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Supplementary Table Legends 

 

Table S1. The DESeq2 data for Figure S1, Related to Figure 1. 

DE gene: the number of differentially expressed genes. 

 

Table S2. The raw data of Figure 2B 

The binary labelling system is applied to each AE: 1 when the AE is reported/predicted to occur and 0 

when the AE is not-reported/predicted not-to-occur. The empty cells indicate that none of the AEs are 

reported for this drug in this sex/age-group. 

 

Table S3. The raw data of Figure 2D 

The binary labelling system is applied to each side effect (SE): 1 when the SE is reported/predicted to 

occur and 0 when the SE is not-reported/predicted not-to-occur. 

 

Table S4. The raw data of Figure 3 

The binary labelling system is applied to each AE: 1 when the AE is reported/predicted to occur and 0 

when the AE is not-reported/predicted not-to-occur. 

 

Table S5. The raw data of Figures 4A&B.  

The binary labelling system is applied to each AE: 1 when the AE is reported/predicted to occur and 0 

when the AE is not-reported/predicted not-to-occur. 

 

Table S6. The raw data of Figures 5B&C 

The binary labelling system is applied to each AE: 1 when the AE is reported/predicted to occur and 0 

when the AE is not-reported/predicted not-to-occur. 

 

Table S7. The raw data of Table 1 

All pathways of FDR<0.05 are included. 



 

Table S8. The raw data of Table 2 

All pathways of adjusted p<0.05 are included. 

 

Table S9. The raw data of Figure 6 

The actual number of reports in FAERS (Reported #) is shown for each drug, AE, sex, age-group in the 

table. 

 

Table S10. The raw data of Figure 7B (vs. FAERS) 

Decision function value for each indication is indicated. 

 

Table S11. The raw data of Figure 7C (vs. FAERS) 

Decision function value for each indication is indicated. 

 

Table S12. The raw data of Figure 7B (vs. SIDER) 

1 when the TI is reported/predicted to occur and 0 when the TI is not-reported/predicted not-to-occur. 

 

Table S13. The raw data of Figure 7C (vs. SIDER) 

1 when the TI is reported/predicted to occur and 0 when the TI is not-reported/predicted not-to-occur. 

 

Table S14. The raw data of Figure 8A 

SEs predicted only by our method (highlighted by orange), only by the multiple features/L1000 method 

(highlighted by sky blue) and by both methods (highlighted by light purple) are indicated. 

 

Table S15. The raw data of Figure 8B 

TIs predicted only by our method (highlighted by orange), only by the fingerprints/targets/interactions 

method (highlighted by sky blue) and by both methods (highlighted by light purple) are indicated. 

 



Transparent Methods 

Mice and 24-organ transcriptome analyses 

The all mouse studies and the transcriptome analyses are performed as previously reported (Kozawa et 

al., 2018). The 24 organs are adrenal glands, aorta, bone marrow cells (BM), brain, colon, eyes, heart, 

ileum, jejunum, left kidney, liver, lung, pancreas, parotid glands, pituitary glands, skeletal muscle, skin, 

skull, spleen, stomach, left testis, thymus, thyroid glands, and gonadal white adipose tissue (WAT). All 

animal protocols were approved by the Animal Care and Use Committee of Karydo TherapeutiX, Inc. 

(Approved Number: AN20170001KTX, AN20170010KTX, AN20170014KTX, AN20180012KTX 

and AN20190006KTX). All animals were housed in a temperature-controlled room at around 25 °C 

with 12 h light/dark cycle and allowed free access to water and normal foods (CE-2, CLEA Japan, Inc., 

Tokyo, Japan). For the transcriptome analyses, we used QuantSeq 3’mRNA-Seq Library Prep Kit for 

Illumina (FWD) (cat#015.384, LEXOGEN) and Illumina NextSeq 500 (75bp single-read, ca. 400 

million reads/run, NextSeq 500/550 High Output Kit v2.5, cat#20024906).  

 

Drug administration and harvesting organs 

Alendronate: Male C57BL/6NCrSlc mice at 11 weeks old received subcutaneous injection of 

alendronate sodium salt trihydrate (Wako) in PBS (Nacalai Tesque) at 1.0 mg/kg dosage every 3 to 4 

days for 8 days. The drug was prepared fresh everytime. Organs were harvested in the afternoon on the 

8th day after the drug administration.   

Acetaminophen: Male C57BL/6NCrSlc mice at 10 weeks old were fasted for 12 hours with free access 

to water during the whole time. Immediately after the fasting period, mice received single 

intraperitoneal injection of acetaminophen (Wako) in saline (Otsuka Pharmaceutical) at 300 mg/kg 

dosage. After the injection, mice were allowed the free access to the normal foods. Organs were 

harvested 2 hours after the drug administration before noon.  

Aripiprazole: Male C57BL/6NJcl mice at 11 weeks old received single intraperitoneal injection of 

aripiprazole (Sigma-Aldrich) in 0.5%(w/v) carboxymethylcellulose 400 solution (Wako) at 0.3 mg/kg 

dosage. Organs were harvested 2 hours after the drug administration in the afternoon. 



Asenapine: Male C57BL/6NCrSlc mice at 11 weeks old received single subcutaneous injection of 

asenapine maleate (Chemscene) in saline at 0.3 mg/kg dosage. Organs were harvested 2 hours after the 

drug administration in the afternoon. 

Cisplatin: Male C57BL/6NJcl mice at 11 weeks old received single intraperitoneal injection of 

cisplatin (Bristol-Myers Squibb) at 20 mg/kg dosage. Organs were harvested in the afternoon on the 3rd 

day after the drug administration. 

Clozapine: Male C57BL/6NJcl mice at 11 weeks old received single subcutaneous injection of 

clozapine (Sigma-Aldrich) at 0.3 mg/kg dosage. Clozapine was first dissolved in acetic acid before 

diluted in saline and the pH was adjusted to 6 with 1M NaOH. Organs were harvested 2 hours after the 

drug administration in the afternoon. 

Doxycycline: Male C57BL/6NCrSlc mice at 9 weeks old were allowed to a free access to the 

doxycycline solution containing 2 mg/mL doxycycline hydrochloride n-hydrate (Wako) and 5% sucrose 

(Nacalai Tesque) in RO water or a vehicle solution containing 5% sucrose in RO water for 2 weeks. 

The new bottle was prepared weekly for 2 weeks. Organs were harvested in the afternoon on the 13th 

day after the drug administration. 

Empagliflozin: Male C57BL/6NCrSlc mice at 10 weeks old received oral (gavage) administration of 

empagliflozin (Toronto research chemicals) in 0.5% carboxymethylcellulose at 10 mg/kg everyday for 

2 weeks. The drug was prepared fresh at every administration. Organs were harvested 2 weeks after the 

drug administration in the afternoon. 

Lenalidomide: Male C57BL/6NCrSlc mice at 8 weeks old received oral (gavage) administration of 

lenalidomide (Wako) in 0.5% carboxymethylcellulose and 0.25% Tween-80 (Nacalai Tesque) at 50 

mg/kg or a vehicle solution (0.5% carboxymethylcellulose and 0.25% Tween-80) everyday for 69 days. 

The drug was prepared fresh at every administration. Organs were harvested 69 days after the drug 

administration in the afternoon. 

Lurasidone: Male C57BL/6NCrSlc mice at 11 weeks old received single oral (gavage) administration 

of lurasidone hydrochloride (Medchemexpress) in 0.5% carboxymethylcellulose at 0.3 mg/kg. Organs 

were harvested 2 hours after the drug administration in the afternoon. 



Olanzapine: Male C57BL/6NCrSlc mice at 11 weeks old received single oral (gavage) administration 

of olanzapine (Tokyo Chemical Industry) in 0.5% carboxymethylcellulose at 0.3 mg/kg. Organs were 

harvested 2 hours after the drug administration in the afternoon. 

Evolocumab (Repatha®): Male C57BL/6NJcl mice at 11 weeks old received subcutaneous injection 

of Repatha® (Astellas) in saline at 10 mg/kg every 10 days for 4 weeks. Organs were harvested 4 weeks 

after the drug administration in the afternoon. 

Risedronate: Male C57BL/6NCrSlc mice at 11 weeks old received oral (gavage) administration of 

risedronate sodium salt (Cayman Chemical Company) in PBS at 10 mg/kg dosage every other day for 

8 days. The drug was prepared fresh at every administration. Organs were harvested 8 days after the 

drug administration in the afternoon.   

Sofosbuvir: Male C57BL/6NCrSlc mice at 7 weeks old received intraperitoneal injection of sofosbuvir 

(LKT) at 20 mg/kg dosage everyday for 10 days. Sofosbuvir was first diluted in DMSO (Nacalai 

Tesque) and then further diluted x100 in PBS prior to the administration (the final concentration is 1.0% 

DMSO/PBS). Organs were harvested 10 days after the drug administration in the afternoon.   

Teriparatide: Male C57BL/6NCrSlc mice at 10 weeks old received subcutaneous injection of 

parathyroid hormone fragment 1-34 human (teriparatide) (Sigma-Aldrich) in saline at 40 µg/kg dosage 

or a vehicle solution (saline) everyday for 4 weeks. Organs were harvested 4 weeks after the drug 

administration in the afternoon.    

Wild type (WT): Organs of male C57BL/6NJcl mice at 11 weeks old were harvested in the afternoon.   

 

Differential gene expression data for the prediction 

Differential gene expression data in each organ obtained from the mice to which each drug was 

administered were used as the features of each drug in the machine learning frameworks. The RNA-seq 

data processing (mapping and counting transcripts) were conducted as previously described(Kozawa et 

al., 2018). The mapping on mouse genome was conducted on mm10 with TopHat2. The differentially 

expressed genes in each organ of the drug-administered vs. vehicle-control (doxycycline and 

lenalidomide) or WT (all the other drugs) mice were identified by DESeq2 (1.22.1). Biological 



duplicates (i.e., two mice for drug-administered and for controls) were analyzed for all organs and the 

drug-administered models. We selected the differentially expressed genes of which adjusted p-values 

< 1e-4 for each organ as the features of each drug. The combination of the organ and the log2fold values 

of all the selected genes combined from all organs (the 24-organ framework) or individual-organs (the 

individual-organ framework) are used as the input data for each drug. For SVM algorithm, we applied 

principle component analysis (PCA) to the organ-transcriptome data to reduce data dimensionality. 

 

Prediction of AEs by SVM and RF 

AEs were predicted by two machine learning algorithms, support vector machine (SVM) and random 

forest (RF). To predict an AE for a drug, we trained machine learning models by the transcriptome data 

for 14 drugs (i.e., the 15 drugs - the prediction-target drug) and the AE data reported for the 14 drugs 

in FAERS (Figure 2A). To obtain an AE prediction for the target drug, we input the organ-transcriptome 

data of the target drug into the trained machine learning models (Figure 2A). This training/prediction 

procedure was repeated for all drugs and all AEs. The transcriptome data are differential gene 

expression data described in “Differential gene expression data for the prediction” section. To obtain 

AE data, we downloaded raw AE reports from FAERS (https://www.fda.gov/drugs/surveillance/fda-

adverse-event-reporting-system-faers) (2014 3rd quarter to 2017 4th quarter) and extracted the reports 

associated with the 15 drugs for each sex and age-groups. A total of 5,519 AEs is reported for one or 

more of the 15 drugs (Table S2). For each sex and age-group, the AEs reported in one or more the 15 

drugs are used as all AEs for that particular sex and age-group (Table S2). The number of all AEs for 

each group are: 727 (M:10s), 1,147 (M:20s), 1,339 (M:30s), 1,747 (M:40s), 2,441 (M:50s), 2,618 

(M:60s), 2,169 (M:70s), 1,189 (M:80s), 263 (M:90s), 784 (F:10s), 1,289 (F:20s), 1,687 (F:30s), 2,149 

(F:40s), 2,828 (F:50s), 3,188 (F:60s), 2,807 (F:70s), 1,863 (F:80s), 573 (F:90s) (Supplementary Table 

2). The binary labelling system was applied to each AE: 1 when the AE is reported/predicted to occur 

and 0 when the AE is not-reported/predicted not-to-occur. AEs that are 1 or 0 for all drugs in a sex/age-

group were omitted from the training or prediction as their outcomes are naturally predictable. In 

addition, AEs that are 1 or 0 for all drugs except for the prediction-target drug in a sex/age-group were 

also omitted as their outcomes are, in principle, unpredictable. SVM was performed on R library ‘e1071’ 



with default parameters. RF was performed on Python package scikitlearn. RF parameter ‘n estimator’ 

was set to 10, and the other parameters (‘max_feature’, ‘max_depth’ and ‘min_samples_leaf’) were 

decided by leave-one-out cross-validation for each AE, sex- and sex-group. 

 

Majority decision approach for AE prediction 

This approach is applied to predicting the outcomes of death event for alendronate/female/20s and 

lenalidomide/female/20s where the prediction results by SVM with all 24-organs failed. For the SVM 

method, there are 25 “votes” – SVM with the 24-organs (1 vote) and SVM with each of the 24 

individual-organs (24 votes). For the RF method, there are also 25 votes – RF with the 24-organs (1 

vote) and RF with each of the 24 individual-organs (24 votes). The number of the prediction votes for 

“to-occur” and “not-to-occur” is counted and summed. The prediction that won the majority votes 

become the prediction. 

 

Prediction of AEs by LP 

The prediction of AEs was also performed by solving a LP problem using one-class SVM. Let 𝒈", 𝒈# 

be the differential gene expression data described in “Differential gene expression data for the 

prediction” section without PCA of drug A and drug B respectively, and let  𝒂% = (𝑎)*, 𝑎),,… , 𝑎%.), 

𝒂%% be vectors in which each element represents the number of reports for indication 1, indication 2, …, 

indication M that are co-reported with AE i and AE ii, respectively.  

In the training phase of one-class SVM to predict AEs for drug X, we made combined vector for the 

drug A – AE i combination 𝒈"𝒂% as a positive-link sample when more than 10 records exist for drug A 

inducing AE i in FAERS, and input all positive sample vectors without those of drug X to a one-class 

SVM. The kernel function of one-class SVM was designed as below, 

𝑘(𝒈"𝒂%,𝒈#𝒂%%) = 〈𝒈", 𝒈#〉〈𝒂%, 𝒂%%〉 

where 〈⋅,⋅〉 represents operator that scales each vector to be that l2-norm equals 1 and take inner product 

between both scaled vectors. In the test phase of one-class SVM to predict the AEs for drug X, we input 

a combined vector for the target drug-AE combination 𝒈𝒂 and ask whether the AE occurs with the drug 



(i.e., the presence or the absence of the drug-AE link in the LP problem), and SVM returns 1 (occur) or 

-1 (not occur). We repeat this prediction all AEs reported at FAERS. One-class SVM was performed 

on Python package ‘scikit-learn’ with parameter nu=0.1. 

 

REACTOME and KEGG analyses 

REACTOME and KEGG analyses were performed on the gene sets of each organ with the feature 

importance greater than 0 in the RF prediction of the death event. REACTOME pathway analyses was 

performed REACTOME web API (https://reactome.org/dev/analysis) and KEGG pathway analyses 

was performed on R library ‘clusterR’. 

 

Prediction of AEs by SVR and RFR 

For the quantitative prediction (Figure 7), the incidence of an AE for a drug and each sex/age-group 

was calculated as (the number of the reports of the AE for a sex/age-group)/(the number of the reports 

of all AEs for all sex/age-groups) for each drug. These values were used as target variables with two 

machine learning algorithms, support vector regressor (SVR) and random forest regressor (RFR) to 

train the models. The features of the two algorithms are differential gene expression data described in 

“Differential gene expression data for the prediction” section. While the actual incidence ranges from 

0.0 to 1.0, the output values from the trained machine learning models range from −∞ to ∞. To address 

this issue, we used the output of logit function (inverse function of sigmoid function) when inputting 

the incidence values. SVM was performed on R library ‘e1071’ with default parameters. RF was 

performed on Python package scikit-learn. RF parameter ‘n_esitmator’ was set to 10, and other 

parameters (‘max_feature’, ‘max_depth’ and ‘min_samples_leaf’) were decided by leave-one-out 

cross-validation for each AE, sex and age-group.  

 

Prediction of therapeutic indications 

The LP of therapeutic indications was performed by one-class SVM as follows: Let 𝒈", 𝒈#  be the 

differential gene expression data described in “Differential gene expression data for the prediction”. 

Section without PCA for drug A and drug B, respectively, and let  𝒅* = (𝑑*), 𝑑*)), … , 𝑑*8), 𝒅,  be 



vectors that element represents the number of reports AE i, AE ii, …, AE N that be co-reported 

indication 1 and indication 2, respectively. In the training phase of one-class SVM to predict the 

indications for drug X, we made combined vector for the drug A - indication 1 combination 𝒈"𝒅* as a 

positive sample when more than 10 records exist for drug A taken by patients with the indication 1 in 

FAERS, and input all positive sample vectors without those for drug X to a one-class SVM. The kernel 

function of the one-class SVM was designed as below, 

𝑘(𝒈"𝒅*,𝒈#𝒅,) = 〈𝒈", 𝒈#〉〈𝒅*,𝒅,〉 

where 〈⋅,⋅〉 represents operator that scales each vector to be that l2-norm equals 1 and takes inner product 

between both scaled vectors. In the test phase of one-class SVM to predict the indications for drug X, 

we input a combined vector for target drug-indication combination 𝒈𝒅 and ask whether the drug can 

treat the indication (i.e., the presence or the absence of the drug-indication link in the LP problem), and 

SVM returns 1 (can treat) or -1 (cannot treat). We repeat prediction for all indications. One-class SVM 

was performed on Python package ‘scikit-learn’ with parameter nu=0.1. 

 

Validation with SIDER 

The Side effects (SEs) and indication datasets reported in SIDER4.1 (http://sideeffects.embl.de) were 

compiled for each drug. The total number of SEs and indications reported (labeled) for the 14 drugs in 

this study (the 15 drugs minus evolocumab) are 3,061 and 2,088, respectively. SIDER does not 

classify the incidence of each SE according to sex/age-groups. Hence, all sex/age-group division-

based predictions with FAERS are combined for each drug. When the outcomes of an AE in any one 

or more of the sex/age-groups show positive for a drug in the FAERS-prediction, we scored it as 

positive for that AE and for this drug, and scored the accuracy, precision and recall using the 

reported/labeled outcomes in SIDER4.1. 
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