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Abstract

Light intensity has an important environmental influence on the quality and yield of aquatic

products. It is essential to understand the effects of light intensity on water quality and fish

metabolism before large-scale aquaculture is implemented. In this study, two low-intensity

light levels, 0 lx and 100 lx, were used to stress Nile tilapia (Oreochromis niloticus), with a

natural light level (500 lx) used as control. The pH, dissolved oxygen and ammonia contents

were significantly lower in the water used in the 0 lx and 100 lx groups than in controls, while

the levels of nitrite and total phosphorus were apparently higher. Moreover, the numbers of

heterotrophic bacteria, Vibrio and total coliforms in aquaculture water were 157.1%, 314.2%

and 502.4% higher, respectively, after 0 lx light stress for 15 days. The survival rate of Nile

tilapia decreased significantly to 90.6% under 0 lx light on the 15th day. Of the immune-

related genes, the expressions of IFN-γ, IL-12 and IL-4 were 390.3%, 757.8% and 387.5%

higher under 0 lx light and 303.3%, 471.2% and 289.7% higher under 100 lx light, respec-

tively. These results indicate that low-intensity light changes the physicochemical parame-

ters of aquaculture water and increases the number of bacteria it hosts while decreasing the

survival rate and increasing the disease resistance of Nile tilapia.

1. Introduction

Fish are a crucial source of proteins, vitamins and minerals for humans. Due to rapid declines

in catch rates, global aquaculture is swiftly expanding to meet the huge demand for fish [1].

However, substandard practices and hostile aquacultural environments involved in fish rear-

ing have resulted in a range of fish diseases and serious declines in product quality. Hence, it is

essential to determine the environmental influences on cultured fish before they are used in

large-scale aquaculture.

Light intensity is an important environmental factor in aquaculture. Drastic light intensity

alterations in water bodies can generate serious water quality problems [2]. A suitable light

intensity degrades pollutants, improves water quality, and eliminates the formation of disinfec-

tion byproducts [3]. Proper light conditions are also favorable for the survival [4], growth per-

formance [4], husbandry performance [5], and disease resistance [6] of cultured fishes.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0268114 May 6, 2022 1 / 10

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Qu B, Zhao H, Chen Y, Yu X (2022)

Effects of low-light stress on aquacultural water

quality and disease resistance in Nile tilapia. PLoS

ONE 17(5): e0268114. https://doi.org/10.1371/

journal.pone.0268114

Editor: Yiguo Hong, Guangzhou University, CHINA

Received: March 5, 2022

Accepted: April 23, 2022

Published: May 6, 2022

Copyright: © 2022 Qu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: This work was supported by National Key

R&D Program of China (2019YFD0900800);

Natural Science Foundation of Guangdong

Province (2021A1515011052).”.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-4104-9834
https://doi.org/10.1371/journal.pone.0268114
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268114&domain=pdf&date_stamp=2022-05-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268114&domain=pdf&date_stamp=2022-05-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268114&domain=pdf&date_stamp=2022-05-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268114&domain=pdf&date_stamp=2022-05-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268114&domain=pdf&date_stamp=2022-05-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268114&domain=pdf&date_stamp=2022-05-06
https://doi.org/10.1371/journal.pone.0268114
https://doi.org/10.1371/journal.pone.0268114
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


The Nile tilapia (Oreochromis niloticus) is known as the “food fish of the 21st century” and

is the second most reared fish after carp species [1]. It is widely cultured around the world as it

grows rapidly and is hardy, even in hostile aquatic environments [7]. The Nile tilapia is also

considered to be a good model for evaluating the influences of environmental factors on cul-

tured fish, because of its strong environmental adaptability. However, few studies have

reported the effects of light intensity on the metabolism of Nile tilapia and its aquatic

environment.

In this study, three intensities of light were designed to stress Nile tilapia. The quality of

their aquatic water body was analyzed in terms of water quality parameters and bacterial con-

tent. The disease resistance of fish was analyzed by detecting the survival rate and expression

of immune-related genes. The aim was to elaborate upon the effects of low light stress on aqua-

cultural water quality and disease resistance in Nile tilapia.

2. Materials and methods

2.1 Fish and culturing

Nile tilapia (mean weight = 200 ± 10 g) were bought from an aquaculture farm in Beihai. They

were temporarily cultivated in nine 8 m3 seawater tanks for 1 week, with 50 fish in each tank.

The tanks were randomly divided into three light treatment groups, with three replicate tanks

per group. The fish were fed using a basal diet (Yuehai, Zhanjiang, China) twice per day. One-

third of the water was changed every 3 days, before which water samples and fish were col-

lected for experiments. The room temperature was controlled by an air conditioner at

28 ± 0.3˚C. The experiment was approved by the Animal Ethics Committee of Guangdong

Ocean University (protocol number 20190003). All procedures were performed in accordance

with the relevant policies of Animal Welfare in China.

2.2 Light stress and survival rate analysis

Three light intensities (0 lx, 100 lx and 500 lx) were used to stress the Nile tilapia, of which the

500 lx group was used as controls because 500 lx is close to the optimal light intensity. Daylight

lamps (OPPLE, Zhongshan, China) and black nylon nets were used to regulate light intensity.

Light intensity was measured at the water’s surface by an underwater irradiance meter (ZDS-

10W2D, Shanghai, China). The photoperiod was 12 h light to 12 h dark. The experiment was

sustained for 15 days. The survival rates of fish in the three light treatment groups were mea-

sured every 3 days.

2.3 Determination of water quality parameters

Water samples were collected at 40 cm under the water surface of each tank. The temperature

and pH were detected using a thermometer and pH probe (HI2210, Hanna, Italy). The

amounts of ammonia, nitrite, total phosphorus, and dissolved oxygen (DO) and the water’s

transparency were detected with a water quality testing meter (SJ-7008II, SuiJing, China) using

the methods described by Gorlach-Lira et al. [8].

2.4 Microbiological analyses of water samples

For microbiological analyses, 10 μL water samples were collected from the surface of each

tank. They were diluted with 990 μL of 0.9% sterile saline solution and plated on selective

media. For heterotrophic bacteria detection, the samples were plated on 2216E medium,

including 5 g tryptone, 1 g yeast extract, 0.1 g ferric phosphate, and 20 g agar in 1000 mL sea-

water (pH 7.6), and cultivated for 3 days at 25˚C. For Vibrio detection, the samples were done
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on TCBS medium, including 10 g tryptone, 5 g yeast extract, 10 g NaCl, 10 g Na-citrate, 10 g

sodium thiosulfate, 3 g sodium cholate, 5 g Ox-gall powder, 20 g sucrose, 1 g ferric citrate, 15 g

agar, 0.04 g bromothymol orchid and 0.04 g thymol orchid in 1000 mL water (pH 8.6), and

cultivated for 24 h at 28˚C. For total coliforms, samples were cultivated in Lactose Bile 2% Bril-

liant Green Broth media, which included 10 g enzymatic digest of gelatin, 10 g lactose, 20 g ox

bile, and 0.0133 g brilliant green in 1000 mL seawater (pH 7.4) for 5 days at 30˚C. The number

of total bacteria was counted after cultivation and was represented in terms of the most proba-

ble number/100 mL (MPN/100 mL).

2.5 RNA isolation, cDNA synthesis and quantitative real-time PCR

(qRT-PCR) analysis

Total RNA was extracted from the liver of three experimental fish using RNeasyMini Kits

(Qiagen, Gaithersburg, MD, USA). Single-strand cDNA was synthesized from RNA with

M-MLV reverse transcriptase (Promega, Madison, WI, USA) and random primer. The

qRT-PCR assays were performed with Thermo Scientific DyNAmo Flash SYBR Green qPCR

Kits (Thermo Scientific, Waltham, MA, USA). β-actin was used as the internal control. All

primers were listed in Table 1. The 2−44CT method was employed to calculate the relative

gene expression levels. Each sample was run in triplicate.

2.6 Statistical analysis

The parameters of each group are expressed as means and standard errors. ANOVA was per-

formed using SPSS 19.0 (IBM, Armonk, NY, USA) to detect significant differences between

groups.

3. Results

3.1 Effect of low-intensity light stress on water quality

The physicochemical parameters of the water samples were presented in Table 2. There were

no significant differences in temperature and salinity among all light treatment groups. The

mean pHs of the water in the 0 lx, 100 lx and 500 lx groups were 7.5, 7.7 and 8.1, the mean DO

values were 5.8 mg/L, 7.3 mg/L and 9.1 mg/L, and the mean ammonia contents were 0.14 mg/

L, 0.23 mg/L and 0.26 mg/L, respectively. This indicates that low light reduced the pH, DO

and ammonia content of the water. The levels of nitrite, total phosphorus and transparency

were 0.008 mg/L, 0.31 mg/L and 23.81 cm under 0 lx, respectively, and reached their minimum

values under 500 lx, at 0.003 mg/L, 0.19 mg/L and 21.34 cm. This indicated that low-intensity

Table 1. Primers used in the qRT-PCR analyses.

Primer Sequence (5’-3’)

IFN-γ-F AGCGGCTGACTGAACTCAATTGAAG

IFN-γ-R GTCACAGTTTTCAGCTGTATAGGG

IL-12-F GGAAGCACGGCAGCAGAATA

IL-12-R AACTTGAGGGAGAAGTAGGAATGG

IL-4-F TGTTACCTAAATCTGTTGATCCAG

IL-4-R TCTGTGGTGTTCTTCGTTGC

β-actin-F CCACACAGTGCCCATCTACGA

β-actin-R CCACGCTCTGTCAGGATCTTCA

https://doi.org/10.1371/journal.pone.0268114.t001
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light upregulated the levels of nitrite, total phosphorus and transparency degree in

aquaculture.

3.2 Low-intensity light stress increased bacterial growth in aquaculture

water

To examine the effect of low-intensity light stress on bacteria in water, the numbers of hetero-

trophic bacteria, Vibrio and total coliforms were counted. The numbers of all detected bacteria

were increased after fish farming for 15 days. Moreover, there was a significant difference

among the three treatment groups on the 15th day. Compared with the 500 lx group (control),

the numbers of total heterotrophic bacteria increased by 157.1% in the 0 lx group and 122.3%

in the 100 lx group (Fig 1A). Similarly, Vibrio numbers were 314.2% and 193.8% higher in the

0 lx and 100 lx groups, respectively (Fig 1B). The total coliform numbers showed more signifi-

cant changes, increasing by 502.4% (1236 MPN/100 mL) in the 0 lx group and 147.5% (363

MPN/100 mL) in the 100 lx group compared with controls (246 MPN/100 mL; Fig 1C). This

indicated that low-intensity light was beneficial to the growth of heterotrophic bacteria, Vibrio
and total coliforms in the aquaculture water.

3.3 Low-intensity light stress decreased the survival rate of Nile tilapia

To investigate whether low-intensity light stress produced serious adverse effects on Nile tila-

pia, their survival rates were examined on the 0th, 3rd, 6th, 9th, 12th and 15th days. As shown in

Table 2. Water quality parameters of the three light treatment groups after 15 consecutive days (mean ± SE and range of variation of 3 tanks).

Parameters Light density

0 lx 100 lx 500 lx

Temperature (˚C) 28.04 ± 0.3 (27.8–28.3) 28.14 ± 0.3 (27.7–28.4) 28.38 ± 0.4 (27.6–28.8)

Salinity 19.60 ± 0.4 (19.0–20.1) 19.51 ± 0.3 (19.1–20.1) 19.70 ± 0.4 (19.1–20.2)

pH 7.52 ± 0.5b (7.2–8.2) 7.71 ± 0.3b (7.4–8.1) 8.10 ± 0.6a (7.8–8.4)

Dissolved oxygen (mg/L) 5.81 ± 1.8b (4.9–8.5) 7.32 ± 2.3ab (5.8–11.2) 9.12 ± 3.3a (6.5–12.3)

Ammonia (mg/L) 0.14 ± 0.04b (0.13–0.17) 0.23 ± 0.05a (0.18–0.25) 0.26 ± 0.05a (0.22–0.29)

Nitrite (mg/L) 0.008 ± 0.001b (0.007–0.010) 0.005 ± 0.00 ab (0.004–-0.007) 0.003 ± 0.001a (0.002–0.005)

Total phosphorus (mg/L) 0.31 ± 0.07b (0.29–0.42) 0.25 ± 0.05a (0.18–0.32) 0.19 ± 0.05a (0.180–0.23)

Transparent degree (cm) 23.81 ± 1.1b (23.1–24.8) 22.12 ± 1.3a (20.1–23.8) 21.34 ± 1.6a (20.4–21.8)

Note: Superscripts with different letters (a, b, c) within a row indicated significant differences (P< 0.05).

https://doi.org/10.1371/journal.pone.0268114.t002

Fig 1. Bacterial growth in aquaculture water under 0 lx, 100 lx and 500 lx illumination: A) heterotrophic bacteria, B) Vibrio and C) total coliforms.

https://doi.org/10.1371/journal.pone.0268114.g001
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Table 3 and Fig 2, there were no significant differences between the 100 lx and 500 lx groups

during the 15-day light treatment (P> 0.05). However, in the 0 lx group, the survival rate

decreased significantly to 92.7% on the 12th day and declined further to 90.6% on the 15th day

compared to controls. This indicates that extreme low-intensity light stress inhibited survival.

3.4 Low-intensity light stress activated the expression of immune-related

genes in Nile tilapia

Because low-intensity light decreased the survival rate of Nile tilapia, it was speculated that it

acted as a stressor that stimulated the immune response. Hence, the expressions of interferon

gamma (IFN-γ), interleukin 12 (IL-12) and interleukin (IL-4) were analyzed in each group

(Fig 3). In the 0 lx group, the expressions of IFN-γ, IL-12 and IL-4 did not change during the

first 8 days (P> 0.05), but were significantly up-regulated on the 9th day (P< 0.05) and

Table 3. Numbers of deaths of Nile tilapia every 3 days under different light levels.

Light intensity (lx) Death number (150 fish per treatment group)

0 day 3th day 6th day 9th day 12th day 15th day Sum

0 0 2 2 3 4 3 14

100 0 1 1 3 0 1 6

500 0 1 0 1 1 1 4

https://doi.org/10.1371/journal.pone.0268114.t003

Fig 2. Survival rates of fish under different light levels on the 0th, 3rd, 6th, 9th, 12th and 15th days of treatment. Each

bar represented the mean of 50 fish.

https://doi.org/10.1371/journal.pone.0268114.g002
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reached 390.3%, 757.8% and 387.5% of their initial values, respectively, on the 12th day

(P< 0.01), before being down-regulated afterward (P< 0.05). The 100 lx group showed lesser

changes. The IFN-γ, IL-12 and IL-4 transcripts were increased by 303.3%, 471.2% and 289.7%,

respectively, on the 12th day (P< 0.05) and recovered to normal levels subsequently

(P> 0.05). This indicated that low-intensity light activated the immune response of Nile

tilapia.

4. Discussion

Light intensity is a crucial environmental factor that influences aquacultural water quality,

such as temperature, pH, and levels of DO, ammonia, nitrite and total phosphorus [9, 10]. In

this research, as expected, low-intensity light significantly down-regulated the pH, DO and

ammonia content of aquaculture water, but up-regulated the levels of nitrite and total phos-

phorus. This was speculated to be due to weak photosynthesis occurring under low-intensity

Fig 3. Expressions of A) IFN-γ, B) IL-12 and C) IL-4 in the liver of Nile tilapia under three light levels according to qRT-PCR. β-actin was run as the control.

Data are expressed as mean ± SE (n = 3). �P< 0.05 and ��P< 0.01.

https://doi.org/10.1371/journal.pone.0268114.g003
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light [11], which generated less O2 and decreased DO. While strong respiration by fish gener-

ated CO2 and hydrogen ions, which decreased pH [12, 13]. Meanwhile, due to the lack of O2,

nitrate did not readily reduce to ammonia, so there were high nitrate and low ammonia con-

tents [14]. In addition, weak photosynthesis inhibited algal growth and increased water trans-

parency. Fewer algae reduced the need for phosphorus, so its content increased under low-

intensity light [15, 16].

Light is considered the single most important contributor to bacterial die-off in aquaculture

water [17, 18]. A bactericidal effect of light was achieved that caused a rapid decrease in the

colony-forming ability of bacteria [19, 20]. Solar UV light is highly bactericidal, causing direct

photobiological DNA damage in bacteria [21]. In this study, the numbers of all detected bacte-

ria were very low under 500 lx light and were significantly higher under 0 lx and 100 lx light.

This demonstrated that low-intensity light results in the rapid proliferation of bacteria in aqua-

culture water.

Changes in the physicochemical properties of aquaculture water, such as pH, directly influ-

ence bacterial proliferation [8, 22]. Seawater pH normally ranges from 7.5 to 8.5 and is influ-

enced by light, temperature, pressure and the respiratory activities of microorganisms [23]. It

has been reported that a pH of approximately 8 has the strongest deleterious effects on Vibrio
and total coliforms in seawater [18]. In this report, the numbers of all detected bacteria were

lowest in the 500 lx group, in which the pH was close to 8.0 at 8.1. Meanwhile, the numbers of

bacteria were significantly higher in the 0 lx and 100 lx groups, which had pHs of 7.5 and 7.7,

respectively. The data suggest that low pH due to low-intensity light allowed high bacterial sur-

vival. Similar results were reported by Joux et al. [24], who showed that an acidic pH favored

the survival of total coliforms in both seawater and NaCl solution, and that survival decreased

with the increase in pH.

Light can directly affect the survival, growth, swimming, aggression, hatching, metabolism

and immune response of fish [6]. According to previous research, insufficient light leaded to

poor growth and high mortality in fish [25]. In the present report, the extremely low light

treatment (0 lx) decreased the survival rate of fish to 90.6%, significantly lower than that of

controls. However, there was no obvious difference in survival rate between the 100 lx and

control groups. A reasonable explanation is that Nile tilapia are visual predators and need a

minimum light intensity to feed and grow normally [6]. Complete darkness led to abrupt

changes in the rearing conditions and growth environment, which decreased survival.

Visible light exposure can modulate immune function [26, 27]. Although fish initiate

immune responses through a variety of signal recognition and signal transduction pathways,

inflammatory cytokines play important antiviral or antibacterial roles in the last step [28, 29].

IL4, IFN-γ and IL12 are inflammatory cytokines that are widely studied in relation to immune

response. It has been reported that IL4 can enhance IFN-γ expression in murine NK cells in

coordination with the T1 cytokine IL12 [30, 31], implying that IL4, IFN-γ and IL12 might

have been working together in the present study. In addition, transcriptome analysis of sam-

ples from the three treatment groups showed that IL4, IFN-γ and IL12 were significantly dif-

ferently expressed (data not shown). Therefore, IL4, IFN-γ and IL12 were selected for analysis

in this research. After low-intensity light stress, the expression levels of IFN-γ, IL-12 and IL-4

were significantly up-regulated, which were consistent with the changes in bacterial numbers

in the aquaculture water. This consistency indicated that the high bacterial content resulting

from low-intensity light stress might be the main influence on the immune response of fish.

However, the gene expression levels gradually recovered after the 12th day, suggesting that the

fish might have adapted to the low-intensity light environment by inhibiting the transcription

of certain immune-related genes.
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5. Conclusion

This study demonstrated the effects of different light intensities (0 lx, 100 lx and 500 lx) on

aquaculture water quality and disease resistance in Nile tilapia. The pH, DO and ammonia

content of aquaculture water were significantly lower in the 0 lx (no light) and 100 lx groups

(reduced light) than in the 500 lx group (control, representing the natural light level). The lev-

els of nitrite and total phosphorus were apparently higher in the 0 lx and 100 lx groups than in

the 500 lx group. Moreover, the 0 lx group had significantly higher numbers of heterotrophic

bacteria, Vibrio and total coliforms and a significantly decreased Nile tilapia survival rate. The

expressions of immune-related genes, including IFN-γ, IL-12 and IL-4, were significantly

higher in the 0 lx and 100 lx groups. These results indicate that low-intensity light changes the

physicochemical parameters of aquaculture water and up-regulates the number of bacteria.

Meanwhile, low-intensity light decreases the survival rate and stimulates disease resistance in

Nile tilapia.
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