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ABSTRACT
The hypothesis that sulfocoumarin acting as inhibitors of human carbonic anhydrase (CA, EC 4.2.1.1) can-
cer-associated isoforms hCA IX and – hCA XII is being able to also inhibit thioredoxin reductase was veri-
fied and confirmed. The dual targeting of two cancer cell defence mechanisms, i.e. hypoxia and oxidative
stress, may both contribute to the observed antiproliferative profile of these compounds against many
cancer cell lines. This unprecedented dual anticancer mechanism may lead to a new approach for design-
ing innovative therapeutic agents.
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1. Introduction

Earlier, we reported 6-substituted sulfocoumarins 11 (designed as
isosteres of the structurally related coumarins2–6) as potent and
remarkably isoform-selective inhibitors of the metallo-enzyme car-
bonic anhydrase (CA, EC 4.2.1.1)7,8. The ability of sulfocoumarins
to selectively inhibit membrane-bound hCA IX and XII isoforms
were attributed to the unique mechanism of action of these com-
pounds whereby they act as prodrugs activated by CA-mediated
hydrolysis1–6. This makes these inhibitors fundamentally different
from the classical carbonic anhydrase inhibitors (CAIs) – e.g. those
of sulphonamide type which act by binding to the CA prosthetic
zinc ion present in all isoforms, which makes designing isoform-
selective sulphonamide CAIs particularly difficult. On the contrary,
CA-mediated hydrolysis of sulfocoumarins 1 (as well as their pro-
genitors coumarins) leads to the in situ formation of the Z-config-
ured stiryl sulphonic acid (Z)-2 which is likely to isomerise to (E)-2,
the active inhibitor form whose binding to CA was confirmed by
X-ray crystallography1. This inhibitor activation and binding appar-
ently occurs only in the protein environment of the two mem-
brane-bound isoforms (hCA IX and XII) which makes these
mechanistically distinct inhibitors ideal tools for targeting hypoxia
survival mechanism in tumour cells providing which overexpres-
sion of precisely these two isoforms is considered responsible for9.
Indeed, selective targeting of hCA IX and XII has been confirmed

to lead to retardation of tumour growth and, ultimately, reduction
of tumour size10.

Another principal mechanism of tumour survival which we
have been recently tackling11,12 as a target for anticancer
agent design, is that providing tumour cell defence against oxida-
tive stress (reactive oxygen species or ROS). In particular, tumour
cells have been shown to overexpress thioredoxin reductase
(TrxR, EC 1.8.1.9) which contributes to their resistant phenotype
characterised by higher levels of ROS13. Thus, targeting TrxR1 (the
most widespread cytosolic isoform of human TrxR) has
been investigated as an emerging approach to selective killing of
cancer cells14. This selenocysteine (Sec) enzyme, along with
NADPH and thioredoxin (Trx) is part of the Trx system and respon-
sible for maintaining Trx in its reduced bis-sulfhydryl state.
Among several classes of inhibitors of varying degree of electro-
philicity towards the catalytic Sec residue (recently reviewed by
Bellelli15 and Fang16), we found covalent Michael acceptor inhibi-
tors (such as Ugi-type adducts 3 which we dubbed “Ugi Michael
Acceptors” or UMAs) to be particularly efficacious12. The mechan-
ism of inhibitory action of UMAs towards TrxR1 likely involves the
irreversible covalent trapping of the selenide group of the cata-
lytic Sec residue (which exists in the ionised form at physiological
pH17) by the electrophilic b-benzoylacrylamide moiety present
in 3.
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Considering the presence of a potential Michael acceptor moi-
ety in sulfocoumarins 1, we hypothesised that in addition to their
inhibitory activity towards hCAs, these compounds could poten-
tially act as Michael acceptor-type TrxR inhibitors (Figure 1), thus
acting as dual inhibitors which target two cancer cell defence
mechanisms at a time. Herein, we present our preliminary results
obtained in the course of verifying this hypothesis.

2. Materials and methods

2.1. Chemical syntheses – general

Reagents and starting materials were obtained from commercial
sources (Sigma-Aldrich, St. Louis, MO) and used as received. The
solvents were purified and dried by standard procedures prior to
use; petroleum ether of boiling range 40–60� C was used. Flash
chromatography was carried out using Merck silica gel
(230–400 mesh). Thin-layer chromatography was performed on sil-
ica gel, spots were visualised with UV light (254 and 365 nM).
Melting points were determined on an OptiMelt automated melt-
ing point system. IR spectra were measured on a Shimadzu FTIR
IR Prestige-21 spectrometer. NMR spectra were recorded on Varian
Mercury (400MHz) spectrometer with chemical shifts values (d) in
ppm relative to TMS using the residual DMSO-d6 signal as an
internal standard. Elemental analyses were performed on a Carlo
Erba CHNSeO EA-1108 apparatus. Starting material sulfocoumarins
(418 and 519) were prepared as described previously. Alkynes
employed in the synthesis of 1a–b are commercially available.
Tetrazoles employed in the synthesis of 1c–d were prepared
according to the literature protocols20,21. All reagents for bio-
logical assays were purchased from Sigma (St. Louis, MO).

2.2. General procedure 1: preparation of sulfocoumarins
1a–b (GP1)

To a solution of 4 (1.0 equiv.) in dry THF (1mL per mmol of 4)
N,N-diisopropylethylamine (DIPEA) (50 equiv.), the appropriate
alkyne (1.1, 2.0, or 5.0 equiv.), and CuI (2 equiv.) were added. The
resulting mixture was stirred at room temperature under an argon
atmosphere for 20 h. Saturated NH4Cl was added and extracted
with EtOAc, washed with brine and dried over Na2SO4,
and evaporated.

2.2.1. 4-(4-Chlorophenyl)-1-(2,2-dioxido-1,2-benzoxathiin-6-yl)-1H-
1,2,3-triazole (1a)
Prepared from 4 (0.15 g, 0.67mmol), 4-chlorophenylacetylene
(0.18 g, 1.34mmol), CuI (0.26 g, 1.34mmol), and DIPEA (5.85mL,
33.6mmol) according to GP1. Crystallisation from ethanol afforded
1a as yellow crystalline solid (0.19 g, 77%). Mp 236–237 �C. IR (KBr,
cm�1) �max: 1369 (S–O), 1179 (S–O), and 1169 (S–O). 1H NMR
(400MHz, DMSO-d6) d: 7.55–7.60 (m, 2H), 7.70 (d, J¼ 10.4Hz, 1H),
7.75 (d, J¼ 8.9 Hz, 1H), 7.84 (d, J¼ 10.4Hz, 1H), 7.92–7.97 (m, 2H),
8.12 (dd, J¼ 8.9, 2.7 Hz, 1H), 8.39 (d, J¼ 2.7 Hz, 1H), and 9.38 (s,
1H). 13C NMR (100MHz, DMSO-d6) d: 119.9, 120.2, 120.3, 121.4,
123.7, 124.0, 127.0, 128.9, 129.2, 132.9, 134.2, 135.8, 146.4, and
150.1. Anal. Calcd. for C16H10N3O3SCl (359.79): C, 53.41; H, 2.80; N,
11.68. Found: C, 53.22; H, 2.79; N, 11.32.

2.2.2. 1-(2,2-Dioxido-1,2-benzoxathiin-6-yl)-4-(4-fluorophenyl)-1H-
1,2,3-triazole (1b)
Prepared from 4 (0.15 g, 0.67mmol), 4-fluorophenylacetylene
(0.16 g, 1.34mmol), CuI (0.26 g, 1.34mmol), and DIPEA (5.85mL,
33.6mmol) according to GP1. Yellow crystalline solid (0.19 g, 80%).
Mp 224–225 �C. IR (KBr, cm�1) �max: 1359 (S–O) and 1179 (S–O).
1H NMR (400MHz, DMSO-d6) d: 7.32–7.39 (m, 2H), 7.71 (d,
J¼ 10.4Hz, 1H), 7.75 (d, J¼ 8.9 Hz, 1H), 7.84 (d, J¼ 10.4 Hz, 1H),
7.94–8.00 (m, 2H), 8.12 (dd, J¼ 8.9, 2.6 Hz, 1H), 8.39 (d, J¼ 2.6 Hz,
1H), and 9.33 (s, 1H). 13C NMR (100MHz, DMSO-d6) d: 116.1 (d,
J¼ 21.9 Hz), 119.8, 119.9, 120.2, 121.4, 123.7, 124.0, 126.6 (d,
J¼ 3.2 Hz), 127.4 (d, J¼ 8.3 Hz), 134.2, 135.9, 146.6, 150.1, and
162.4 (d, J¼ 245.3 Hz). Anal. Calcd. for C16H10N3O3SF (343.33): C,
55.97; H, 2.94; N, 12.24. Found: C, 55.78; H, 2.94; N, 12.24.

2.2.3. 5-(2,2-Dioxido-1,2-benzoxathiin-6-yl)-1-phenyl-1H-tetrazole (1c)
Compound 5 (0.200 g, 0.649mmol), 1-phenyl-1,2,3,4-tetrazole20

(0.190 g, 1.30mmol), Cs2CO3 (0.233 g, 0.714mmol), CuI (0.124 g,
0.649mmol), Pd(OAc)2 (0.0146 g, 0.0649mmol), and tris(2-furyl)
phosphine (0.030 g, 0.130mmol) were suspended in dry toluene
(3mL). The mixture was stirred at 40 �C under argon for 20 h, then
EtOAc (20mL) was added and the mixture was filtered through
celite. Celite was washed with EtOAc (50mL). The filtrate and
washings were combined and concentrated under reduced pres-
sure. The residue was purified by silica gel chromatography (pet-
roleum ether/EtOAc 2:1) and additionally crystallised from EtOH to
give 1c as yellow crystalline solid (0.076 g, 36%). Mp 189–190 �C.
IR (KBr, cm�1) �max: 1370 (S–O) and 1178 (S–O). 1H NMR (400MHz,
DMSO-d6) d: 7.49–7.56 (m, 2H), 7.58–7.68 (m, 6H), 7.78 (d, 1H,
J¼ 10.4 Hz), and 8.09–8.12 (m, 1H). 13C NMR (100MHz, DMSO-d6)

Figure 1. Sulfocoumarins 1 and their CA inhibition mechanism, the previously reported Ugi Michael acceptor TrxR inhibitors (fragments originating from the four com-
ponents of the Ugi reaction are colour-coded) and the hypothesis for dual CA/TrxR targeting verified in this work.
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d: 119.2, 119.3, 121.6, 123.6, 126.0, 130.0, 130.8, 131.0, 132.5,
133.8, 135.9, 152.2, and 152.4. Anal. Calcd. for C15H10N4O3S
(326.33): C,55.21; H, 3.09; N, 17.17. Found: C, 55.25; H, 3.09;
N, 17.08.

2.2.4. 1-(2,2-Dioxido-1,2-benzoxathiin-6-yl)-5-(4-fluorophenyl)-1H-
1,2,3-triazole (1d)
To a solution of 5 (0.25 g, 1.12mmol) and 4-fluorophenylacetylene
(0.27 g, 2.24mmol) in dry DMF (0.7mL), Cp�Ru(PPh3)2Cl
(0.01mmol) was added and the resulting mixture was stirred at
100 �C under an argon atmosphere for 20 h. The solvent was
removed under reduced pressure. The residue was purified by sil-
ica gel chromatography (petroleum ether/EtOAc 2:1) to give 1d as
yellow crystalline solid (0.11 g, 28%). Mp 157–158 �C. IR (neat,
cm�1) �max: 1373 (S–O) and 1176 (S–O). 1H NMR (400MHz, DMSO-
d6) d: 7.25–7.33 (m, 2H), 7.37–7.43 (m, 2H), 7.56 (dd, J¼ 8.8, 2.5 Hz,
1H), 7.61 (d, J¼ 8.8 Hz, 1H), 7.67 (d, J¼ 10.4Hz, 1H), 7.75 (d,
J¼ 10.4Hz, 1H), 7.97 (d, J¼ 2.5 Hz, 1H), and 8.17 (s, 1H). 13C NMR
(100MHz, DMSO-d6) d: 116.1 (d, J¼ 22.1Hz), 119.6, 119.8, 122.4 (d,
J¼ 3.2 Hz), 123.7, 127.1, 129.3, 131.1 (d, J¼ 8.8 Hz), 133.4, 133.6,
135.7, 137.0, 150.8, and 162.6 (d, J¼ 247.7 Hz). Anal. Calcd. for
C16H10N3O3SF (343.33): C, 55.97; H, 2.94; N, 12.24. Found: C, 56.17;
H, 2.93; N, 11.93.

2.3. Carbonic anhydrase inhibition assay

An Applied Photophysics stopped-flow instrument has been used
for assaying the CA catalysed CO2 hydration activity22. Phenol red
(at a concentration of 0.2mM) has been used as indicator, working
at the absorbance maximum of 557 nm, with 20mM Tris (pH 8.3)
as buffer, and 20mM Na2SO4 (for maintaining constant the ionic
strength), following the initial rates of the CA-catalysed CO2 hydra-
tion reaction for a period of 10–100 s. The CO2 concentrations
ranged from 1.7 to 17mM for the determination of the kinetic
parameters and inhibition constants. For each inhibitor, at least six
traces of the initial 5–10% of the reaction have been used for
determining the initial velocity. The uncatalysed rates were deter-
mined in the same manner and subtracted from the total
observed rates. Stock solutions of inhibitor (0.1mM) were pre-
pared in distilled-deionised water and dilutions up to 0.005 nM
were done thereafter with the assay buffer. Inhibitor and enzyme
solutions were pre-incubated together for 15min at room tem-
perature prior to assay, in order to allow for the formation of the
E–I complex. The inhibition constants were obtained by non-linear
least-squares methods using PRISM 3 and the Cheng-Prusoff equa-
tion, as reported earlier, and represent the mean from at least
three different determinations. All CA isoforms were recombinant
ones obtained in-house23–26.

2.4. TrxR activity by DTNB reduction assay

Determination of TrxR activity in SHSY5Y cell lysate. TrxR activity
in cell lysate was measured in 96-well plates using previously
described methods27,28. For TrxR activity measurement, com-
pounds of different concentrations were incubated with 50 mg of
cell lysate and 200 mM NADPH in a volume of 100 mL of 50mM
Tris–HCl and 1mM EDTA, pH 7.5 (TE buffer), for different time
points in 96-well plates at room temperature. Then, 100 mL of TE
buffer containing DTNB and NADPH was added (final concentra-
tion: 2.5mM and 200 mM, respectively), and the linear increase in
absorbance at 412 nm during the initial 2min was measured with
a Tecan Infinite M1000 multifunctional microplate reader. TrxR

activity was calculated as a percentage of enzyme activity of that
of DMSO vehicle treated sample.

2.5. Cytotoxicity assay

Thus, monolayer tumour cell lines HT-1080 (human fibrosarcoma),
SHSY5Y (human neuroblastoma), and MCF-7 (breast adenocarcin-
oma) were cultured in standard medium DMEM (Dulbecco’s modi-
fied Eagle’s medium) supplemented with 10% foetal bovine
serum. About 2000–4000 cells per well (depending on line nature)
were placed in 96-well plates and after 24 h compounds were
added to the wells. Untreated cells were used as a control. The
plates were incubated for 48 h, 37 �C, and 5% CO2. The number of
surviving cells was determined using 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolinium bromide (MTT). MTT-test: after incubat-
ing culture medium was removed and 200 mL fresh medium with
20 mL MTT (2mg/mL in HBSS) was added in each well of the plate.
After incubation (3 h, 37 �C, 5% CO2), the medium with MTT was
removed and 200 mL DMSO were added at once to each sample.
The samples were tested at 540 nm on Thermo Scientific
Multiskan EX microplate photometer. The half-maximal inhibitory
concentration (IC50) of each compound was calculated using
Graph Pad PrismVR 3.0 (GraphPad Software, La Jolla, CA).

3. Results and discussion

3.1. Chemistry

Compounds 1a and 1b were synthesised from azide 4 as
described previously18. CuI-catalysed Huisgen azide-alkyne cyclo-
addition gave 1,4-disubstituted 1,2,3-triazole 1a while employing
RuII-catalysed protocol gave 1,5-disusbstituted 1,2,3-triazole 1b.
For the synthesis of 1,5-disubstituted tetrazoles 1c–d, the previ-
ously described19 Pd-catalysed arylation of 1-aryl tetrazoles with
aryl iodide 5 was employed (Scheme 1).

3.2. Biological evaluation

To our utmost delight, when the previously established18,19 potent
and selective inhibitory profile of compounds 1a–d towards can-
cer-related hCA IX and hCA XII isoforms was confirmed in refer-
ence to known CAI acetazolamide (AAZ), we have also found
these compounds to display dose-dependent inhibition of TrxR
activity in SHSY5Y cell lysate with IC50 values confidently residing
in the 10�5… 10�4 M range. Adding to the satisfaction over hav-
ing our initial hypothesis regarding the dual CA/TrxR inhibitory
effects of compounds 1, rather potent antiproliferative activity
was established as evaluated against cultures of cancer cells such
as HT-1080 (human fibrosarcoma), SHSY5Y (human neuroblast-
oma), and MCF-7 (breast adenocarcinoma). These findings are
summarised in Table 1.

4. Conclusions

The previously described sulfocoumarins that were shown to
potently and selectively inhibit cancer-related hCA IX and hCAXII
isoforms (whose overexpression is a well-established mechanism
of tumour cell defence against hypoxia) also display noticeable,
dose-dependent inhibition of TrxR activity in cancer cell lysates.
As overexpression of TrxR in cancer cells is a defence mechanism
against oxidative stress, the established dual inhibition pattern
constitutes a significant starting point for the design and discov-
ery of new anticancer agents based on the dual targeting of the
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two defence mechanisms crucial for cancer cell survival. This com-
munication opens a new line of research in our laboratories aimed
at investigating the practical aspects of the new dual inhibitor
design and establishing a well-understood link between inhibition
of these two enzyme groups and the dual inhibitors’ antitumor
activity. The results of this research will be reported in due course.
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