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A B S T R A C T

Brain age prediction based on machine learning has been applied to various neurological diseases to discover its
clinical values. By this innovative approach, it has been reported that the patients with refractory epilepsy had
premature brain aging. Of refractory epilepsy, right and left subtypes of mesial temporal lobe epilepsy (MTLE)
are the most common forms and exhibit distinct patterns in white matter alterations. So far, it is unclear whether
these two subtypes of MTLE would have difference in white matter aging due to distinct white matter alterations.
To address this issue, a machine learning based brain age model using diffusion MRI data was established to
investigate biological age of white matter tracts. All diffusion MRI datasets were obtained from the same 3-Tesla
MRI scanner. To build the brain age prediction model, diffusion MRI datasets of 300 healthy participants were
processed to extract age-relevant diffusion indices from 76 major white matter tracts. The extracted diffusion
indices underwent Gaussian process regression to build the prediction model for white matter brain age. The
model was validated in an independent testing set (N=40) to ensure no overfitting of the model. The model was
then applied to patients with right and left MTLE and matched controls (right MTLE: N=17, left MTLE: N=18,
controls: N=37), and predicted age difference (PAD) was obtained by calculating the difference between each
individual's predicted brain age and chronological age. The higher PAD score indicated older brain age. The
results showed that right MTLE exhibited older predicted brain age than the other two groups (PAD of right
MTLE = 10.9 years [p < 0.05 against left MTLE; p < 0.001 against control]; PAD of left MTLE = 2.2 years
[p > 0.1 against control]; PAD of controls = 0.82 years). Patients with right and left MTLE showed strong
correlations of the PAD scores with age of onset and duration of illness, but both groups showed opposite
directions of correlations. In right MTLE, positive correlation of PAD with seizure frequency was found, and the
right uncinate fasciculus was the most attributable tract to the increase in PAD. In conclusion, the present study
found that patients with right MTLE exhibited premature white matter brain aging and their PAD scores were
correlated with seizure frequency. Therefore, PAD is a potentially useful indicator of white matter impairment
and disease severity in patients with right MTLE.

1. Introduction

Approximately one third of patients with epilepsy fail to benefit
from medication for seizure control (Kwan and Brodie, 2000). Previous
morphometric magnetic resonance imaging (MRI) studies using T1-

weighted imaging have shown brain-wide atrophy in patients with
medically refractory epilepsy (Bernhardt et al., 2009; McDonald et al.,
2008; Riederer et al., 2008). Pardoe et al. (2017) employed a machine
learning model based on whole brain T1-weighted images to estimate
predicted brain age as the underlying biological age of the brain. They

https://doi.org/10.1016/j.nicl.2019.102033
Received 4 May 2019; Received in revised form 17 September 2019; Accepted 21 September 2019

⁎ Corresponding author at: Institute of Medical Device and Imaging, National Taiwan University College of Medicine, No. 1, Sec. 1, Jen-Ai Road, Taipei 10051,
Taiwan.

E-mail addresses: hhl@ntu.edu.tw (H.-H. Liou), fhlin@sri.utoronto.ca (F.-H. Lin), wytseng@ntu.edu.tw (W.-Y.I. Tseng).
1 These authors contributed equally to this work.

NeuroImage: Clinical 24 (2019) 102033

Available online 23 October 2019
2213-1582/ © 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2019.102033
https://doi.org/10.1016/j.nicl.2019.102033
mailto:hhl@ntu.edu.tw
mailto:fhlin@sri.utoronto.ca
mailto:wytseng@ntu.edu.tw
https://doi.org/10.1016/j.nicl.2019.102033
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2019.102033&domain=pdf


found a significant difference between predicted age and chronological
age in individuals with medically refractory focal epilepsy, but did not
find such difference in individuals with newly diagnosed focal epilepsy.
Predicted age difference (PAD), defined as the difference between
predicted brain age and chronological age, can be considered as the
deviation from a normal trajectory of brain structural changes due to
aging, representing an excess of aging effect of the brain (Cole et al.,
2018). Hence, refractory epilepsy patients with greater PAD are con-
sidered to have biologically older brains than their peers.

Mesial temporal lobe epilepsy (MTLE) accompanying with mesial
temporal sclerosis (MTS) is the most common form of refractory epi-
lepsy in adults (Bernhardt et al., 2013; Blumcke et al., 2002). Prior
structural MRI studies have reported that right MTLE and left MTLE
exhibit distinct patterns of alterations in brain structures (Besson et al.,
2014; Fang et al., 2015; Pail et al., 2010; Pustina et al., 2015). For
instance, Pail et al. used voxel-based morphometry to compare struc-
tural differences between right and left MTLE groups (2010). They
found extensive gray matter volume reduction beyond the affected
mesial temporal regions in right MTLE, but not in left MTLE. White
matter fiber tracts have been proposed to play an integral role in
forming the epileptic network because axons provide a physical basis
for seizure propagation to transmit epileptic activity between brain
regions (Gross, 2011). Recent diffusion tensor imaging (DTI) studies
have found a pronounced difference in the impaired white matter tracts
between right and left MTLE, implying two distinct epileptic networks
developed in different subtypes of unilateral MTLE (Besson et al., 2014;
Fang et al., 2015; Pustina et al., 2015). Neuropsychological studies have
also reported that right MTLE and left MTLE present different brain
dysfunctions in memory (Frisk and Milner, 1990; Smith and
Milner, 1989), emotion (Hermann et al., 2008), and executive function
(Hocking et al., 2013). Mounting evidence of distinct structural and
cognitive impairments implies that patients with right and left MTLE
may experience different severities of cumulative white matter da-
mages, reflecting a difference in neuropathology between these two
subtypes of unilateral MTLE. Given the probable difference in white
matter impairments between right and left MTLE, it is possible that
predicted brain age may be markedly different between these two
subtypes.

Most machine learning approaches for brain age prediction adopt a
supervised learning strategy to construct a statistical model which re-
lates the features on brain structure MRI data to the corresponding
chronological age labels in a group of healthy individuals. The model is
trained to fit the age-related trajectory of brain structural changes
across lifespan. The resulting model can then be applied to an unseen
brain MRI data to predict the respective individual's brain age (Cole and
Franke, 2017b; Cole et al., 2017). Such machine-learning-based fra-
mework for brain age prediction allows us to evaluate the status of an
individual's brain health; an individual's brain is presumably considered
healthy if the predicted brain age falls within the normal variation of
the prediction (Franke et al., 2010).

Recently machine learning based brain age prediction has been
applied to patients with various neurological diseases, such as
Alzheimer's disease (Franke et al., 2010), mild cognitive impairment
(Gaser et al., 2013), traumatic brain injury (Cole et al., 2015), and re-
fractory epilepsy (Pardoe et al., 2017), and found apparently older
predicted brain age than their chronological age. Therefore, PAD is
considered as a potential imaging marker of brain health that can
identify brain deterioration and may help improve the detection of
neurodegenerative disease in its early stage (Cole and Franke, 2017b;
Cole et al., 2017).

To create a brain age prediction model, most studies extract features
of gray matter or whole brain structures from T1-weighted images
(Cole et al., 2015, 2017; Franke and Gaser, 2012; Franke et al., 2010;
Varikuti et al., 2018). However, a recent review suggests that white
matter microstructure may be more sensitive to subtle changes during
the process of aging than gray matter (Liu et al., 2017). For example,

cross-sectional studies using DTI have demonstrated clear temporal
trajectory of white matter microstructural changes from childhood to
late adulthood (Kochunov et al., 2012; Westlye et al., 2010). In parti-
cular Westlye et al. (2010) found that the timing of axonal maturation
estimated by DTI indices is much earlier than the peak of white matter
development estimated by volumetric measurements. Several DTI stu-
dies also reported that microstructural changes in white matter fiber
tracts are associated with aging-related diseases (Amlien and
Fjell, 2014; Teipel et al., 2014; Zhang et al., 2009). Despite potential
values of white matter microstructures, only a few studies attempted to
extract white matter features from diffusion MRI data to predict an
individual's brain age. Mwangi et al. (2013) was the first one to use
diffusion scalar indices for white matter brain age prediction. They
proved that diffusion indices were valid metrics to project white matter
changes during normal aging. Given the well-known role of white
matter in lifespan perspective, white matter brain age prediction based
on exclusively diffusion imaging is clearly necessitated.

To assess white matter brain age associated with distinct white
matter impairments in unilateral MTLE, the present study built a ma-
chine learning model using white matter features derived from diffu-
sion spectrum imaging (DSI) data (Wedeen et al., 2005). DSI is an ad-
vanced diffusion MRI technique with high angular resolution to
characterize intravoxel heterogeneities of fiber architectures, enabling
us to reconstruct fiber tractography more accurately than DTI
(Wedeen et al., 2008). From the DSI datasets, we calculated a wide
array of diffusion indices using the mean apparent propagator MRI
(MAP-MRI) algorithm (Ozarslan et al., 2013). We performed tract-
based automatic analysis (Chen et al., 2015) to sample the MAP-MRI-
derived diffusion indices in 76 predefined fiber tracts as feature inputs
for machine learning, and built a white matter brain age prediction
model from 300 healthy people. We then applied the model to predict
white matter brain age in patients with right and left MTLE and
quantified aging-like effect on white matter tract integrity in terms of
PAD.

Therefore, the aim of the present study is to characterize white
matter brain age in patients with right and left MTLE. We examined the
difference in PAD among three study groups, namely right MTLE, left
MTLE, and sex- and age-matched healthy participants. We hypothesized
that PAD of both patient groups would be larger than that of the healthy
group, and the right and left MTLE groups would show a difference in
PAD, indicating different status of white matter impairment.
Correlations of patients’ PAD with clinical variables including duration
of illness, age of onset, and seizure frequency were performed. The
results could inform the clinical relevance of premature brain aging in
MTLE. Finally, patients’ diffusion indices were normalized to the z-
scores by a normative model built by another DSI datasets of healthy
participants (N=524; age: 7–92 years). The results could provide in-
formation about the structural underpinning of premature brain aging
as observed in MTLE.

2. Methods and materials

2.1. Participants

To develop a prediction model of white matter brain age, brain
images including T1-weighted images and DSI datasets of 300 healthy
individuals, obtained from the National Taiwan University Hospital
(NTUH) MRI database, were used as the training set. To confirm the
accuracy of the age prediction model, another independent set of 40
healthy individuals from the database was used as the testing set.
Detailed information about the training and testing sets including de-
mographics and recruitment criteria are described in Supplementary
Material S1. All training and testing datasets were anonymized.
Informed consent as approved by the Institutional Review Board of
NTUH was given by each participant.

To apply the brain age model to the study groups, patients with
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chronic MTLE including left MTLE (N=18, 10 men, mean age±
standard deviation: 37.4 ± 8.5 years) and right MTLE (N=17, 9 men,
37.9 ± 8.1 years), and age-matched controls (N=37, 17 men,
38.4 ± 8.3 years) were recruited from the Department of Neurology,
NTUH. All participants were matched in handedness assessed by the
Edinburgh Handedness Inventory (Oldfield, 1971): left
MTLE = 89.9 ± 21.1, right MTLE = 86.5 ± 36.4, con-
trols = 91.8 ± 22.5. None of the participants had a previous history of
brain surgery or other neurologic or psychiatric disease.

All patients underwent comprehensive clinical assessments based on
the current International League Against Epilepsy classification
(Berg et al., 2010), including structural MRI examinations (Coste et al.,
2002), long-term video-electroencephalography (EEG) monitoring,
neuropsychological testing, and careful interviews to confirm left or
right temporal seizure onset. All patients were confirmed to accompany
with MTS by a board-certified neurologist (H.H.L.) and two neuror-
adiologists according to the following MRI findings: (1) smaller hip-
pocampal volume on T1-weighted imaging and abnormal signal hy-
perintensity in the mesial temporal region on T2-weighted imaging on
the epileptic side, and (2) absence of other structural abnormalities,
such as MTS occurring in bilateral hemispheres, gray matter hetero-
topia, tumor, and trauma. Besides visual inspection, we performed a
Computational Anatomy Toolbox (CAT, http://www.neuro.uni-jena.
de/cat/index.html) with LPBA40 human brain atlas based on SPM12
(Wellcome Trust Center for Neuroimaging, London, UK) to obtain
hippocampal volume of two hemispheres for each study group. Long-
term video-EEG monitoring was used to confirm locations where epi-
leptic seizures originate in the brain. As shown in Table 1, compared
with the healthy control group, the left MTLE group had left hippo-
campal atrophy and the right MTLE group had right hippocampal
atrophy; both groups had no significant volume reductions in the
contralateral hippocampus. All participants provided written informed
consent, and the Institutional Review Board of the NTUH approved the
study. The results of EEG recordings were consistent with the epileptic
activity side as identified by structural MRI. Thirty patients (right
MTLE: N=16, left MTLE: N=14) were diagnosed with drug-resistant
epilepsy in accordance with criteria defined by the International League
Against Epilepsy (Kwan et al., 2011).

2.2. MRI acquisition parameters

Microstructural property of white matter was assessed using various
diffusion indices derived from DSI data (Jonasson et al., 2005). All
images including the training and testing sets and those of patients and
controls were acquired on the same 3-Tesla MRI scanner (Tim Trio;

Siemens, Erlangen, Germany) with a 32-channel phased-array head
coil. To obtain the anatomical references for image registration, high-
resolution T1-weighted imaging was performed using a three-dimen-
sional (3 D) magnetization-prepared rapid gradient-echo sequence; re-
petition time (TR)/echo time (TE) = 2000/3ms, flip angle = 9°, field
of view (FOV) = 256×192×208mm3, and acquisition ma-
trix = 256×192×208, resulting in an isotropic spatial resolution of
1mm3. DSI was performed using a pulsed-gradient spin-echo diffusion
echo planar imaging sequence with a twice-refocused balanced echo
(Reese et al., 2003; Wedeen et al., 2005) with the imaging parameters
bmax = 4000 s/mm2, TR/TE = 9600/130ms, slice thickness = 2.5mm,
acquisition matrix = 80×80, FOV = 200×200 mm2, and in-plane
spatial resolution = 2.5× 2.5 mm2. The diffusion-encoding acquisition
scheme followed the framework of DSI (Wedeen et al., 2005), for which
102 diffusion-encoding gradients were applied corresponding to the
Cartesian grids in the half-sphere of the 3 D diffusion-encoding space
(q-space) within a radius of 3 units (Kuo et al., 2008). Because the data
in q-space are real and symmetrical around the origin, the acquired
half-sphere data were projected to fill the other half of the sphere. Each
MRI scanning, including T1-weighted imaging and DSI, was completed
within 20 min.

2.3. Image preprocessing

2.3.1. DSI data reconstruction
Before conducting image reconstruction, image quality of DSI da-

tasets was assessed by a quality assurance pipeline; the procedures in-
cluded the estimation of signal-to-noise ratio and motion-induced signal
dropout in diffusion-weighted images and degree of alignment between
T1-weighted images and spatial maps of DSI-derived diffusion indices
(Supplementary Material S2 for details). All images in the present study
passed the criteria of image quality assurance. The diffusion indices
derived from DSI were computed by the regularization version of the
framework of mean apparent propagator (ReMAP)-MRI (Hsu and
Tseng, 2018; Ozarslan et al., 2013). ReMAP-MRI fitted the signal in q-
space with a series expansion of Hermite basis functions to describe
diffusion in any microstructural environment (Avram et al., 2016). The
zero-order term in the expansion series contains the diffusion tensor
that characterizes the Gaussian displacement distribution. Higher-order
terms in the expansion series are the orthogonal corrections to the
Gaussian approximation and are useful for reconstructing the average
propagator. The values of axial diffusivity (AD), radial diffusivity (RD),
and mean diffusivity (MD) in each voxel were determined by calcu-
lating the first eigenvalue, mean of the second and third eigenvalues,
and mean of the three eigenvalues of the diffusion tensor, respectively
(Alexander et al., 2007). Generalized fractional anisotropy (GFA) was
quantified as the standard deviation of the orientation distribution
function (ODF) divided by the root-mean square of the ODF
(Tuch, 2004). Non-Gaussianity (NG) indices including NG, NG parallel
(NGP) to, and NG orthogonal (NGO) to the principal eigenvector of the
diffusion tensor were estimated by quantifying the dissimilarity be-
tween the propagator and its Gaussian part (Ozarslan et al., 2013). In
the present study, we used these seven diffusion indices, namely GFA,
AD, RD, MD, NG, NGO, and NGP, to represent various aspects of mi-
crostructural property of white matter, such as degree of myelination,
fiber calibers, fiber density, and fiber damage (Alexander et al., 2011;
Falangola et al., 2013; Kumar et al., 2012).

2.3.2. Tract-specific feature extraction
To extract effective features of white matter tract integrity for ma-

chine learning, tract-based automatic analysis was conducted to sample
the diffusion indices from 76 predefined major fiber tract bundles over
the whole brain (Chen et al., 2015) (Fig. 1). The 76 major fiber tract
bundles were built in a DSI template, NTU-DSI-122 (Hsu et al., 2015),
using deterministic streamline-based tractography with multiple re-
gions of interest defined in the automated anatomical labeling atlas

Table 1
Demographics of patients with unilateral mesial temporal lobe epilepsy (MTLE)
and controls.

Group LMTLE RMTLE Controls

Subject number 18 17 37
Age (yr) 37.4 (8.5) 37.9 (8.1) 38.4 (8.3)
Sex (M/F) 10/8 9/8 17/20
Handedness (%) 89.9 (21.1) 86.5 (36.4) 91.8 (22.5)
Volume of left hippocampus (cm3) 3.24 (0.59) 3.65 (0.38) 3.79 (0.24)
Volume of right hippocampus (cm3) 3.91 (0.33) 3.06 (0.89) 3.90 (0.26)
Age of onset (year) 14.5 (5.6) 12.5 (6.7) –
Duration of illness (year) 22.9 (7.7) 25.5 (9.3) –
Seizure type (CPS/SPS) 17/1 16/1 –
Seizure frequency (per month) 1.56 (1.73) 1.09 (1.31) –
Number of AED classes 2.39 (1.33) 2.71 (0.69)
Secondarily generalized seizure (Y/N) 2/16 1/16 –

Values are reported in [mean (standard deviation)] or [counts].
M=male; F= female; CPS= complex partial seizures; SPS= simple partial
seizures.
AED: anti-epileptic drug; LMTLE= left MTLE; RMTLE= right MTLE.
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(Tzourio-Mazoyer et al., 2002). The sampling coordinates of the 76
tracts were transformed from NTU-DSI-122 to individual DSI datasets
with corresponding deformation maps. The deformation maps were
obtained through two-step registration, which included anatomical in-
formation provided by the T1-weighted images (Ashburner and
Friston, 2011) and microstructural information provided by DSI data-
sets (Hsu et al., 2012). The sampling coordinates were aligned with the
proceeding direction of each fiber tract bundle, and the values of dif-
fusion indices were sampled in native space along the sampling co-
ordinates that were normalized and divided into 100 steps. Finally, we
obtained the output of tract-based analysis for each participant, called a
3 D connectogram (x-axis: 100 steps along sampling coordinates; y-axis:
76 white matter tract bundles; z-axis: 7 diffusion indices). The 3 D
connectograms of all the participants, including the training and testing
sets, MTLE group, and controls, were used to extract white matter
features.

2.4. Machine learning prediction of white matter brain age

In the present study, the 3 D connectograms of 300 training datasets
were used in the machine learning model to regress age. We developed
a prediction model to predict white matter brain age. The model uti-
lized the 76 white matter tract bundles over the whole brain, including
bilateral association and projection fibers, and the callosal fibers
(Chen et al., 2015) as the features.

To train a model accurately and effectively, the feature preprocess,
including smoothing, normalization, and age-based weighted average,
was performed before machine learning analysis. First, to reduce local
variations along the tract bundles, the diffusion indices along 100 steps
of a tract bundle were smoothed by a one-dimensional Gaussian con-
volution kernel. Second, each step index over subjects was normalized
to zero mean and unit variance. Third, the step indices along each tract
bundle were calculated into a weighted average. The weight on each
step was determined by how strongly the step index was associated
with the aging effect. A general linear model was used to fit diffusion
indices on each step, with the diffusion index being the dependent
variable and the age and age square factors being the independent
variables. The p-value of the F statistic of the general linear model was
calculated with minus common logarithm (-log10) as the weight.

Finally, the original 3 D connectograms were reduced to 532 tract
features (76 weighted averages× 7 diffusion indices) for each partici-
pant.

Because the dimension of the feature space (532 features) was too
large in contrast to the current sample size, we used autoencoders
(Hinton and Salakhutdinov, 2006) to compress the original features to a
lower dimension. The autoencoder was trained by one hidden layer
with 179 neurons, which entailed the mean square error with sparsity
regularization as the loss function, 1600 training epochs, and optimi-
zation by a scaled conjugate gradient-descent algorithm (Møller, 1993).
It compressed the 532 original features down to 179 compact features
with a 99.55% reconstruction rate. The compact features served as the
inputs for the white matter brain age modeling.

Machine learning analysis was conducted using the Statistics and
Machine Learning Toolbox implemented in MATLAB R2018a, and the
analysis ran on the compact features (Fig. 2). Gaussian process re-
gression (GPR) model was defined using compact features and sex as
the independent variables and age as the dependent variable
(Rasmussen, 2004). GPR model is a nonparametric kernel-based prob-
abilistic model. Since aging is a complex process that alters various
brain structures at different rates, it is appropriate to regress the age
effect through GPR, which amalgamates nonlinear and Gaussian
probabilistic properties to estimate continuous variables such as age
(Gutierrez Becker et al., 2018).

2.5. Model evaluation

Model evaluation was conducted to assess the model's accuracy and
to ensure unbiased demonstration of model generalizability between
the training and testing sets. Here, we introduced three metrics to
quantify model performance, namely Pearson correlation (r), root-
mean-square error (RMSE), and mean absolute error (MAE) between
chronological age and predicted age. A higher correlation indicated
better linear consistency of the prediction, and lower RMSE and MAE
indicated smaller predicted error between predicted age and chron-
ological age in the normal population. First, the performance of the
prediction model derived from the training set was assessed by running
a 10-fold cross validation (Fushiki, 2011). One-tenth of the training
data were selected randomly to serve as a temporary testing set, and the

Fig. 1. Flow chart of tract-based automatic analysis. (1) The diffusion indices of the microstructural properties of white matter were estimated by the regularized
mean apparent propagator method for each diffuse spectrum imaging dataset. (2) The deformation maps of registration were calculated through two-step registration
from each individual's native space to standard template space. (3) The predefined coordinates of 76 major white matter tracts were transformed to each individual's
native space via the deformation maps to sample the diffusion indices. Finally, the output of tract-based analysis was formatted into a three-dimensional con-
nectogram for each participant (x-axis: 100 steps along sampling coordinates; y-axis: 76 white matter tract bundles; z-axis: 7 diffusion indices).
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remaining data were used for temporary model definition. Age was
predicted on the temporary testing set by the temporary model itera-
tively until all the training datasets had been included in the temporary
testing set. This validation method provided accurate performance es-
timation of the training set. Next, the model's generalizability was
evaluated by applying the prediction model to the independent testing
set (N=40) to predict white matter brain age. Here, the model was
built using the entire training set. Having confirmed the model per-
formance, the model was applied to the study groups to characterize
white matter brain age in patients with unilateral MTLE.

2.6. Brain age characterization for unilateral MTLE

2.6.1. PAD comparison
The PAD scores were obtained by subtracting chronological age

from predicted age. The discrepancy between chronological age and
predicted brain age could be used as a metric to statistically compare or
relate with other measured characteristics of the participants. The PAD
scores were statistically compared using analysis of covariance
(ANCOVA) to test for group differences among patients with right and
left MTLE, and the controls while controlling for age, sex, and hand-
edness as confounders. In the post hoc, pairwise comparisons with two-
sample t tests were carried out to test the between-group differences in
the PAD scores and were adjusted for multiple comparisons using
Bonferroni correction. The aforementioned statistical analyses were
performed using IBM SPSS Statistics version 20.

2.6.2. Regression analysis to evaluate tract contribution
Regression analysis between statistically significant PAD scores and

white matter tract alteration was conducted to investigate the structural
underpinning of aberrant brain age in patients. To quantify white
matter alteration, we introduced a normative model of white matter
tract characteristics in healthy participants (N=524; age: 7–92 years).
Like the normative model for bone mineral density examination
(Zhou et al., 2010), our normative model provided the statistical
parameters (i.e. population mean and population standard deviation) of
each white matter tract in each diffusion index according to age and sex
(Supporting Information S3). To quantify the degree of white matter
alteration in patients with MTLE, the z-scores of the diffusion indices for
each tract bundle were estimated by subtracting the population mean
and dividing by the population standard deviation (Sedgwick, 2010).
For each patient, diffusion indices of white matter tracts could be
transformed into the z-scores by comparing them to the age- and sex-

matched population. A higher magnitude of z-score indicated larger
deviation from the normal population. Mass univariate analysis (one-
sample t-test) was conducted to test the z-score of each diffusion index
for each tract to identify the tracts that were significantly altered in
patients. After multiple comparison adjustments, effect size was cal-
culated for the tracts with significant deviations (Hedges and
Olkin, 1984) to assess the quantitative magnitude of group effect in the
z-scores. The tracts with top 5% of effect size were selected for the
following principal component analysis (PCA) (Abdi and
Williams, 2010). The first principal component was selected as the re-
presentative component, which was the linear combination of the tracts
with top 5% of effect size. We used this representative component as the
independent variable for the general linear model to explain the var-
iance in the PAD scores.

2.6.3. Correlation analysis of clinical variables
Within the MTLE groups, the PAD scores were assessed for corre-

lation with three clinical variables, namely age of disease onset, dura-
tion of illness, and seizure frequency. To avoid the confounding effect,
factors of age, sex, and number of anti-epileptic drug classes were re-
gressed out. Nonparametric correlation was adopted when the variables
did not follow normal distribution.

3. Results

3.1. White matter brain age prediction model

The model predicted each individual's age for both the training and
testing datasets with satisfactory performance, for the training set
(Fig. 3A), Pearson correlation r=0.954, RMSE = 5.78 years, and
MAE = 4.61 years, and for the testing set (Fig. 3B), r=0.959,
RMSE = 6.50 years, and MAE = 5.08 years. Comparable performance
was noted in both training and testing sets, indicating no overfitting
problem in the prediction model.

3.2. Demographics evaluation

The demographic data were not significantly different among the
right MTLE, left MTLE, and control groups in terms of age (F
(2,69) = 0.081, p=0.922), sex ( χ2 = 0.524, p=0.769),and hand-
edness (F(2,69) = 0.237, p=0.789). Table 1 summarizes clinical in-
formation about seizures in patients with MTLE. Age of disease onset,
duration of illness, proportion of seizure types, and seizure frequency

Fig. 2. Pipeline of white matter brain age prediction model based on whole brain white matter tracts. The training datasets (N=300) went through the procedures of
diffusion index estimation, tract-based automatic analysis, and data preprocessing to generate age-associated features of white matter tracts. These features were
compressed by the autoencoder and the compact features were modeled to estimate age with Gaussian process regression. Another independent test dataset (N=40)
was used to test the generalizability of the model.
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were not significantly different between two patient groups (age of
onset: t(33) = 0.931, p=0.359; duration of illness: t(33) = 0.888,
p=0.381; seizure type: χ2 (1) = 0.002, p=0.967; seizure frequency: t
(33) = 0.891, p=0.379). In the voxel-based morphometry analysis,
the left MTLE group had a significantly smaller left hippocampal vo-
lume than the right MTLE group and the controls, whereas the right
MTLE group had a significantly smaller right hippocampus than the
other groups (left hippocampal volume: F(2,69) = 12.3, p < 0.001;
right hippocampal volume: F(2,69) = 18.8, p < 0.001; see Table 1).

3.3. PAD comparison among right MTLE, left MTLE, and controls

The results of ANCOVA showed that there was a significant differ-
ence (F(2, 66) = 14.578, p < 0.001) in the PAD scores among the right
MTLE (PAD = 10.94 ± 8.30), left MTLE (PAD = 2.24 ± 9.07), and
control (PAD = 0.82 ± 3.36) groups. The post hoc pairwise compar-
ison showed that patients with right MTLE had significantly higher PAD
scores than those in the left MTLE group (PAD: t(33) = 2.956,
p* < 0.05; Bonferroni corrected) and controls (PAD: t(18.5) = 4.848,
p* < 0.001; Bonferroni corrected), whereas no significant difference
was found between left MTLE and controls (PAD: t(19.3) = 0.641,
p* > 0.1; Bonferroni corrected) (Fig. 4).

3.4. White matter alterations explained increased PAD in right MTLE

In two patient groups, we used the normative model to transform
the diffusion indices into the z-scores to indicate the magnitude of de-
viations compared with the normative population. After testing the z-
scores for each tract, we identified 46 and 113 tracts in patients with
left and right MTLE, respectively, showing significant differences in any
of the diffusion indices compared with the corresponding normal po-
pulation. Fig. 5 shows the significant z-score of each tract and each
diffusion index from patients with left and right MTLE.

To investigate the underlying tract impairment that leads to the
significantly increased PAD scores in patients with right MTLE, we
calculated the effect size of each diffusion index for the tracts that
showed significant deviations of the z-scores in patients with right
MTLE. The tracts with effect sizes within top 5% were selected as
candidates to explain the overestimated PAD scores. As a result, 27
features were selected to represent the most altered tracts and treated
them as the initial variables to explain the variance of PAD.

These 27 features were transformed into principal components
through PCA. The first component served as the representative com-
ponent that explained the largest portion of the variance in the initial
variables from right MTLE. Specifically, the first component explained
52.6% of the variance of the initial variables. The first component was
used as the independent variable to regress the PAD scores of right
MTLE in simple linear regression model. In the regression model, the
first component significantly explained the variance of PAD (F
(1,15) = 13.7, p < 0.01; R-squared = 0.477). The result indicated that
altered white matter tracts significantly explained the variance of the
PAD scores. The contributions of the tracts to the first component are
displayed in Table 2. The five tracts with the highest weights were the
right uncinate fasciculus (22.7% of the weights in the first component),
the right frontal striatum of the orbitofrontal cortex (9.7%), the left
inferior fronto-occipital fasciculus (9.0%), the left inferior longitudinal
fasciculus (8.0%) and the right perpendicular fasciculus (7.6%). Those
white matter tracts were the tracts most attributable to the increase in
PAD in patients with right MTLE. In addition, we found that RD and MD
exhibited higher weights (44.5% for RD; 39.8% for MD) than GFA
(10.9%) and AD (4.8%).

3.5. Correlation between clinical variables and PAD in MTLE patients

There was slight but significant correlation between predicted re-
siduals (i.e., predicted age subtracted by chronological age) and age
(r = −0.349, p < 0.001) in the training set of the prediction model. To

Fig. 3. Whole brain based machine learning model showed accurate age prediction in the training (A) and testing (B) sets. Chronological age (x-axis) is plotted
against predicted age (y-axis). The diagonal dashed line represents the line of identity. The color spectrum denotes the absolute error of each individual's predicted
age.

Fig. 4. The right mesial temporal lobe epilepsy (RMTLE) group showed sig-
nificantly increased predicted age difference (PAD) scores compared with the
left mesial temporal lobe epilepsy (LMTLE) and control groups. The PAD scores
were calculated by subtracting chronological age from predicted white matter
brain age for each individual.
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Fig. 5. The statistic plots show the white
matter tracts with significant differences in
the z-scores in patients with left mesial
temporal lobe epilepsy (LMTLE) and pa-
tients with right mesial temporal lobe epi-
lepsy (RMTLE) with respect to the norma-
tive model. The shade of the color encodes
the magnitude of the z-score. The blue and
red colors denote negative and positive z-
scores, respectively. Negative z-scores in-
dicate that the diffusion indices in patients
were lower than those in normal population,
whereas positive z-scores indicate higher
diffusion indices in patients. The columns
from left to right in each statistic plot cor-
respond to five diffusion indices, i.e. gen-
eralized fractional anisotropy (GFA), axial
diffusivity (AD), radial diffusivity (RD),
mean diffusivity (MD), and non-Gaussian
parallel (NGP). The right column demon-
strates the visualization of the tract bundles
encoded with the statistic. The darker purple
color indicates the higher magnitude of the
total z-score that is the summation of the
absolute z-scores over diffusion indices.
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remove the variance of confounding factors, a partial correlation ap-
proach was used to examine the relationship between PAD and clinical
variables, namely age of onset, duration of illness, and seizure fre-
quency. Spearman correlation coefficient was used when the variable
did not follow the normality rule. In the right MTLE group, there was a
moderate negative correlation between age of onset and PAD (Pearson
r = −0.511, p=0.036; Fig. 7A), indicating that PAD became larger if
disease onset was earlier. By contrast, duration of illness and PAD were
positively correlated (Pearson r=0.501, p=0.040; Fig. 7B), indicating
that the longer the duration of illness, the higher the PAD score was.
Additionally, there was a significantly positive correlation between
seizure frequency and PAD (Spearman r=0.635, p=0.007; Fig. 7C),
indicating that PAD increased with seizure frequency. In left MTLE,
however, the correlation in age of onset and duration of illness against
PAD revealed the opposite patterns (left MTLE: age of onset: Spearman
r=0.591, p=0.014; duration of illness: Pearson r = −0.484,
p=0.049; Fig. 7 D&E). In addition, there was no correlation between
seizure frequency and PAD in left MTLE (Spearman r = −0.152,
p=0.559; Fig. 7F). Besides the standard correlation analyses, in order
to provide reliable results in the presence of relatively small sample
size, we conducted the bootstrap analyses to estimate the empirical
distribution of the correlation coefficients. The results of bootstrap
analyses were shown in the Supporting Information S4.

4. Discussion

The present study developed a multivariate GPR model to predict
white matter brain age using diffusion indices of the 76 major fiber
tract bundles. The model was employed to predict brain age and the
resulting PAD score were used to assess age-related white matter al-
terations. Patients with right MTLE showed higher white matter brain
age than did patients with left MTLE and healthy controls. Right MTLE
and left MTLE exhibited opposite relationships of PAD with age of onset
and duration of illness. In addition, PAD was positively correlated with
seizure frequency in right MTLE. By performing the linear regression
analysis for the principal components of the 27 features that best dis-
tinguished right MTLE from healthy controls, we identified the right
uncinate fasciculus that showed highest contribution to the elevated
PAD in patients with right MTLE.

4.1. Premature white matter aging in patients with right MTLE

A between-group comparison demonstrated that patients with right
MTLE had significantly higher PAD scores than patients with left MTLE
and healthy controls (Fig. 4). Subsequent analyses of the z-scores of the
76 major fiber tracts in different diffusion indices further showed that
patients with right MTLE exhibited more severe and widespread white
matter alterations than patients with left MTLE (Fig. 5). Our findings
are in line with the findings of recent MRI studies on unilateral MTLE
(Besson et al., 2014; Fang et al., 2015; Pail et al., 2010; Pustina et al.,
2015). A morphometric study using T1-weighted imaging reported that
right MTLE exhibited more extensive gray matter atrophy in the ipsi-
lateral and contralateral temporolimbic systems than did left MTLE
(Pail et al., 2010). A DTI study using network-based analysis also found
that right MTLE showed more disrupted structural connectivity be-
tween brain regions in the bilateral limbic and temporal lobes
(Besson et al., 2014). Therefore, our findings suggest that patients with
right MTLE undergo more widespread white matter deterioration which
might account for the apparent premature white matter aging.

Further analysis in patients with right MTLE using PCA and a gen-
eral linear model revealed that several white matter tracts and asso-
ciated diffusion indices were most attributable to the increase in PAD.
Most of these white matter tracts belong to association fibers con-
necting to the temporal lobe (i.e., uncinate fasciculus, inferior fronto-
occipital fasciculus, inferior longitudinal fasciculus, superior long-
itudinal fasciculus) and projection fibers of frontostriatal connection.
Among these tracts, the right uncinate fasciculus was the one most
contributing to the increase in PAD (Fig. 6 and Table 2). The uncinate
fasciculus is a major tract connecting the orbitofrontal lobe with the
temporal lobe and a part of the limbic lobe (Kier et al., 2004). Neu-
roimaging studies have extensively reported structural and functional
impairments in the ipsilateral uncinate fasciculus in intractable uni-
lateral MTLE caused by MTS (Chassoux et al., 2004; Diehl et al., 2008;
Rodrigo et al., 2007), suggesting a crucial role of the uncinate fasciculus
in seizure propagation from the mesial temporal lobe to the frontal lobe
(Mayanagi et al., 1996). In addition, Lee et al. (2013) suggested that
some tracts with late myelination, such as inferior longitudinal fasci-
culus and superior longitudinal fasciculus, exhibited more damages
than the tracts with early myelination in patients with temporal lobe
epilepsy. Such association fibers with late myelination of cortico-cor-
tical circuitry might be affected by excitotoxic effect of seizure propa-
gation (de Lanerolle and Lee, 2005; Lee et al., 2013). Interestingly, we
also found that RD, which is usually considered to be related to the
degree of myelination (Aung et al., 2013; Basser, 1997), was the most
representative diffusion index to describe white matter features that
contributed to the increased PAD. In fact, the excitotoxic effect of sei-
zure activity leads to demyelination in epilepsy (Moritani et al., 2005),
and this evidence supports our finding with regard to the increased RD
in the bilateral uncinate fasciculus, bilateral inferior longitudinal fas-
ciculus, right superior longitudinal fasciculus 1, left superior long-
itudinal fasciculus 2 and 3. In fact, most of the tracts with higher
weights in the first principal component as listed in Table 2 have been
reported to exhibit structural abnormalities in previous DTI studies on
MTLE, suggesting their involvement in forming an epileptic network of
seizure activity (Bernhardt et al., 2013; Diehl et al., 2008; Focke et al.,
2008; Gross et al., 2006; Liu et al., 2012). Therefore, the proposed brain
age prediction model provides a clinical indicator of the white matter
degeneration of an individual with unilateral MTLE.

The increased PAD in patients with right MTLE, but not left MTLE,
suggests that epileptic focus arising from the right hemisphere might
distinctly affect brain structures, leading to more widespread white
matter changes in the whole brain. This speculation is partially sup-
ported by the right hemi-aging model (Brown and Jaffe, 1975;
Dolcos et al., 2002), which proposes that cognitive declines caused by
physiological aging mainly influence those brain functions attributed to
the right cerebral hemisphere rather than the left cerebral hemisphere.

Table 2
Contributions of the tracts to the first principal component.

Tract Proportion

Right UF 22.7%
Right FS OFC 9.7%
Left IFOF 9.0%
Left ILF 8.0%
Right perpendicular fasciculus 7.6%
Right TR dorsal part 6.0%
Right IFOF 5.4%
Left perpendicular fasciculus 5.4%
CF genu 4.9%
Right FS motor precentral gyrus 3.8%
Left FS motor precentral gyrus 3.7%
Left FS OFC 3.6%
Right FS DLPFC 3.2%
Left AF 2.9%
Left SLF II 2.4%
Right SLF III 1.8%

AF: arcuate fasciculus; CF: callosal fibers; DLPFC: dorsal lateral
prefrontal cortex; FS: frontal-striatum; IFOF: inferior frontal occipital
fasciculus; ILF: inferior longitudinal fasciculus; OFC: orbitofrontal
cortex; SLF: superior longitudinal fasciculus; TR: thalamic radiation;
UF: uncinate fasciculus;.
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Fig. 6. The statistic plots show the white matter tracts whose effect sizes of the z-scores were within top 5%. The color spectrum encodes the effect size of the z-score.
The horizontal and vertical axes indicate the diffusion indices and tracts, respectively. The right column demonstrates the visualization of tract bundles encoded with
the effect size of the z-scores. The brighter color indicates the higher magnitude of the effect size.

Fig. 7. Association between clinical variables and predicted age difference (PAD) in patients with right or left mesial temporal lobe epilepsy. The solid dots, solid
lines, and dashed curves in each plot indicate the observation, mean response, and 95% confidence interval of functions, respectively. In left MTLE a data point in the
variable of “Age of Onset” exceeded 2.5 times the standard deviation, and was excluded from the correlation analysis. Horizontal and vertical axes denote stan-
dardized adjusted (denoted as “stdz. adj.”) PAD scores and clinical factors, respectively.
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Evidence from a number of behavior studies supports this model, sug-
gesting that right brain structures are more vulnerable to normal aging
than the left ones (Dolcos et al., 2002; Goldstein and Shelly, 1981;
McDowell et al., 1994). Liu et al. (2012) also found that, compared with
major fiber tracts of the left hemisphere in left MTLE patients, right
MTLE patients had more FA reductions in those tracts of the right
hemisphere in concordance with our findings (Fig. 5). Hence, it is
plausible that right MTLE causes more damages to the right hemisphere
than left MTLE causes to the left hemisphere, and in turn leads to ap-
parently older white matter brain age with pronounced increase in
PAD.

4.2. Clinical relevance of increased white matter brain age in unilateral
MTLE

When regressing out factors of age, sex, and number of AED classes,
correlation analysis of the patients with right MTLE demonstrated three
relationships between clinical variables and PAD. First, age of onset was
negatively correlated with PAD; patients with earlier onset showed
larger discrepancies between their brain age and chronological age.
Structural MRI studies involving children with new-onset epilepsy have
shown that refractory seizure is more likely to disturb the trajectory of
white matter development than that of gray matter (Hermann et al.,
2010; Hutchinson et al., 2010). Another longitudinal study demon-
strated that increases in both the volume and the microstructural in-
tegrity of white matter continue to young adulthood, reaching a peak
approximately at 30 years old (Lebel and Beaulieu, 2011). Because
patients with right MTLE in this study had mean age of onset of 12.5
years old (Table 1), the epileptogenic process or refractory seizure
might have damaged the myelin sheath and altered the trajectory of
white matter development, leading to premature brain aging
(Pardoe et al., 2017). Second, duration of illness was positively corre-
lated with PAD, indicating that patients with longer disease duration
had more prominent premature brain aging. The hippocampal atrophy
and the extent of structural abnormalities beyond the mesial temporal
lobe have been shown to be related to disease duration in MTLE
(Bernasconi et al., 2005; Bonilha et al., 2006; Govindan et al., 2008).
Therefore, premature aging of white matter along the disease course
might contribute to overestimated brain age. Taken together, increased
white matter brain age in right MTLE could be attributed to the aber-
rant trajectory of white matter development or the cumulative damages
to the white matter tracts. However, we observed collinearity between
age of onset and duration of illness in patients with right MTLE;
therefore, the exact mechanism of increased PAD cannot be ascertained
from the current correlation results. Third, seizure frequency was po-
sitively correlated with PAD, linking more white matter damages with
higher seizure frequency in right MTLE patients. This result was in line
with findings of previous structural MRI studies that seizure frequency
was related to the progressive brain atrophy, which not only occurred

in mesial temporal structures but also extended to other remote brain
regions (Bernhardt et al., 2009; Coan et al., 2009). It suggests that re-
current seizure might lead to white matter alterations or network re-
organization that exacerbates premature white matter aging in right
MTLE.

By contrast, left MTLE showed opposite trends in correlations of
PAD with age of onset and duration of illness. Although these trends
would not survive in strict multiple comparison correction and are
counterintuitive compared to the explanations in the right MTLE, these
findings might imply that left MTLE and right MTLE possibly have
distinct processes of pathophysiology and brain plasticity in response to
the progression of disease. Our results indicate that left MTLE patients
with earlier age of onset or with longer duration of illness had younger
brain age. Also, the PAD in patients with left MTLE had no associations
with seizure frequency, implying that the changes in PAD may not at-
tribute to the recurrent seizure in left MTLE. We speculate that these
findings may be interpreted by the concept of use-dependent plasticity
(Kalisch et al., 2006), that the hemispheric asymmetry of some brain
functions at the younger age becomes more balanced at the older age,
thus one hemisphere may enhance the capacity to compensate dys-
functions of the other during aging process. However, this speculation
should be verified by further studies with large sample size.

4.3. Comparison of present brain age prediction model with previous studies

Since the first study on neuroimaging-based age prediction which
was conducted by Franke et al. (2010), many studies have developed
brain age prediction models using different neuroimaging features or
machine learning algorithms (Table 3). In Franke's study, they used the
gray matter features derived from T1-weighted images of 547 healthy
participants and estimated the brain age using relevance vector re-
gression. Recently, Cole et al. (2017) used the raw data of T1-weighted
images and secondary morphological features, such as cortical thick-
ness, from approximately 2000 healthy participants to build a brain age
prediction model using convolutional neural network approach. In
contrast to the substantially large amount of training data used in their
studies, our study established the prediction model with comparable
performance through a relatively small data set. This implies that the
microstructural changes during aging process as probed by diffusion
MRI might be more sensitive than the morphological changes probed by
T1-weight imaging.

To date, few studies that used diffusion MRI data to build the brain
age prediction model. Mwangi et al. (2013) used diffusion scalar indices
derived from DTI to estimate brain age of healthy participants. The
performance of the model in that study, however, was less satisfactory
than that in other studies (Table 3). It might be due to the limited
sample, diffusion reconstruction method, the modeling approach or
other modeling factors. In the present study, we used DSI and ReMAP
approach to capture comprehensive microstructural characteristics of

Table 3
Comparison of our brain age prediction model with other models. The metrics listed here present the best performance of model reported in each study.

Study Our study Franke (2010) Mwangi (2013) Cole (2017)

Sample size
(training data) 300 547 188 2001
Age range 18–92 19–86 4–85 18–90
Materials Diffusion indices
(DSI) GM VBM Diffusion indices
(DTI) T1W GM/WM volume and raw data
Approach GPR RVR RVR GPR/CNN
Rho 0.95 0.94 0.90 0.96/0.96
RMSE 5.8 (years) 5.9 (years) 8.9 (years) 5.4/5.3 (years)
MAE 4.6 (years) 4.6 (years) 6.9 (years) 4.4/4.2 (years)

CNN: convolution neural network; DSI: diffusion spectrum imaging; DTI: diffusion tensor imaging; GM: gray matter; GPR: Gaussian process regression; MAE: mean
absolute error; Rho: correlation between predicted and chronological age; RMSE: root mean square error; RVR: relevance vector regression; T1W: T1-weighted; VBM:
voxel based morphometry; WM: white matter.
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white matter. We further used tract-based automatic analysis to pro-
duce tract-specific profiles of microstructural properties as our input
features. These tract-specific features can provide the interpretability of
the brain age prediction, allowing us to identify the tracts with most
significant contribution to premature brain aging in right MTLE.

Brain age studies have demonstrated the capacity of the brain age to
detect aberrant aging in those who have suffered from neurological
and/or psychiatric problems. However, the brain age predicted from a
new observation should be inferred with cautions. The common and
empirical threshold employed the MAE of 5 years or below (Cole and
Franke, 2017a) to appraise the prediction performance of a prediction
model. The use of this threshold implies that, even in the cognitively
healthy population, individual heterogeneity of white matter integrity
would produce a normative distribution of brain age regardless of the
sample size and modeling approach.

Given that the brain age model is built from a group of healthy
participants, the predicted brain age might be subjected to bias when
the model is applied to patients with MTLE. Cerebral atrophy and le-
sions caused by epilepsy may potentially affect image registration,
leading to bias in brain age prediction. We have addressed this concern
in our image registration process. Specifically, we employed the ad-
vanced diffusion registration algorithm (Hsu et al., 2012) and the two-
step registration strategy (Chen et al., 2015) to minimize the registra-
tion bias due to inter-group difference in morphological changes. The
procedure ensures that the variation of the brain age in the MTLE pa-
tients reflects the disease-related alterations in white matter integrity at
the microscopic level, rather than the morphological changes at the
macroscopic level.

4.4. Limitations

The age distribution of the training set was not uniform across
lifespans. Middle-aged adults (40–60 years) accounted for 20.7% of the
training datasets, much less than the proportion of the younger (<40
years: 49.0%) and senior (>60 years: 30.3%) adults. Nevertheless, we
believe the estimation of parameters in the prediction model was ac-
curate because the aging process is continuous throughout lifespan, and
the GPR model was applied to a sufficiently large sample. Second, in the
results of the prediction model, the PAD scores of the training set were
correlated with chronological age, resulting in age-dependent bias for
individual prediction across different ages. The reason for this esti-
mated bias could be explained in part by age-related pathological
changes in older individuals that were not necessarily present in
younger ones (Franke et al., 2010; Mwangi et al., 2013). In the present
study, we addressed this bias by recruiting an age-matched control
group in the PAD comparison and regressing out chronological age in
the correlation analysis. Third, the present study adopted cross-sec-
tional study design that limited us to give conclusive explanations for
findings with regard of associations between PAD and clinical factors,
such as age of onset and duration of illness. It warrants a longitudinal
follow-up study to explicitly dissociate epilepsy progression from aging
effect, and is sensitive to detect cumulative white matter degeneration
along the disease course in patients with unilateral MTLE in the future.
A longitudinal study design is able to track PAD changes over the time
to provide a measure of long-term trajectory and guide the decision of
therapeutic strategies. Fourth, the relative small sample size per patient
group may result in lack of statistical power. In fact, the recruitment of
pure unilateral MTLE patients was challenging and time-consuming.
Nevertheless, a larger sample size is recommended to evaluate the re-
producibility of our results in the future.

Compared to the brain age models using structural MRI data such as
BrainAGE method (Franke and Gaser, 2019), the model trained using
the features derived from diffusion MRI has less generalizability due to
the scanner-dependent spatial variability of the diffusion signal
(Mirzaalian et al., 2016). The model established in this study cannot be
directly applied to the data acquired from the other sites. To address

this problem, we have developed a prototypical framework to gen-
eralize diffusion MRI-based brain age models using transfer learning
techniques, and the feasibility has been demonstrated in our recent
report (Chen and Tseng, 2019).

5. Conclusion

In the present study, we developed and applied a machine-learning
based brain age prediction model to investigate patients with right and
left MTLE. Patients with right MTLE exhibited premature brain aging
than did patients with left MTLE, suggesting a more aggravated white
matter alteration in right MTLE. The high contribution of the affected
white matter tracts to premature brain aging and strong correlations of
PAD with clinical variables including age of onset, disease duration,
and seizure frequency unveiled the structural underpinning and clinical
relevance of premature white matter aging in right MTLE. In conclu-
sion, the white matter brain age is a potentially useful indicator of
white matter alteration and disease severity in patients with right
MTLE.
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