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Abstract: Ischemia/reperfusion injury (IRI) represents one of the leading causes of primary non-
function acute liver transplantation failure. IRI, generated by an interruption of organ blood flow
and the subsequent restoration upon transplant, i.e., reperfusion, generates the activation of an
inflammatory cascade from the resident Kupffer cells, leading first to neutrophils recruitment and
second to apoptosis of the parenchyma. Recently, human mesenchymal stromal/stem cells (hMSCs)
and derivatives have been implemented for reducing the damage induced by IRI. Interestingly, sparse
data in the literature have described the use of human amnion-derived MSCs (hAMSCs) and, more
importantly, no evidence regarding hMSCs priming on liver IRI have been described yet. Thus, our
study focused on the definition of an in vitro model of liver IRI to test the effect of primed hAMSCs
to reduce IRI damage on immune and hepatic cells. We found that the IFNγ pre-treatment and
3D culture of hAMSCs strongly reduced inflammation induced by M1-differentiated macrophages.
Furthermore, primed hAMSCs significantly inhibited parenchymal apoptosis at early timepoints
of reperfusion by blocking the activation of caspase 3/7. All together, these data demonstrate that
hAMSCs priming significantly overcomes IRI effects in vitro by engaging the possibility of defining
the molecular pathways involved in this process.

Keywords: liver transplant; ischemia/reperfusion; inflammation; apoptosis; hAMSCs; priming;
3D culture

1. Introduction

It is widely ascertained that liver disease is a growing cause of mortality world-
wide [1]. Unfortunately, liver transplantation is, up to now, the only therapy for end-stage
liver disease; thus, all the risks derived from this approach must be considered. Among
others, ischemia/reperfusion injury (IRI) represents one of the leading causes of primary
non-function acute liver transplantation failure [2]. IRI is a multistep damage due to in-
evitable ischemia of the organ upon resection, followed by reoxygenation of the organ
(reperfusion). During the ischemic phase, which can vary according to the donor and
to the quality of the organ, liver resections are normally subjected to preservation and
interruption of the organ blood flow, leading to mitochondrial disfunction, ATP depletion,
intracellular Ca2+ accumulation and a switch to the anaerobic metabolism [3]. During
reperfusion, the restoration of blood supplies generates the activation of an inflammatory
cascade along with ROS production, leading to neutrophil recruitment and apoptosis of
endothelial and hepatic cells [4,5]. In particular, during liver IRI, Kupffer cells, resident
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liver macrophages [6], lose their tolerogenic anti-inflammatory phenotype, activating a
pro-inflammatory cascade with the secretion of cytokines, including IL-1β, TNFα, IL-6
and IL-12 [7,8]. These molecules stimulate downstream the recruitment of neutrophils
into the liver parenchyma, leading to further hepatic tissue damage [9] and the subse-
quent transplantation failure. Thus, the identification of new approaches to attenuate IRI
effects becomes essential to improve the rate of successful organ transplant. In the past
few decades, mesenchymal stromal/stem cells (hMSCs) and their cellular products, given
their immunomodulatory, angiogenic and regenerative properties, have been considered
important therapeutic tools for regenerative medicine and tissue repair [10–14]. In particu-
lar, hMSCs have been demonstrated to have anti-inflammatory properties that are crucial
for hMSCs-based therapy for immune-mediated disease [15]. Therefore, in the last few
years, different studies have been performed focusing on the protective effects of hMSCs
and their cellular products for the treatment of ischemic diseases, including IRI [16–19].
In the majority of these studies, the MSCs’ source is represented by bone marrow and
adipose tissues. However, our group recently demonstrated for the first time that human
amnion-derived mesenchymal stromal/stem cells (hAMSCs) attenuated the effects of IRI
in an in vitro model of human alveolar epithelial cells [20]. Interestingly, we found that
the conditioned medium (CM) from hAMSCs cultured in 3D conditions further reverted
the IRI phenotype. Thus, these findings led to the possibility that the priming conditions
could increase the hMSC therapeutic potential for liver IRI damage. In this study, we set up
an in vitro model of liver IRI, with particular interests in the molecular changes mediated
by the injury on M1-like macrophages and hepatic cells. Furthermore, we evaluated the
effects of 3D and IFNγ hAMSCs priming on reperfused immune and hepatic cells in order
to assess the potential reversion of the IRI phenotype.

2. Materials and Methods
2.1. Cell Culture

Human epithelial hepatocyte cell line THLE-2 (ATCC, CRL-2706) was cultured at
37 ◦C in a humidified environment containing 5% CO2. THLE-2 culture was performed
in bronchial epithelial cell basal medium with additives (BEGM from Lonza/Clonetics
Corporation, Bend, OR, USA, BEGM Bullet Kit) and supplemented with 10% fetal bovine
serum (FBS, Hyclone, Logan, UT, USA), 100 U/mL penicillin, 100 µg/mL streptomycin
(Gibco Invitrogen, Waltham, MA, USA) and 70 ng/mL phosphoethanolamine (Sigma
Aldrich, St. Louis, MO, USA).

2.2. Isolation of Monocytes and Differentiation in M1-Like Macrophages

Human monocytes were obtained from 6 healthy volunteers. Human peripheral
blood mononuclear cells (PBMC) were isolated from venous blood by density gradient
centrifugation on Lympholyte Cell Separation Media (Cedarlane Laboratories Limited,
Burlington, ON, Canada). CD14+ monocytes were separated from PBMCs by immunomag-
netic sorting using anti-CD14 (MACS CD14 Microbeads; Miltenyi Biotec, Auburn, CA, USA)
magnetic microbeads [21]. Immunomagneting sorting efficiency was 98% according to flow
cytometry analysis (data not shown). CD14+ monocytes were immediately subjected to
macrophage differentiation, as described by Tarique and co-workers [22]. Briefly, CD14+

monocytes were cultured in RPMI 1640 medium (Sigma-Aldrich, USA) supplemented with
10% FBS, 1% penicillin/streptomycin (Sigma-Aldrich, USA), 10 mM HEPES (Euroclone,
Pero MI, Italy) and 1 mM L-glutamine (Lonza, USA). M1-like Macrophage differentiation
was performed with 50 µg/mL GM-CSF (Miltenyi Biotec, Auburn, CA, USA) for 5 days,
followed by 4 days of 20 µg/mL LPS + 20 µg/mL IFNγ (Miltenyi Biotec, Auburn, CA,
USA) treatment. M0-like macrophages were obtained after 50 µg/mL GM-CSF treatment
for 9 days, while M2-like macrophages were differentiated with 50 µg/mL GM-CSF (Mil-
tenyi Biotec, Auburn, CA, USA) for 5 days, followed by 20 µg/mL IL-4 + 20 µg/mL IL-13
(Miltenyi Biotec, Auburn, CA, USA) treatment for 4 days.
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2.3. Flow Cytometry

M1-like macrophages were harvested, washed with 1X PBS and then stained with the
following anti-human monoclonal antibodies: CD209-FITC, CD64-PE-Vio770, CD80-APC,
CD86-PE (all from Miltenyi Biotec, Auburn, CA, USA). For each antibody, isotype controls
were used according to fluorescence and antibody specificity (REA293 Isotype control
antibody, human IgG1—APC, FITC and PE-Vio770, Miltenyi Biotec, Auburn, CA, USA).
Cells were incubated for 20 min at RT in the dark. Cells acquisition has been performed
with a 16-colors BD FACS Celesta SORP Cell Analyzer (BD Biosciences, San Jose, CA, USA)
with the same instrument setting. At least 104 cells were analyzed using Kaluza Version
2.1.1 software (Beckman Coulter, Carlsbad, CA, USA).

2.4. Isolation of Mesenchymal Stromal/Stem Cells from Human Amniotic Membrane

MSCs were isolated from placenta of healthy donors within 6 h of birth. Written
informed consent and details of the procedure were approved by IRCSS-ISMETT’s Institu-
tional Research Review Board (IRRB). To obtain the cells, the amnion membrane was cut
into small pieces and each fragment was decontaminated, under sterile conditions at room
temperature, in three different solutions: (1) PBS supplemented with 2.5% Esojod for 2–3 s
(Esoform, Rovigo, Italy); (2) PBS supplemented with 500 U/mL penicillin, 500 mg/mL
streptomycin, 12.5 mg/mL amphotericin B and 1.87 mg/mL cefamezin for 3 min (Pfizer,
Milan, Italy); (3) PBS supplemented with 100 U/mL penicillin and 100 mg/mL strepto-
mycin for 5 min. Decontaminated fragments were digested for 9 min at 37 ◦C in HBSS
(Lonza, USA) containing 2.5 U/mL dispase (Corning, Corning, NY, USA), and then main-
tained for 5 min at room temperature in RPMI 1640 supplemented with 10% FBS. Af-
terward, the amniotic fragments were digested with 0.94 mg/mL collagenase A (Roche,
Mannheim, Germany) and 20 mg/mL DNase (Roche, Mannheim, Germany) for 2.5 h at
37 ◦C. The cell suspension obtained was filtered with both 100 µm and 70 µm cell strainers
(BD Falcon, Franklin Lakes, NJ, USA), pelleted and resuspended in RPMI 1640 medium
supplemented with 10% FBS for cell counting. Isolated cells were cultured, until passages
3–5, in polystyrene culture dishes (Corning, USA) at 37 ◦C, 5% CO2 in Chang Medium
(Irvine Scientific, Santa Ana, CA, USA), at a density of 1 × 104/cm2. The hAMSCs were
phenotypically characterized as previously described [20].

2.5. Preparation of Mesenchymal Stromal/Stem Cell Spheroids

The hAMSCs at the second passage were cultured in DMEM serum-free medium at 5%
CO2 and 37 ◦C (5 × 105 cells/mL). The cells were maintained in 2 mL of culture medium in
a suspended state to allow the formation of three-dimensional spheroids in 6-well ultralow
attachment plate (Corning, Corning, NY, USA) that facilitates spheroid formations and
their maintenance.

2.6. Conditioned Media Preparation

For CM collection from 2D cultures, the cells at the second passage were plated
(5 × 105 cells/mL) in a 10 cm-dish (Nunc, Bremen, Germany) containing DMEM supple-
mented with 10% FBS until 90–95% confluence. The medium was then replaced with a
serum-free DMEM with or without 200 IU/mL of IFNγ (Human IFN-g1b premium grade,
Miltenyi Biotec, USA), and the cells were grown for 2 days to obtain both 2D hAMSC-CM
and γ-hAMSC-CM. For CM collection from 3D cultures (3D hAMSC-CM), we first observed
the initial spheroid formation for 1 day. Then, the medium was changed (by means of a
gentle centrifugation), conditioned for 2 days and finally collected. At the end of cultures,
each ml of collected medium was conditioned by 106 cells. The supernatant from cultures
was centrifuged to remove cell debris and frozen at −80 ◦C until use.

2.7. In Vitro Protocol of Ischemia/Reperfusion

M1-like macrophages and THLE-2 cells were subjected to cold ischemia and warm
reperfusion in order to obtain the desired cell injury. Cold ischemia was performed at 4 ◦C at
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5% O2 exposition for 5 h (M1-like macrophages) and 12 h (THLE-2 cells) in Hypothermosol
preservation medium (Sigma Aldrich, USA). At the end of the ischemia induction, the cells
were briefly re-warmed at room temperature for 30 min, then subjected to medium change
(normal culture medium according to the cell type) for the warm static reperfusion that was
performed at 5% CO2 and 37 ◦C. Reperfused cells were harvested for further analysis at 1,
4 and 24 h of reperfusion. For all the experiments in this manuscript, M1-like macrophages
and THLE-2 were seeded at 4 × 104/cm2 and 3 × 104/cm2, respectively. 2D hAMSC-CM,
γ-hAMSC-CM and 3D hAMSC-CM were applied during reperfusion in a ratio 1:1 with
normal medium specific for each cell type.

2.8. Intracellular ATP Measurement, ROS Detection and Apoptosis Assay

Intracellular ATP measurement was performed to detect the effects of cold ischemia
and for cell viability analysis. For cold ischemia experiment, M1-like macrophages and
THLE-2 cells were seeded in 96-well plates and incubated at 4 ◦C with 5% O2 exposition
up to 24 h. Cells were harvested at each timepoint, analyzed and ATP levels have been
measured by Cell Titer Glo 2.0 kit (Promega, Fitchburg, WI, USA) according to the man-
ufacturer’s instructions. With the same protocol, cell viability was assessed after warm
reperfusion of THLE-2 cells.

ROS production in reperfused M1-like macrophages has been assessed via ROS-Glo
H2O2 Assay (Promega, USA) according to the manufacturer’s instructions.

Apoptosis of THLE-2 cells was measured with the ApoTox-Glo™ Triplex Kit (Promega,
USA), which specifically detects caspase 3/7 activity by luminescence. Even in this case,
the protocol has been performed in accordance with the kit’s instructions. Luminescence
was measured with the Spark Plate Reader (Tecan, Zurich, Switzerland).

2.9. Analysis of Secreted Proteins

CM from reperfused cells was used for the detection of specific soluble factors, which
have been detected by ELISA. In particular, ELISA assay was performed for the detection of
IL-1β, TNFα, IL-10 and IL-13 (all kits from Merck, Darmstadt, Germany) according to the
manufacturer’s protocols. Absorbance was assessed at 450 nm in the Spark Plate Reader
(Tecan, Switzerland).

The levels of different cytokine and growth factors in each conditioned medium
from primed hAMSCs (2D hAMSC-CM, 3D hAMSC-CM and γ-hAMSC-CM) were deter-
mined using Luminex™ magnetic bead technology with the ProcartaPlex Human Cytokine
Chemokine Growth Factor Kit (Affymetrix, Santa Clara, CA, USA) according to the manu-
facturer’s instructions. Briefly, each analyte was quantified using a Luminex 200 instrument,
which utilizes xMAP technology, multiple analyte profiling and xPONENT 4.2 software
(Luminex Corp., Austin, TX, USA). The xMAP technology uses fluorescence-coded color
magnetic microspheres coated with analyte-specific capture antibodies to simultaneously
measure multiple analytes in a single specimen. Concentration of each factor was calculated
from standard curves.

2.10. RNA Extraction and Gene Expression Analysis

Total RNA was extracted with the miRNeasy Mini Kit and treated with DNAse
(Qiagen, Hilden, Germany) according to manufacturer’s instructions. The purity of iso-
lated RNA was determined by OD260/280 using a Nanodrop ND-1000 (Thermo Fisher
Scientific, Waltham, MA, USA). Subsequently, approximately 100 ng/µL of RNA was
reverse-transcribed with the high capacity RNA-to-cDNA kit protocol (Applied Biosystems,
Thermo Fisher Scientific, USA) by following manufacturer’s instructions.

We performed real-time PCR using cDNA as the template in a 20-µL reaction mixture
containing TaqMan Universal Master Mix II (Thermo Fisher Scientific, USA), and specific
primers were used as listed in Table 1. Expression of mRNA was quantified by PCR using
StepOnePlus Real-Time PCR System (Applied Biosystems, Thermo Fisher Scientific, USA).
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GAPDH was used as a reference gene for the relative quantification, assessed by 2−∆∆CT

calculation for each mRNA.

Table 1. List of TaqMan gene expression assays used for the study.

Assay ID Gene Symbol Description

#Hs01555410_m1 IL-1β TaqMan® Gene Expression Assay

#Hs00174128_m1 TNFα TaqMan® Gene Expression Assay

#Hs00174131_m1 IL-6 TaqMan® Gene Expression Assay

#Hs01073447_m1 IL-12a TaqMan® Gene Expression Assay

#Hs01038788_m1 IL-18 TaqMan® Gene Expression Assay

#Hs00372324_m1 IL-23a TaqMan® Gene Expression Assay

#Hs00603977_m1 Romo1 TaqMan® Gene Expression Assay

#Hs00300159_m1 HGF TaqMan® Gene Expression Assay

#Hs00153133_m1 PTSG2 TaqMan® Gene Expression Assay

#Hs02786624_g1 GAPDH TaqMan® Gene Expression Assay

2.11. Statistical Analysis

For the purposes of the current work, all values were represented as mean ± std.
Statistical analysis has been performed using GraphPad Prism 9.0 (GraphPad Software, San
Diego, CA, USA). In particular, one-way ANOVA test with multiple comparisons has been
used according to the type of samples to compare. Statistical significance was considered at
p < 0.05.

3. Results
3.1. Differentiation of Peripheral Blood Mononuclear Cells into M1-Like Macrophages and
Establishment of an In Vitro Protocol of Ischemia/Reperfusion Injury

Liver resident Kupffer cells with a pro-inflammatory M1 phenotype are the first
ones to be perturbed during IRI in transplanted patients and in animal models [23,24].
Thus, in order to set up an in vitro model of IRI, we applied established protocols from
Tarique et al. [22] to obtain M1-like macrophages from peripheral blood mononuclear
cells (PBMCs). We obtained M1-like macrophages from CD14+ monocytes after treat-
ment with GM-CSF (five days) and LPS + IFNγ (four subsequent days). In particular,
a flow cytometry analysis demonstrated that LPS + IFNγ induced a 95% induction of
M1-like macrophages CD64+/CD80+/CD209− in comparison with the single cytokine
treatments alone (Figure 1a,b). More importantly, we found that the differentiated M1-like
macrophages were functionally active as they released high levels of pro-inflammatory IL-
1β in the conditioned media, and, on the contrary, very low levels of IL-10, in comparison
with macrophages with an M0 or M2 phenotype (Figure 1c). In order to define the ideal
conditions for the IRI protocol, we first tested how differentiated M1-like macrophages
reacted at cold ischemic conditions. Briefly, the cells were subjected to a preservation
medium at 4 ◦C under 5% O2 exposition for a time range of 1 to 24 h. The intracellular
ATP content was used to measure the ischemic effects at each timepoint. We found that
the macrophages reduced their intracellular ATP level in a time-dependant manner, with
a peak of 80% reduction at 24 h. For our purposes, we decided to perform 5 h of cold
ischemia since the ATP reduction was about 50% (Figure 1e and Supplementary Figure
S1c). After a brief rewarming, static reperfusion was performed in macrophage media at
37 ◦C and the effects of the physiological restoring conditions were measured at 1, 4 and
24 h of reperfusion (Figure 1d). Ischemia protocol strongly changed the morphology of the
macrophages as they lost their typical appearance in the culture (Figure 1f). Consistent
with the literature, warm reperfusion determined a 50% increased production of ROS at 4 h
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(Figure 1g, left panel), along with increased transcription of Romo1, the gene involved in
ROS production (Figure 1g, right panel).
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Figure 1. PBMC derived M1-like macrophages displayed an ischemic phenotype. (a) Flow cytometry
analysis and image representation of CD14+ monocytes differentiated with GM-CSF alone or in
combination with LPS + IFNγ (n = 3). Scale bar 75 µm. (b) Flow cytometry quantification of the
M1-like differentiation efficiency upon treatment with GM-CSF, LPS or IFNγ alone, and LPS + IFNγ

co-treatment. Data are represented as % of CD64+/CD80+ differentiated cells for each condition
treatment (n = 3). (c) IL-1β and IL-10 protein quantification in the conditioned medium of M0, M1 and
M2 macrophages. Protein concentration has been calculated according to the standard curve of each
ELISA assay (n = 3). (d) Schematic representation of the IRI protocol applied to M1-like macrophages.
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(e) Intracellular ATP quantification in M1-like macrophages challenged with cold ischemia at different
timepoints. Data are represented as % of ATP in the experimental conditions vs. control (Cn)
not induced to ischemia (n = 4). (f) Image representation of M1-like macrophages subjected to
full IRI protocol. Scale bar 200 µm. (g) Left panel, quantification of ROS production in M1-like
macrophages subjected to full IRI. Data are represented as % of ROS production in experimental
samples vs. unperturbed control cells. Statistical significance has been calculated via ordinary one-
way ANOVA (Dunnet’s multiple comparisons test, n = 4, * = p < 0.05; ns = not significant). Right
panel, gene expression analysis of Romo1 gene on reperfused M1-like macrophages at different
timepoints. The comparison has been conducted by using the ∆∆CT method and normalized
to GAPDH transcript. Statistical significance has been calculated via ordinary one-way ANOVA
(Dunnet’s multiple comparisons test, n = 3, * = p < 0.05; ** = p < 0.005; *** = p < 0.0005).

One of the first events upon reperfusion is the activation of an inflammatory cascade,
usually mediated, at least at first, by M1 macrophages resident in the liver. Thus, the
effects of warm reperfusion were also assessed by a gene expression analysis and ELISA
of specific inflammation markers. Interestingly, we found the up-regulation of several
pro-inflammatory cytokines, including IL-1β, TNFα, IL-6, IL-12, IL-23 and PTSG2. In
particular, the resulting increase in their transcription at 1 and 4 h of warm reperfusion,
with a strong reduction at 24 h, was almost comparable to the non-reperfused control cells.
To note, IL-18 changed in its transcription levels only at 1 h, while no differences were
found throughout the other timepoints analyzed (Figure 2a). The ELISA assays on the
CM from reperfused cells demonstrated that the IL-1β and TNFα release were strongly
correlated with the gene expression assay (Figure 2b). All together, these data suggest that
differentiated M1-like macrophages activated in vitro all the cellular pathways typically
associated with IRI.

3.2. Establishment of In Vitro IRI Protocol on Hepatic Cells

During liver IRI, hepatic cell damage is due to several biological processes stimulated
by the pro-inflammatory microenvironment generated at the early stages of reperfusion.
The final result is the reduction in cell viability and apoptosis of the parenchyma, usually as-
sociated with the failure of a liver transplant. Thus, we thought it was necessary to establish
an in vitro protocol that could better define the cellular and molecular behavior of hepatic
cells upon reperfusion. For our purposes, we used the THLE-2 cell line, adult epithelial hep-
atocytes widely used for studies of liver biology and hypoxia/reoxygenation [25,26]. Cold
ischemia experiments showed that THLE-2 cells were quite resistant to low temperatures
and 5% O2 exposition as the intracellular ATP did not decrease if not at 12 h of cold ischemia
(∼=50% reduction) (Figure 3a and Supplementary Figure S1c). Thus, different from M1-like
macrophages, in vitro IRI on hepatocytes has been performed with 12 h of cold ischemia in
preservation media, followed by warm reperfusion at 1, 4 and 24 h checkpoints (Figure 3b).
As expected, 12 h of cold ischemia altered the THLE-2 cell morphology (Figure 3c). These
findings were further confirmed by the drastic reduction in cell viability at the early stages
of reperfusion (Figure 3d), and by increased apoptosis at 4 h measured by caspase 3/7 ac-
tivity (Figure 3e). In addition, we found that reperfused hepatocytes strongly up-regulated
pro-inflammatory genes, including IL-1β, TNFα and PTSG2 (Figure 3f). Interestingly, the
up-regulation pattern is comparable with the one for M1-macrophages, except for IL-1β as
we did not observe any decrease at 24 h post-reperfusion. Finally, we confirmed by ELISA
assays the release in the CM of pro-inflammatory IL-1β and TNFα proteins (Figure 3g).
Taken together, these data suggest that we managed to generate an in vitro protocol of IRI
on hepatic cells, thus showing cellular and molecular alterations strongly associated with
the damage.
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Figure 2. PBMC derived M1-like macrophages displayed a pro-inflammatory phenotype upon
IRI. (a) Gene expression analysis of pro-inflammatory genes in reperfused M1-like macrophages at
different timepoints. The comparison has been conducted by using the ∆∆CT method and normalized
to GAPDH transcript. Statistical significance has been calculated via ordinary one-way ANOVA
(Dunnet’s multiple comparisons test, n = 3, * = p < 0.05; ** = p < 0.005; *** = p < 0.0005; **** = p < 0.0001;
ns = not significant). (b) IL-1β and TNFα protein quantification in the conditioned medium of
reperfused macrophages at different timepoints. Protein concentration has been calculated according
to the standard curve of each ELISA assay (n = 3). Statistical significance has been calculated via
ordinary one-way ANOVA (Dunnet’s multiple comparisons test, n = 3, * = p < 0.05; ** = p < 0.005;
*** = p < 0.0005; **** = p < 0.0001; ns = not significant).
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Figure 3. In vitro IRI on THLE-2 hepatocytes induced inflammation and apoptosis. (a) Intracel-
lular ATP quantification in THLE-2 subjected to cold ischemia at different timepoints. Data are
represented as % of ATP in the experimental conditions vs. control (Cn) not induced to ischemia
(n = 4). (b) Schematic representation of the IRI protocol applied to THLE-2 hepatocytes. (c) Image
representation of M1-like macrophages challenged with full IRI protocol. Scale bar 75 µm. (d) Cell
viability analysis of THLE-2 reperfused at different timepoints. Data are represented as % vs. control
(mean ± std). Statistical significance has been calculated via ordinary one-way ANOVA (Dunnet’s
multiple comparisons test, n = 3, * = p < 0.05; ** = p < 0.005; ns = not significant). (e) Caspase 3/7
analysis in THLE-2 hepatocytes after reperfusion at the timepoints indicated. Data are represented %
vs. control (mean ± std). Statistical significance has been calculated via ordinary one-way ANOVA
(Dunnet’s multiple comparisons test, n = 3, ** = p < 0.005; ns = not significant). (f) Gene expression
analysis of pro-inflammatory genes in reperfused THLE-2 hepatocytes at different timepoints. The
comparison has been conducted by using the ∆∆CT method and normalized to GAPDH transcript.
Statistical significance has been calculated via ordinary one-way ANOVA (Dunnet’s multiple com-
parisons test, n = 3, * = p < 0.05; *** = p < 0.0005; **** = p < 0.0001; ns = not significant). (g) IL-1β
and TNFα protein quantification in the conditioned medium of reperfused THLE-2 hepatocytes at
different timepoints. Protein concentration has been calculated according to the standard curve of
each ELISA assay (n = 3). Statistical significance has been calculated via ordinary one-way ANOVA
(Dunnet’s multiple comparisons test, n = 3, * = p < 0.05; ** = p < 0.005; *** = p < 0.0005; **** = p < 0.0001;
ns = not significant).

3.3. hAMSCs Pre-Conditioning Attenuates IRI on Differentiated M1-like Macrophages

Recent studies pointed at the isolation and deep characterization of hAMSCs and their
potential applications in regenerative medicine [27–29]. More importantly, we found that
pre-conditioning hAMSCs by pre-treatment with IFNγ or by spontaneous 3D culture growth
further stimulated the anti-inflammatory and regenerative properties, thus making hAMSCs



Cells 2022, 11, 709 10 of 18

an important biological tool for immunotherapies and tissue regeneration [21,30]. Based
on this knowledge, we thought to evaluate the potential role of hAMSCs pre-conditioning
in attenuating IRI damage on reperfused M1-like macrophages. For this purpose, previ-
ously isolated hAMSCs were cultured for 48 h with IFNγ or spontaneously grown in a 3D
culture system. Pre-conditioned CM was collected and applied to M1-like macrophages
during warm reperfusion at early timepoints (1 and 4 h of reperfusion, Figure 4a). We
found that pre-conditioned CM down-regulated reperfusion-associated genes, including
the pro-inflammatory IL-1β, IL-12 and PTSG2 (Figure 4b). Interestingly, the effects of the
pre-conditioning were stronger when the hAMSCs were primed in comparison with CM
derived from untreated hAMSCs (2D culture) both at 1 and 4 h of reperfusion. To note, no
significant differences have been found between IFNγ and 3D pre-conditioning. Further-
more, the gene expression analysis showed an up-regulation of the HGF gene in M1-like
macrophages reperfused with pre-conditioned media. In this case, the effect seemed to be
more pronounced with IFNγ pre-conditioning at 1 h, while no differences were noticed
at 4 h of reperfusion. This finding is in strong accordance with previous data from the
literature, suggesting that HGF-met signaling activation in reperfused livers attenuates the
damage from IRI [31]. Moreover, we tested whether the effect of pre-conditioning somehow
affected the pro-inflammatory phenotype also at the protein level by measuring the cytokines
concentration released in the CM. In accordance with the gene expression analysis, the IL-1β
and TNFα protein release were significantly reduced after treatment with pre-conditioned
CM in comparison with the control and 2D treatment (Figure 4c upper and middle panel).
Interestingly, we found an overall increased release of IL-13 when M1-like macrophages were
reperfused with pre-conditioned hAMSCs-derived CM compared to CM from 2D cultured
hAMSCs. Interestingly, IL-13 is an anti-inflammatory cytokine that has been previously
described to protect endothelial and hepatic cells from IRI [32,33] (Figure 4c, lower panel).
Taken together, these data clearly demonstrate that hAMSCs pre-conditioning reverted the
pro-inflammatory phenotype of M1-like reperfused macrophages.

3.4. hAMSCs Pre-Conditioning Improve Hepatocytes Cell Viability and Reduced Apoptosis of the
Parenchyma during IRI

Along with the positive effects on the inflammation induced by M1-like macrophages
during IRI, we asked whether hAMSCs pre-conditioning could attenuate the dramatic
outcome of hepatic cells after warm reperfusion. For this reason, we decided to reperfuse
THLE-2 cells in the presence of CM from IFNγ pre-conditioned or 3D cultured hAMSCs
(1 to 24 h, Figure 5a). An intracellular ATP measurement assay showed that pre-conditioned
CM improved the cell viability in hepatic cells reperfused with pre-conditioned CM. In
particular, we found that 4 h of warm reperfusion increased the cell viability from 44% and
38% in the control and 2D treatment to 82% and 88% in the 3D and IFNγ pre-conditioning,
respectively. To note, we have not found significant differences between the different
pre-conditioning approaches after 1 h of reperfusion (Figure 5b). In addition, the same
assay provided us another important piece of information as it suggested that 3D and IFNγ

pre-conditioning might restore intracellular ATP levels. On the other hand, Caspase 3/7
activation assay demonstrated that pre-conditioned CM significantly reduced apoptosis at
4 h of warm reperfusion, while no differences have been found at 1 and 24 h (Figure 5c).
However, the CM from 2D cultured hAMSCs did not impact the caspase activation. Of
note, no significant differences were found when we compared the effects of 3D vs. IFNγ

pre-conditioning. All together, these findings show how pre-conditioned CM from hAMSCs
attenuated the effects of IRI in parenchymal hepatic cells.
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Figure 4. hAMSCs conditioned medium attenuates inflammation in reperfused M1-like macrophages.
(a) Schematic representation of the modified IRI protocol applied to M1-like macrophages. (b) Gene
expression analysis of pro-inflammatory genes in reperfused M1-like macrophages treated at different
timepoints with pre-conditioned CM from hAMSCs. The comparison has been conducted by using
the ∆∆CT method and normalized to GAPDH transcript. Statistical significance has been calculated
via ordinary one-way ANOVA (Dunnet’s multiple comparisons test, n = 3, * = p < 0.05; ** = p < 0.005;
ns = not significant). (c) IL-1β and TNFα and IL-13 protein quantification in the conditioned medium
of reperfused M1-like macrophages treated at different timepoints with pre-conditioned CM from
hAMSCs. Protein concentration has been calculated according to the standard curve of each ELISA
assay (n = 3). Statistical significance has been calculated via ordinary one-way ANOVA (Dunnet’s
multiple comparisons test, n = 3, * = p < 0.05; ** = p < 0.005; *** = p < 0.0005; **** = p < 0.0001;
ns = not significant). The statistical analyses have been performed by comparing 1 h and 4 h Cn
(black histograms) vs. the samples at the same timepoints treated with preconditioned CM-hAMSCs.
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Figure 5. Conditioned medium from primed hAMSCs improved hepatic cell viability and reduced
apoptosis after in vitro IRI. (a) Schematic representation of the modified IRI protocol applied to
THLE-2 macrophages. (b) Cell viability analysis of THLE-2 reperfused at different timepoints with
pre-conditioned CM from hAMSCs. Data are represented as % vs. control (mean ± std). Statistical
significance has been calculated via ordinary one-way ANOVA (Dunnet’s multiple comparisons test,
n = 3, * = p < 0.05; ** = p < 0.005; *** = p < 0.0005; ns = not significant). (c) Caspase 3/7 analysis in
THLE-2 hepatocytes after reperfusion at the timepoints in presence of pre-conditioned CM from
hAMSCs. Data are represented % vs. control (mean ± std). Statistical significance has been calculated
via ordinary one-way ANOVA (Dunnet’s multiple comparisons test, n = 3, * = p < 0.05; *** = p < 0.0005;
ns = not significant).

3.5. Conditioned Medium Derived from Both 3D hAMSC and γ-hAMSC Cultures Showed
Increased Production of Both Growth and Immunomodulatory Factors

To investigate whether the different priming culture systems modified the composition
of bioactive factors, we used a multiplex-microbead immunoassay to analyze the secretion
of some proteins in the CM produced by hAMSCs grown in both 2D (with or without
200 IU/mL of IFNγ) and 3D cultures. In particular, we assessed the production of specific
growth factors and cytokines, including BDNF, HGF, IL-10, IL-1RA, IL-4, IL-6, LIF and
PIGF-1. As shown in Figure 6, when compared with hAMSCs 2D cultures, all the analyzed
proteins were significantly up-regulated in both 3D hAMSC-CM and γ-hAMSC-CM except
for PIGF-1 in γ-hAMSC-CM. More specifically, the concentrations of seven proteins, BDNF
(3.4- and 3.3-fold), HGF (65.8- and 75.1-fold), IL-10 (18.6- and 18.1-fold), IL-1RA (3.7- and
4.3-fold), IL-4 (7.5- and 7.8-fold), IL-6 (2.7- and 2.6-fold) and LIF (15- and 12.1-fold), were
significantly higher in both 3D hAMSC-CM and γ-hAMSC-CM, respectively, but there
was no significant difference in proteins between 3D hAMSC-CM and γ-hAMSC-CM.
Moreover, PIGF-1 was up-regulated 2.9-fold in 3D hAMSC-CM compared to 2D hAMSC-
CM (Figure 6). These findings suggest that hAMSCs pre-conditioning clearly modified
the release of bioactive factors that might be responsible for the outcome observed in the
in vitro IRI model.
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Figure 6. Secretion of functional factors in conditioned medium (CM) derived from two-dimensional
(2D hAMSC-CM), three-dimensional (3D hAMSC-CM) and IFN-γ-treated (γ-hAMSC-CM) hAMSC
cultures. The CM was collected after 48 h of culture. The concentrations of each factor were
determined by multiplex-microbead immunoassay. Box plots of three independent experiments
are displayed, where the horizontal bar represents the median, the box represents the interquartile
range (IQR) and the whiskers represent the maximum and minimum values. Comparisons made by
Dunnet’s t-tests. ** = p < 0.005; *** = p < 0.0005; **** = p < 0.0001 compared with 2D hAMSC-CM.

4. Discussion

In the last few years, the indicators of needing a liver transplant have been extended to
all types of end-stage liver disease [34], thus increasing the number of potential recipients.
However, the average waiting time for a liver transplant up to now is around 700 days [35],
which means that (1) there is lack of organ availability, and (2) patients could develop
some other disease that forces them to be removed from the list in the almost-two-year
wait. The organ shortage has been overcome by extending the criteria of liver eligibility for
transplantation, including steatotic or non-heart-beating organs; however, these features
make them more susceptible to IRI. Thus, different approaches have been tried to reduce
IRI effects in liver transplantation, including therapeutic strategies to reduce ROS effects,
cytokine production and immune system activation. Unfortunately, despite the promising
preliminary results, none of these attempts achieved the clinical effectiveness [36–39].
Because of the immunomodulatory and regenerative properties, hMSC therapy for liver
IRI is currently under investigation as a valid approach to revert hepatic damages during
organ transplantation [17,40]. However, although the major sources of hMSCs used for
IRI studies are represented by bone marrow, adipose tissue and umbilical cord, there are
no studies describing the role of amnion-derived MSCs (hAMSCs) in attenuating liver
IRI. The hAMSCs derive from perinatal tissues, display the same properties of MSCs from
other tissues [28,41] and might represent an important therapeutic tool considering the
large number of cells or conditioned media that can be isolated or collected without any
invasiveness [42].

For the purposes of our studies, we set up an in vitro protocol of ischemia/reperfusion
on specific cell types, such as PBMC-derived M1-like macrophages and hepatic cells,
with the final goal of testing the potential effect of hAMSCs in attenuating the IRI phe-
notype. In our in vitro model, the M1-like macrophages under cold ischemia and warm
reperfusion displayed several molecular changes that are consistent with mitochondrial
disfunction and a switch towards a pro-inflammatory phenotype that typically occurs in
Kupffer cells during IRI. Among others, we found different pro-inflammatory and ROS-
associated genes transcriptionally up-regulated in the reperfused cells, including IL-1β,
TNFα, IL-6, IL-12, IL-23, PTSG2 and Romo1. Our findings suggested that PBMC-derived
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M1-like macrophages are a suitable model to study IRI in vitro despite the different genetic
background of the donors. Interestingly, hAMSCs treatment during reperfusion did not
markedly affect macrophages’ inflammation (2D columns in Figure 4). However, hAMSCs
priming with the IFNγ or 3D culture condition strongly reduced the expression of IL-1β,
IL-12 and PTSG2. Notably, the HGF up-regulation in the same samples is consistent with
previous findings showing the HGF-Met signaling axis as protective towards liver IRI [31].
In addition, the ELISA analysis on the 3D hAMSC-CM and γ-hAMSC-CM from reperfused
macrophages showed an increased release of IL-13 after reperfusion. This finding is in ac-
cordance with previous studies showing IL-13’s role in the protection from liver IRI [32,33],
indicating that 3D hAMSC-CM and γ-hAMSC-CM treatment might revert macrophage
polarization from a pro-inflammatory M1 state to an anti-inflammatory M2 one [43]. Our
findings and hypothesis go in the same direction of the current literature on this topic as
the identification of bioactive factors and molecules (proteins or miRNAs) able to stimulate
M2 polarization is currently under investigation for new therapeutic strategies to improve
liver IRI [44,45]. However, further experiments, beyond the purposes of this study, are
required to address this question.

Along with an inflammatory phenotype, the final outcome of liver IRI, which is also
the major cause of organ rejection, is represented by the apoptosis of parenchymal hepatic
cells. Hepatic apoptosis might occur during cold ischemia, mainly due to ATP depletion;
however, it continues at early reperfusion, thus inducing the release of damaged associated
molecular patterns (DAMPs), which contribute to the activation of the pro-inflammatory
cascade during IRI [46]. The final outcome of this biological process is the further apoptosis
of endothelial and hepatic cells. Thus, the identification of factors that might arrest hepatic
apoptosis is another crucial step in the reversion of the liver IRI phenotype. Our findings
suggest that 3D hAMSC-CM and γ-hAMSC-CM not only restored the intracellular ATP
levels but also showed a strong reduction in caspase 3/7 activity, thus improving the cell
viability and reducing cell death. In a similar manner, Zheng and co-workers recently
demonstrated that MSCs reverted hepatocellular apoptosis via the up-regulation of PINK1-
dependent mitophagy [47].

Recently, MSCs pre-conditioning has been considered an important tool to improve
MSCs therapeutic role towards inflammation and organ regeneration. Different studies
have clearly demonstrated that different methods of pre-conditioning are related to the type
of cell population or biological process that need to be targeted [30,48–50]. For instance, our
group recently demonstrated via transcriptome analysis that hAMSCs pre-conditioning
modulates an extensive number of genes associated with regenerative processes and signal-
ing pathways [51]. Thus, the identification of bioactive factors in the pre-conditioned CM
from MSCs is crucial for the definition of strategies to stimulate tissue repair. In our studies,
3D hAMSC-CM and γ-hAMSC-CM did not differ in terms of biological effectiveness: they
both behaved similarly in reducing the inflammation and apoptosis of reperfused M1-like
macrophages and hepatic cells. A luminex analysis of 3D hAMSC-CM and γ-hAMSC-CM
identified few candidate factors that were up-regulated in both conditions when com-
pared to the un-pre-conditioned cells. The list of factors includes, among others, BDNF,
HGF, IL-10, IL-1RA, IL-4 and LIF. Interestingly, all of them have been shown to have a
protective role towards IRI damage of different organs, including the liver, brain, heart and
kidney [52–57]. These findings point to the possibility of dissecting the precise molecu-
lar mechanisms that the different bioactive factors might activate to exert their function
in liver IRI.

5. Conclusions

Firstly, we established a novel method to induce IRI on human derived macrophages
and hepatic cells. Then, we showed that hAMSCs pre-conditioning is a valid approach to
reduce in vitro IRI damage in M1-like macrophages and THLE-2 hepatic cells. We have
dissected the molecular changes occurring in specific cell types in vitro upon reperfusion
with 3D hAMSC-CM and γ-hAMSC-CM and picked up a number of potential cytokines
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involved in the process of protection from IRI. Further investigations are necessary to
dissect: (1) the precise molecular mechanisms regulating hAMSCs protection towards liver
IRI, and (2) whether hAMSCs pre-conditioning might revert the IRI phenotype in liver
transplantation. In this regard, extracellular vesicles, such as exosomes, are believed to be a
crucial functional component of hMSC-derived CM, with a therapeutic role in several IRI
models [58]. Moreover, MSC priming has been shown to enhance the therapeutic effects of
extracellular vesicles [59]. Therefore, further studies and protocols need to be established to
better define the therapeutic contribution that hAMSCs could give for the improvement of
liver transplantation. Even if we are clearly aware that the major limitation of our in vitro
models is the lack of cross-talk between the cell types involved in the IRI phenotype,
these data support the idea to use hAMSCs to tackle liver transplantation rejection. The
establishment of a more complex ex vivo “liver” organ, where cell–cell crosstalk can be
assessed, will further improve our knowledge on how hAMSCs can affect cell behavior
and interaction with the microenvironment.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cells11040709/s1, Figure S1: Isotype controls for Flow cytometry analysis
(a); Flow cytometry plot of M2-like macrophages (b); ATP content analysis at 5hrs (macrophages) and
12hrs (hepatocytes) of cold ischemia (c).
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