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Abstract Vasoactive intestinal peptide-expressing (VIP) interneurons in the cortex regulate

feedback inhibition of pyramidal neurons through suppression of somatostatin-expressing (SST)

interneurons and, reciprocally, SST neurons inhibit VIP neurons. Although VIP neuron activity in the

primary visual cortex (V1) of mouse is highly correlated with locomotion, the relevance of

locomotion-related VIP neuron activity to visual coding is not known. Here we show that VIP

neurons in mouse V1 respond strongly to low contrast front-to-back motion that is congruent with

self-motion during locomotion but are suppressed by other directions and contrasts. VIP and SST

neurons have complementary contrast tuning. Layer 2/3 contains a substantially larger population

of low contrast preferring pyramidal neurons than deeper layers, and layer 2/3 (but not deeper

layer) pyramidal neurons show bias for front-to-back motion specifically at low contrast. Network

modeling indicates that VIP-SST mutual antagonism regulates the gain of the cortex to achieve

sensitivity to specific weak stimuli without compromising network stability.

Introduction
Inhibitory interneurons play a major role in establishing the dynamics of cortical microcircuits

(Roux and Buzsáki, 2015; Cardin, 2018). In the superficial layers of the cortex, vasoactive intestinal

peptide-expressing (VIP) interneurons regulate feedback inhibition of pyramidal neurons through

suppression of Martinotti-type somatostatin-expressing (SST) interneurons (Pfeffer et al., 2013).

Through this disinhibitory mechanism, VIP interneurons are believed to modulate network dynamics

based on the behavioral state of the animal; for instance, VIP neurons in mouse primary visual cortex

(V1) are reliably active during periods of locomotion (Fu et al., 2014). Moreover, VIP neurons in V1

are a target of top-down inputs and mediate enhancement of local pyramidal cell activity in response

to activation of those inputs (Zhang et al., 2014). Behaviorally, mouse V1 is necessary for the detec-

tion of low contrast visual stimuli (Glickfeld et al., 2013), and the optogenetic activation of VIP neu-

rons in mouse V1 lowers contrast detection thresholds whereas the activation of SST or PV neurons

raises it (Cone et al., 2019). This suggests that the perception of low contrast stimuli is strongly

enhanced by VIP neuron activity in V1. Although the activity of VIP neurons has been shown to be

suppressed below baseline in response to high contrast full-field grating stimuli of all tested spatial

and temporal frequencies (de Vries et al., 2020), the responses of VIP neurons to low contrast visual

stimuli are not known. To this end, we investigated the influence of stimulus contrast and locomotion

on the visual responses of VIP, SST, and pyramidal neurons in mouse V1. SST neurons responded

exclusively at high contrast whereas VIP neurons responded exclusively at low contrast with a strong

preference for front-to-back motion that is congruent with self-motion during locomotion. As a pop-

ulation, layer 2/3 – but not deeper layer – pyramidal neurons responded more strongly at low
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contrast than high contrast and showed a slight, but significant, bias for front-to-back motion.

Finally, we made novel extensions of stabilized supralinear network (SSN) models to incorporate the

diversity of inhibitory interneuron types and used these models to demonstrate that VIP-driven disin-

hibition at low contrast can drive large increases in pyramidal neuron activity, despite the relatively

low activity of both SST and pyramidal neurons in this contrast regime. The selective enhancement

of front-to-back motion could increase the detection of obstacles approaching head-on during loco-

motion. Based on these results, we conclude that VIP neurons amplify responses of pyramidal neu-

rons to weak but behaviorally-relevant stimuli.

Results and discussion
We recorded responses to full-field (approximately 120˚ x 90˚ of visual space) drifting gratings at

eight directions (with a spatial frequency of 0.04 cpd and temporal frequency of 1 Hz) and six con-

trasts (5–80%) during calcium imaging of mouse Cre lines for Vip and Sst as well as pyramidal neu-

rons across cortical layers (Cux2: layer 2/3; Rorb: layer 4; Rbp4: layer 5; Ntsr1: layer 6) transgenically

expressing GCaMP6f (see Figure 1—source data 1 for numbers of neurons, sessions, and mice in

the dataset). The four Cre lines used to image pyramidal neurons were chosen to limit GCaMP

expression to neurons in a single layer such that fluorescence contamination from processes (e.g.

axons or dendrites) of neurons with somata in different layers is minimized, while providing broad

coverage of excitatory neuron types within the target layer (see Materials and methods: Experimen-

tal Animals). Although Cux2 is expressed in both layers 2/3 and 4, it was only imaged in layer 2/3.

Vip mice were imaged in layer 2/3 where VIP neurons are most abundant (Tremblay et al., 2016),

whereas Sst mice were imaged in layer 4 where SST neurons are most abundant. Notably, most, if

not all, SST neurons in layer 4 of V1 are Martinotti cells (Scala et al., 2019).

Figure 1 shows fluorescence traces for four example neurons, of the key Cre lines, as well as step-

wise transformations to ‘events’ in the fluorescence traces and, finally, stimulus-response magnitudes

and tuning curves. Events in the fluorescence trace for each neuron were detected using a change-

point detection algorithm with an L0-regularization penalty (de Vries et al., 2020; Jewell and Wit-

ten, 2018; Jewell et al., 2019). The result is a time series of event onset times and magnitudes

proportional to the change in GCaMP fluorescence; individual events likely do not correspond to sin-

gle action potentials but have a bias toward bursts (Ledochowitsch et al., 2019; Huang et al.,

2019). The response for each trial was computed as the mean event magnitude per second and

averaged across trials for each condition.

We observed direction- or orientation-tuned neurons that responded preferentially either to high

contrast gratings or low contrast gratings. The majority of neurons were responsive to the stimulus

set (Figure 2a), measured as a statistically significant bias in responses depending on grating con-

trast and direction (bootstrapped c

2test, p<0.01; see Materials and methods). Substantial differen-

ces in contrast and direction tuning were apparent across Cre lines (Figure 2b–h). Virtually all VIP

neurons responded only at low (<20%) contrast to front-to-back motion (0 degrees; nasal-to-tempo-

ral) or an adjacent direction (Figure 2b), yielding the greatest direction bias among Cre lines as

quantified by the vector sum of direction preferences (Figure 2c). The direction of bias was consis-

tent across all Vip mice (n = 6 sessions, 3 mice; Figure 2—figure supplement 1A) and did not result

from stimulus direction-selective running behavior (Figure 2—figure supplement 1B). High contrast

gratings of all directions significantly suppressed activity in a substantial fraction of VIP neurons

whereas such suppression was rare in other Cre lines (Figure 2d; Figure 2—figure supplement 2).

SST neurons had high contrast selectivity, weak direction and orientation selectivity, and varied

direction preference (Figure 2b,e,g,h), resulting in an average population response that was strong

at high contrast across all directions, complementing the non-direction selective suppression at high

contrast observed in VIP neurons. Unlike inhibitory interneurons, pyramidal neurons exhibited sub-

stantial direction and orientation selectivity and tiled all eight possible direction preferences

(Figure 2b,g,h).

We statistically-validated the contrast tuning of neurons with a model selection procedure (see

Materials and methods: Contrast response function fitting and model comparison) comparing low

contrast preference, high contrast preference, and intermediate contrast preference. This analysis

confirmed that nearly all VIP neurons were low contrast-preferring and nearly all SST neurons were

high contrast-preferring (Figure 2e). Contrast preference among pyramidal neurons systematically
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Figure 1. Single neurons are tuned for stimulus direction and contrast. (a) A single VIP interneuron recorded in layer 2/3 of a Vip mouse responds to

low contrast with a preference for motion with a direction of 0 degrees (front-to-back). Top: In blue, 20 s of the dF/F trace for this neuron and, in black,

the corresponding events extracted from the dF/F trace. Left: Event rasters for each contrast at the peak direction (0 degrees), each direction at the

peak contrast (10%), and blank (i.e. 0% contrast) trials. Middle: Contrast tuning curve at the peak direction and direction tuning curve at the peak

Figure 1 continued on next page
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varied across cortical layers, exhibiting a progression from a mixture of low and high contrast-prefer-

ring neurons in layer 2/3 to almost exclusively high contrast-preferring neurons in layers 5 and 6. Like

VIP neurons, pyramidal neurons in layer 2/3 showed direction bias toward front-to-back motion at

5% and 10% contrast but not at higher contrasts (Figure 2c); pyramidal neurons in deeper layers did

not have direction bias. Taken together, concerted changes in response magnitude near 20% con-

trast across all Cre lines and layers indicate the presence of a phase transition in cortical dynamics

between a low contrast regime exemplified by relatively inactive SST neurons and a high contrast

regime exemplified by highly active SST neurons.

A previous survey of transcriptomic neuron types using single-cell RNA sequencing identified 16

VIP neuron subtypes, 21 SST neuron subtypes, 3 excitatory neuron subtypes in layer 2/3, 1 excitatory

type in layer 4, 12 excitatory types in layer 5, and 17 excitatory types in layer 6 (Tasic et al., 2018).

That study also investigated the transcriptomic neuron types labeled by the Cre lines used in the

present study (see Extended Data Figure 8 of Tasic et al., 2018). The Vip and Sst Cre lines label all

transcriptomic subtypes of VIP and SST neurons, respectively, suggesting that common subtypes of

SST neurons, such as Martinotti-type SST neurons, are all high contrast-preferring and common sub-

types of VIP neurons are all low contrast-preferring. Furthermore, the Cux2 and Rorb Cre lines label

all transcriptomic excitatory neuron types in layers 2/3 and 4, respectively. Our finding of substantial

populations of both high contrast-preferring and low contrast-preferring neurons in layer 4, where

there is only a single transcriptomic excitatory neuron type, demonstrates that neurons of the same

transcriptomic subtype can differ in contrast preference. In other layers, whether all neurons of a par-

ticular transcriptomic type have the same contrast tuning and, conversely, all neurons with the same

contrast tuning correspond to the same transcriptomic type, are important open questions.

Studies of stimulus tuning in the visual system have long reported (Levick, 1967; Rodieck, 1967)

a small but consistent fraction (1–5%) of neurons that exhibit firing rate suppression in response to

all stimuli presented, which typically comprised of high contrast gratings, termed ‘suppressed-by-

contrast’ (SbC) neurons. Consistent with a recent report (de Vries et al., 2020), these results identify

VIP neurons as a major source of SbC neurons in V1. Surprisingly, we observe that not only are these

SbC neurons not suppressed at low contrast but that they exhibit robust visual responses to front-

to-back motion in such conditions. This contributes new information to our understanding of SbC

neurons in the visual circuit. The finding that VIP neurons are suppressed below baseline in response

to high contrast gratings, rather than suppressed to baseline, might be due to the high spontaneous

activity of VIP neurons that is available to be suppressed compared to the other neuron types mea-

sured here (see Figure 3 as well as Extended Data Figure 1 of de Vries et al., 2020). Our measure-

ments of contrast tuning suggest that the high spontaneous activity of VIP neurons enables the

cortical circuit to raise or lower the amount of disinhibition of pyramidal neurons depending on stim-

ulus contrast.

To assess the circuit-wide effects of locomotion on cortical dynamics, we examined the average

activity of each neuron population as a whole. We focused here on the responses at low contrast in

layers 2/3 and 4, but not layers 5 and 6 which did not respond at low contrast. Pyramidal neurons in

layers 2/3 and 4, as well as VIP and SST interneurons, had increased activity during stimulus presen-

tations when the mouse was running compared with stimulus presentations when the mouse was sta-

tionary (Figure 3; Figure 3—figure supplement 1). During locomotion, the low contrast and front-

to-back direction selectivity that was common to nearly all VIP neurons resulted in an average VIP

population response that had tuning closely resembling the tuning of any individual VIP neuron (Fig-

ure 3, first column). By comparison, the VIP population only weakly responded to front-to-back

motion at low contrast when the mice were stationary and did not respond to gratings of any other

Figure 1 continued

contrast; mean ± SEM. Right: Heatmap shows the mean response for all stimulus contrasts and directions. (b) Same as a, for a single SST neuron

recorded in layer 4 of an Sst mouse. This neuron is tuned for high contrast with a preference for motion with a direction of ±90 (up/down). (c) Same as

a, for a pyramidal neuron recorded in layer 2/3 of a Cux2 mouse. This neuron is tuned for low contrast with a preference for motion with a direction of -

45 degrees. (d) Same as a, for pyramidal neuron recorded in layer 4 of a Rorb mouse. This neuron is tuned for high contrast with a preference for

motion with a direction of 180 degrees (back-to-front).

The online version of this article includes the following source data for figure 1:

Source data 1. The total number of cells, experimental sessions, and mice per Cre line.
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Figure 2. Contrast and direction preferences are cell-type and layer specific. (a) The fraction of imaged cells that were significantly responsive to the

gratings stimulus (bootstrapped c

2 test, p<0.01). (b) Waterfall plots showing the response significance at each contrast and direction of all responsive

cells (c2 test; p < 0.01) from mice of each Cre line. Each row is one neuron and neurons are ordered by direction preference at the cell’s peak contrast.

The responses to each stimulus condition are normalized per neuron to be RN ¼ ðRd;c � RbÞ=ð�Rd;c þ RbÞ, where RN is the normalized response, Rd;c is the

Figure 2 continued on next page
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direction or contrast. Running also increased the SST population response to high contrast gratings,

which also had the highest average response to front-to-back motion but responded strongly as a

population to other directions as well (Figure 3, second column). The pyramidal population in layer

2/3 (CUX2) responded broadly across directions but more strongly at low than high contrast (Fig-

ure 3, third column), whereas the pyramidal population in layer 4 (RORB) had comparable response

magnitude and running enhancement across contrasts (Figure 3, fourth column). This analysis dem-

onstrates a substantial enhancement of responses to low contrast visual stimuli during locomotion

that is specific to layer 2/3 pyramidal neurons and VIP neurons.

We built a Generalized Linear Model of VIP, SST, and layer 2/3 pyramidal neuron responses to

investigate the contribution of stimulus contrast, stimulus direction, locomotion, and the interactions

between these terms to the average activity of each neuron population using a Poisson model to

predict responses (Figure 4a). To identify only the terms that significantly contribute to activity, we

included an L1-regularization penalty in the cost function which resulted in relatively few non-zero

terms (12–15 non-zero out of 126 total terms). VIP neurons had the highest weights for blank sweep,

low contrasts (5–20%), running, directions of 0˚ and 180˚, running by direction interactions at 0˚ and

45˚, and direction by contrast interactions at ±45˚ and low contrasts (Figure 4b). SST neurons had

the highest weights for high contrasts (40–80%), direction of 0˚, and running by direction interactions

at all directions (Figure 4c). Layer 2/3 pyramidal neurons have significant weights only for running,

low contrasts (5–20%), and all directions (Figure 4d). Overall, this analysis confirms the influence of

running, stimulus direction, and stimulus contrast but suggests that interactions among these varia-

bles is limited.

Anatomical and optogenetic perturbation experiments suggest that VIP neurons disinhibit pyra-

midal neurons through their inhibition of SST neurons (Pfeffer et al., 2013; Zhang et al., 2014;

Pi et al., 2013). However, VIP neurons only respond to one direction of low contrast grating and

SST neurons have very weak responses to low contrast gratings of any direction, potentially limiting

the magnitude of SST activity that is available to be inhibited by VIP neurons and, consequently, lim-

iting the magnitude of disinhibition of pyramidal neurons. Evidence that visual cortex has higher

gain at low contrast than high contrast (Heuer and Britten, 2002; Cavanaugh et al., 2002;

Carandini and Heeger, 2012) suggests that a small reduction in feedback inhibition (e.g. disinhibi-

tion) is capable of driving a large increase in pyramidal neuron activity (Hertäg and Sprekeler,

2019). We hypothesized that VIP neurons are essential to establishing the high gain regime at low

contrast as a result of VIP-mediated disinhibition forming a positive feedback loop (i.e. Pyr ! VIP !

SST ! Pyr) that depends upon, and contributes to, network dynamics. Stabilized supralinear net-

work (SSN) models have been proposed to account for a variety of contrast-dependent response

properties in visual cortex (Rubin et al., 2015; Ahmadian et al., 2013), including the transition from

a high gain regime at low contrast to a feedback inhibition dominated low gain regime at high con-

trast (Adesnik, 2017; Sanzeni et al., 2020), as well as cortical noise correlations (Hennequin et al.,

Figure 2 continued

mean response to a grating with direction d and contrast c, Rb is the mean blank (0% contrast) response, and �Rd;c is the mean response to gratings

across all directions and contrasts. (c) Radial plot of the average direction preference of cells of each Cre line at each contrast. Arrows are the vector

sum of all responsive cells at a given contrast. Gray shaded region indicates a 95% confidence interval of the vector sum for a population with

uniformly-distributed direction preferences, multiple comparisons corrected for the six contrasts. Scale: The distance between each pair of concentric

dashed rings is 25%. N: Nasal, T: Temporal, U: Up, D: Down. (d) Fraction of all cells of each Cre line that are suppressed by contrast. The mean

response to all grating directions at 80% contrast must be significantly below the mean blank response (bootstrapped distribution of mean response

differences; family-wise type 1 error < 0.05; see Materials and methods). (e) Distribution of contrast response types by Cre line determined by fitting of

rising sigmoid (high contrast preferring), falling sigmoid (low contrast preferring), or the product of rising and falling sigmoids (intermediate contrast

preferring; not shown due to a very small percentage of neurons tuned for intermediate contrasts). P-values are shown for pairwise comparisons of the

fraction of high contrast preferring pyramidal neurons in each layer (bootstrap test of difference of sample proportions). See Materials and methods. (f)

Cumulative distribution of contrast preferences (center-of-mass of a cell’s contrast response function; CoM) across Cre lines. (g) Cumulative distribution

of global orientation selectivity indices (gOSI) across Cre lines. (h) Cumulative distribution of direction selectivity indices across Cre lines.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. The direction of VIP neuron bias was consistent across mice and did not result from stimulus direction-selective running

behavior.

Figure supplement 2. VIP neurons have evoked responses to low contrast gratings but response suppression to high contrast gratings.
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Figure 3. Average population responses of inhibitory, but not excitatory, cells are strongly biased toward front-to-back visual motion which is enhanced

during locomotion. (a) Mean blank-subtracted event magnitude (a.u.; extracted events derived from dF/F trace) of all neurons from mice of each

superficial Cre line during stationary periods. Gray boxes in Rorb plots indicate insufficient run and stationary data. (b) Same as a, for running periods.

(c) Mean population contrast responses tuning at peak direction during stationary (faint lines) and running (bold lines) periods. (d) Mean population

Figure 3 continued on next page
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2018), surround suppression (Liu et al., 2018), and effects of feature and spatial attention on neural

activity (Lindsay et al., 2020). In SSNs, high gain is achieved through supralinear single-neuron trans-

fer functions (e.g. f-I curve) and strong recurrent excitatory connections but the gain is eventually

reduced as external input strength increases due to the recruitment of inhibitory neurons which also

have supralinear transfer functions (Miller and Troyer, 2002; Priebe and Ferster, 2008;

Margrie et al., 2002; Linaro et al., 2019). The ability of SSNs to account for a wide variety of phe-

nomenology by utilizing only a few simplified but universal features of cortical circuits (e.g. recurrent

excitation, feedback inhibition, and supralinear f-I curves) has established them as attractive models

for explaining cortical dynamics (Kraynyukova and Tchumatchenko, 2018). However, the impact of

interneuron diversity on the behavior of SSNs is largely unknown.

To investigate the distinct roles of each interneuron type, we extended the SSN model from one

homogeneous population of interneurons to three populations corresponding to VIP, SST, and par-

valbumin-expressing (PV) neurons to model layer 2/3 of mouse V1 (Figure 5a; see Materials and

methods for further details). Briefly, the network is a ring model in which each layer 2/3 pyramidal

neuron (‘CUX2’) receives external (‘sensory’) excitatory input that has Gaussian tuning with mean (i.e.

peak/preferred direction) corresponding to the neuron’s position on the ring and standard deviation

of 30 degrees; PV neurons also receive external input which is not tuned (Kerlin et al., 2010). SST

neurons do not receive external input in our model to incorporate the finding of weak or no thala-

mocortical input to SST neurons in mouse somatosensory cortex (Cruikshank et al., 2010). VIP neu-

rons also do not receive external input in our model since experimental measurements of this input

to VIP neurons are lacking, and eliminating this potential source of excitatory input to VIP neurons is

the most conservative assumption for reproducing the strong responses of VIP neurons to weak

stimuli. The strength of external input is intended to represent a monotonically-increasing function

of stimulus contrast, though no specific relationship is claimed here. Connections from CUX2 neu-

rons (i.e. excitatory connections) also have Gaussian tuning that depends on the difference between

the orientation preferences of the pre- and post-synaptic neurons (Figure 5b top), with broader tun-

ing of connections targeting SST and PV neurons (standard deviation of 100 degrees) than those tar-

geting pyramidal and VIP neurons (standard deviation of 30 degrees) to reflect the relative tuning of

the postsynaptic neurons types (de Vries et al., 2020; Kerlin et al., 2010). Connections from inhibi-

tory neurons (i.e. inhibitory connections) were broadly tuned as well (standard deviation of 100

degrees; Figure 5b bottom). To incorporate the bias we measured in direction tuning, we included

a minor (~2%) over-representation of pyramidal neurons that prefer the zero degrees direction as

well as a bias in the direction tuning of external input for zero degrees to account for the known

direction bias of thalamocortical inputs (Marshel et al., 2012; Zhang et al., 2020). All neurons are

modeled as rate units with rectified quadratic transfer function, the simplest supralinear polynomial.

This model is able to qualitatively reproduce the population direction and contrast tuning we

observed for VIP, SST, and layer 2/3 pyramidal (CUX2) neurons as well as make a prediction for the

tuning of PV neurons (Figure 5c). Model VIP neurons are suppressed at high levels of external input

regardless of stimulus direction, reproducing the suppressed-by-contrast behavior we observed in

our imaging experiments, and active for all stimulus direction at low contrast but most active for the

zero degrees direction, again reproducing VIP neuron tuning (Figure 3b). The external input

strength for which VIP neurons are most active (~10 a.u.) corresponds to the highest gain (‘supralin-

ear’) regime for L2/3 pyramidal and PV activity (Figure 5d: left). Ablating the VIP-to-SST inhibitory

connection, the only output of VIP neurons contained in the model, results in a large reduction in

the gain and activity of VIP, L2/3 pyramidal, and PV populations at low input (Figure 5d: right). Even

in the absence of inhibition from VIP neurons, SST neurons have relatively low activity at a low level

of external input, demonstrating that suppression of a relatively small amount of SST neuron activity

Figure 3 continued

direction response tuning at low (5-10%) contrast. Insets: mean population direction response tuning at high (60-80%) contrast. (e) Mean single-neuron

direction tuning (i.e. aligned to each neuron’s peak direction). Insets: mean single-neuron direction tuning at high (60-80%) contrast. All error bars are

SEM. Sample size indicates number of neurons with number of experiments in parenthesis.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Distributions of single neuron response magnitudes across stimulus conditions for key Cre lines.
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Figure 4. Generalized Linear Models reveal the contribution of stimulus direction, stimulus contrast, locomotion, and the interactions between these

terms, to the activity of neuronal populations. (a) Schematic of the Poisson GLM consisting of a blank term, a binary run state term (1 for running, 0 for

stationary), 8 direction terms, 6 contrast terms, 8 run x direction interaction terms, 6 run x contrast interaction terms, 48 direction x contrast interaction

terms, and 48 run x direction x contrast interaction terms. The responses are predicted by summing these 126 terms and raising the sum to an

exponential. (b) GLM results for the population of layer 2/3 VIP neurons recorded from Vip mice. Left: The model weights are shown as heatmaps (top)

as well as means and 95% confidence intervals (bottom). Sparse weights were obtained using an L1-regularization penalty, resulting in the majority of

Figure 4 continued on next page
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can drive large increases in pyramidal neuron gain. These results indicate that VIP-mediated disinhi-

bition is capable of producing substantial increases in gain at weak inputs, despite low activity of the

intermediate SST neuron population, in networks with supralinear single neuron transfer functions

and recurrent excitation.

The introduction of a positive feedback loop into the SSN model in the form of VIP-mediated dis-

inhibition could have a destabilizing effect on network dynamics. A key aspect of the stability of net-

work dynamics is whether recurrent excitation required feedback inhibition to prevent runaway

activity; that is, whether the network is inhibitory stabilized (‘ISN’) or non-inhibitory stabilized (‘non-

ISN’). In this context, achieving a high gain might push networks to the brink of instability. Con-

versely, suppressing VIP neuron activity below baseline, rather than to baseline, for high external

input strength could be an important component of ensuring network stability. We assessed the sta-

bilization regime by a linear stability analysis of the network’s response to a perturbation of the

inputs that uniformly targeted all locations on the ring (Materials and methods). The excitatory-excit-

atory (E-E) component of the network’s linear response matrix exposes inhibitory stabilization: if it is

negative, the excitatory-excitatory subnetwork has weak effective coupling and does not require

inhibition to stabilize it. On the other hand, if the E-E subnetwork’s linear response is positive, but

the network as a whole is stable (e.g. converges to stable steady-state rates), inhibition is required

to stabilize the recurrent excitation and the network is inhibitory-stabilized, an ISN. We find that the

network transitions from non-ISN to ISN as external input strength increases with a transition

between stability regimes around an external input strength of 50 a.u. (Figure 5g), as long as the

VIP-to-SST connection strength is below a critical value (normalized to be 1.0 in Figure 5g–i). Above

the critical VIP-to-SST connection strength, the network becomes highly unstable even for low exter-

nal input strengths and firing rates of pyramidal, PV, and VIP neurons explode while SST neuron

activity is suppressed (Figure 5h). To determine the impact of VIP neurons on circuit gain, we mea-

sured the pyramidal neuron gain (i.e. the slope with respect to external input strength in Figure 5h)

and examined the difference between that gain and the gain in a network with VIP-to-SST connec-

tion strength set to zero (but otherwise identical). This difference is greatest at the same low external

input strengths for which VIP neuron activity is high and monotonically increases as a function of the

VIP-to-SST connection strength until the transition to instability at the critical value (Figure 5i). The

gain enhancement is present only at low external input strengths for which the network is in a non-

ISN regime, ensuring that the impact of VIP neurons on gain does not disrupt inhibitory stabilization.

Still, the external input strength at which VIP rates explode above the critical VIP-to-SST connection

strength (Figure 5h) closely matches the external input strength at which VIP rates and network gain

are the highest below the critical VIP-to-SST connection strength (Figure 5i), emphasizing the deli-

cate balance of gain and stability in the cortical network. Although VIP-mediated disinhibition and

increase in network gain can be destabilizing above a critical strength, this analysis demonstrates

that a substantial increase in gain can be achieved over a wide range of VIP-to-SST strengths.

Finally, we also investigated the impact of the relative strength of the weight of PV inputs versus

SST inputs to pyramidal neurons (WPV/(WPV+WSST); Figure 5j–l). Along with the strength of the VIP-

to-SST connection, this ratio is a key determinant of how inhibition is recruited in the SSN. Although

the external input strength at which the network transitions from non-ISN to ISN decreases as the

relative weight from PV neurons increase, the stability behavior (Figure 5j), firing rates (Figure 5k),

and gain effect (Figure 5l) remain similar over a broad range of the WPV/(WPV+WSST) ratio. Only

when input from PV neurons greatly outweighs input from SST neurons, a bifurcation occurs (near

WPV/(WPV+WSST)=0.8) and the network ultimately becomes unstable (near WPV/(WPV+WSST)=0.95).

These results demonstrate that the stability behavior and gain effects we observe in SSNs with three

interneuron populations are robust over a wide range of values for key model parameters.

This survey of contrast tuning in mouse V1 revealed two distinct regimes of cortical dynamics in

superficial layers of cortex. At high contrast, SST neuron activity is high, VIP neuron activity is

Figure 4 continued

weights to be zero. For direction x contrast and run x direction x contrast interaction terms, means and confidence intervals are only shown for terms

with non-zero weights. Right: Predicted responses to stimulus conditions minus predicted blank response when the mouse is stationary (top) and

running (bottom). (c) Same as b, but for the population of layer 4 SST neurons recorded from Sst mice. (d) Same as b, but for the population of layer 2/3

pyramidal neurons recorded from Cux2 mice.
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Figure 5. A stabilized supralinear network (SSN) model with three interneuron populations reproduces contrast

and direction tuning of multiple neuron types and implicates VIP neurons in enhancement of network gain for

weak inputs. (a) Top: The network architecture is a ring corresponding to the peak of each L2/3 pyramidal

(“CUX2”) neuron’s direction tuning curve. The entire ring spans 180 degrees of direction. Bottom: A schematic

Figure 5 continued on next page

Millman et al. eLife 2020;9:e55130. DOI: https://doi.org/10.7554/eLife.55130 11 of 22

Short report Neuroscience

https://doi.org/10.7554/eLife.55130


suppressed, and layer 2/3 pyramidal neuron activity is lower than it is at low contrast; at low con-

trast, SST neuron activity is low, VIP neuron activity is direction tuned and gated by locomotion, and

layer 2/3 pyramidal neuron activity is higher and more enhanced by locomotion. Measurements of

size tuning with high contrast gratings have shown that SST neurons prefer large gratings, sugges-

tive of a role mediating surround suppression, whereas VIP neurons only respond to gratings smaller

than those that drive SST neurons (Adesnik et al., 2012; Dipoppa et al., 2018). Interestingly, the

receptive fields of VIP neurons are larger than those of SST or pyramidal neurons when measured

with sparse noise stimuli (de Vries et al., 2020), indicating that the selectivity of VIP neurons for

small stimuli does not arise simply from having small linear receptive fields. This complementary size

tuning parallels the complementary contrast tuning observed here, suggesting that VIP and SST neu-

rons in V1 are tuned for weak and strong inputs, respectively, across multiple stimulus dimensions.

Indeed, this relationship appears to hold across sensory modalities as VIP neurons in mouse primary

auditory cortex are selective for lower sound intensities than SST or PV neurons (Mesik et al., 2015).

Taken together, a parsimonious explanation of these results is that VIP neuron activity supports a

high gain regime that increases sensitivity to weak inputs, whereas SST neuron activity promotes a

low gain regime that decreases sensitivity to strong inputs and maintains network stability. Height-

ened sensitivity to detect low contrast objects or obstacles approaching head-on during locomotion

might be more behaviorally relevant than other directions of motion. This ability of VIP neurons to

promote a high gain in the local microcircuit might be indicative of a more general role at the nexus

of top-down (e.g. attention) and bottom-up (e.g. saliency) processes.

Figure 5 continued

illustrates the connectivity among neuron types. (b) Top: The distribution of excitatory connection strength from

CUX2 pyramidal neurons onto each neuron type is Gaussian with mean equal to the difference in orientation

preference of pre- and post-synaptic neurons. The distributions of recurrent connections onto CUX2 neurons and

connections onto VIP neurons are narrow (standard deviation of 30 degrees) compared to the distributions onto

PV and SST neurons (standard deviation of 100 degrees). Bottom: Inhibitory connection weights are all broadly

tuned (standard deviation of 100 degrees). (c) The average population responses across direction and contrast

conditions qualitatively reproduce experimental data for CUX2, SST, and VIP neurons shown in Figure 3. (d) Left:

The steady state firing rates are shown for model neurons of each type with peak direction tuning of zero degrees

in response to an external input of zero degrees. Right: The steady state firing rates of the same model neurons in

response to an external input of zero degrees with the VIP-to-SST connection strength set to zero demonstrates

that this connection is necessary for a high gain of CUX2 and PV neurons at the low input levels for which VIP

neurons are most responsive. (e) Currents to the pyramidal neurons in panel d show that most additional external

excitatory input above 15 is offset by the recruitment of inhibition. Inhibition from PV neurons dominates at weak

external input strengths while inhibition from SST neurons dominates at strong external input strengths. (f) The

relative fraction of currents that pyramidal neurons receive from other pyramidal neurons, rather than inhibitory

neurons, decreases as external input strength increases. This shows the relative dominance of inhibition over

excitation in the network. (g) The linear stability of the E-E subnetwork shows a transition from non-ISN dynamics

(E-E stability < 0) to ISN dynamics (E-E stability > 0) at an external input strength of ~55 for networks with

connection weight from VIP to SST neurons below a critical value (WVIP!SST» -0.6). Above the critical value, the E-E

subnetwork is highly unstable for all external input strengths greater than ~20. (h) The firing rates of all four neuron

types remain similar below the critical value of WVIP!SST, except VIP neurons which increase substantially with

increasing WVIP!SST but remain most active at weak external input strengths. Above the critical value, rates of

pyramidal, PV and VIP neurons increase substantially, and SST neuron rates are near zero, for all external input

strengths. (i) The effect of the VIP-to-SST neuron connection on pyramidal neuron gain shows that the increase in

gain occurs only at weak external input strengths. The gain effect increases with increasing WVIP!SST below the

critical value. W/Wcritical for the networks shown in panels b-f is 0.99, where W is -0.6. (j-l) Same as (g-i), except

varying the weight of PV inputs onto pyramidal neurons relative to the total weight of inhibitory (i.e. PV and SST)

inputs onto pyramidal neurons. The external input strength at which the E-E stability (panel j) transitions from non-

ISN to ISN decreases as the relative weight from PV neurons increase, but the stability behavior, firing rates (panel

k), and gain effect (panel l) remain the similar until a bifurcation near WPV/(WPV+WSST)=0.8. The network becomes

unstable at very high relative PV weights (WPV/(WPV+WSST) >0.95). WPV/(WPV+WSST) for the networks shown in

panels b-f is 0.5.
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Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers

Additional
information

Genetic reagent
(M. musculus)

Vip-IRES-Cre Jackson Laboratory Stock #: 010908;
RRID:MGI:4436915

Dr. Z Josh Huang
(Cold Spring Harbor
Laboratory)

Genetic reagent
(M. musculus)

Sst-IRES-Cre Jackson Laboratory Stock #: 013044;
RRID:IMSR_JAX:013044

Dr. Z Josh Huang
(Cold Spring Harbor
Laboratory)

Genetic reagent
(M. musculus)

Cux2-CreERT2 MMRRC RRID:MMRRC_032779-MU PMID:22879516

Genetic reagent
(M. musculus)

Rorb-IRES2-Cre Jackson Laboratory Stock #: 023526
RRID:IMSR_JAX:023526

PMID:25071457

Genetic reagent
(M. musculus)

Rbp4-Cre_KL100 MMRRC RRID:MMRRC_
031125-UCD

PMID:24360541

Genetic reagent
(M. musculus)

Ntsr1-Cre_GN220 Jackson Laboratory Stock #: 017266;
RRID:MMRRC_030648-UCD

PMID:24360541

Genetic reagent
(M. musculus)

CaMKII-tTA x Ai93-GCaMP6f Jackson Laboratory Stock #: 024108;
RRID:IMSR_JAX:024108

PMID:22855807;
PMID:25741722

Genetic reagent
(M. musculus)

Ai148-GCaMP6f Jackson Laboratory Stock #: 030328;
RRID:IMSR_JAX:030328

PMID:30007418

Software,
algorithm

NumPy NumPy RRID:SCR_008633

Software,
algorithm

Matplotlib MatPlotLib RRID:SCR_008624

Software,
algorithm

pandas pandas DOI:10.5281/zenodo.3509134

Software,
algorithm

statsmodel statsmodel RRID:SCR_016074

Software,
algorithm

scipy SciPy RRID:SCR_008058

Software,
algorithm

scikit-learn scikit-learn RRID:SCR_002577

Experimental animals
All animal procedures were approved by the Institutional Animal Care and Use Committee (IACUC)

at the Allen Institute for Brain Science. Six double or triple transgenic mouse lines were used to drive

expression of GCamp6/f in genetically-defined cell types, including four excitatory (Cux2-CreERT2;

Camk2a-tTA;Ai93, Rorb-IRES2-Cre;Camk2a-tTA;Ai93, Rbp4-Cre_KL100;Camk2a-tTA;Ai93, and

Ntsr1-Cre_GN220;Ai148) and two inhibitory (Vip-IRES-Cre;Ai148 and Sst-IRES-Cre;Ai148) mouse

lines. Mice were habituated to head fixation and visual stimulus presentation for 2 weeks before

data collection. Post-surgical experimental mice were housed in cages individually and maintained

on a reverse dark-light cycle with experiments conducted during the dark phase. (See de Vries

et al., 2020 for further Cre line, surgical, and habituation details). Sample size was determined quali-

tatively to balance repeated experiments for each layer/Cre-line and to preserve the breadth of the

survey.

The correspondence between Cre lines (including all six Cre lines used in this study) and transcrip-

tomic neuron subtypes as measured with single-cell RNA sequencing has been reported in Extended

Figure 8 of Tasic et al., 2018. Vip-Cre and Sst-Cre lines provide broad coverage of VIP and SST neu-

ron transcriptomic subtypes (16 and 21 subtypes, respectively). In layer 2/3, Cux2-CreERT2 labels all

three excitatory neuron transcriptomic subtypes. Layer 4 contains only a single transcriptomic neuron

type, which is sampled by the Rorb-Cre line. Rbp4-Cre_KL100 labels all twelve layer 5 neuron tran-

scriptomic subtypes; note that layer 5 was imaged at a single depth in this study, which might result
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in sampling only a subset of the layer 5 transcriptomic types. Ntsr1-Cre labels all six layer 6 cortico-

thalamic neuron transcriptomic subtypes.

Two-photon imaging platform and image processing
Data was collected using the same data collection pipeline as the Allen Brain Observatory and proc-

essed using the same image processing and event detection methods (See de Vries et al., 2020 for

further imaging and image processing details). Calcium imaging was performed with Nikon A1R MP

+ two-photon microscopes adapted to provide space to accommodate the running disc. Laser exci-

tation with a wavelength of 910 nm was provided by a Ti:Sapphire laser (Chameleon Vision—Coher-

ent). Precompensation was fixed at 10,000 fs2. Movies were recorded at 30 Hz with resonant

scanners over a 400 mm field of view with a resolution of 512 � 512 pixels. Temporal synchronization

of calcium imaging, visual stimulation, and running wheel movement was achieved by recording all

experimental clocks on a single NI PCI-6612 digital IO board at 100 kHz. PMT gain and laser power

were chosen for each experiment to maximize dynamic range while saturating fewer than 1000 pixels

in the field of view. Two z-stacks, one local (±30 mm from imaging depth in 0.1 mm steps) and one

full-depth of the cortex (~700 mm total depth in 5 mm steps), were acquired at the end of each imag-

ing session. Z-drift was calculated from the local z-stack and experiments with z-drift of more than

10 mm during the experiment were excluded. The imaging depth of the field of view was confirmed

from the full-depth cortical z-stack.

Calcium fluorescence movies were motion corrected for rigid translational errors using an algo-

rithm based on phase correlation. ROI masks of neuronal somata were segmented from motion-cor-

rected movies by (1) creating initial binarized masks using an adaptive fluorescence threshold, (2)

applying a succession of morphological operations to fill closed holes and concave shapes, (3) com-

puting a feature vector of each mask that included morphological attributes such as location, area,

perimeter, and compactness, (4) combining or eliminating ROIs based on heuristic decisions, includ-

ing attributes from the feature vectors, and (5) applying a final discrimination step using a binary rel-

evance classifier fed by experimental metadata (e.g. Cre line and imaging depth) as well as the

morphological feature vectors. Fluorescence traces were then extracted for each final ROI, which

were then neuropil subtracted and corrected for overlapping ROIs by demixing traces. Neuropil con-

tamination into the ROI contributed by the surrounding neuropil was estimated by modeling the

measured ROI fluorescence as the sum of the true ROI fluorescence and a weighting of the sur-

rounding neuropil fluorescence, FM ¼ FC þ rFN , where FM is the measured fluorescence trace, FC is

the unknown true ROI fluorescence trace that we are trying to estimate, FN is the fluorescence of the

surrounding neuropil and r is the contamination ratio. The contamination ratio was estimated for

each ROI by selecting the value for r that minimizes the cross-validation error,

E ¼
t

X

FC � FM þ rFNj j2, over four folds. Overlapping ROIs were demixed by modeling the mea-

sured fluorescence Fit of each pixel i at time t as Fit ¼
P

k WkitTkt, where Wkit are time-dependent

weighted masks that describe how much of each neuron k’s fluorescence is contained in each pixel

at each timestep, and Tkt is the fluorescence trace of the neurons that we seek to estimate. Recon-

struction of calcium movies is modeled as
P

i AkiFit ¼
P

k;i AkiWkitTkt, where Akt are the binary spatial

masks obtained in the earlier segmentation step in which Aki equals 1 if pixel i is in ROI k and equals

0 otherwise. To solve for Tkt at each time t, we first estimated the weighted masks Wkit by projection

of the recorded fluorescence Fit onto the binary masks Aki, then computed the linear least-squares

solution Tkt to extract each ROI trace’s value. To calculate DF/F traces from each fluorescence trace,

a fluorescence baseline was determined by median filtering the fluorescence trace with a window of

180 s (5401 samples); the DF/F trace was then produced by subtracting the fluorescence baseline

from the original trace followed by dividing the fluorescence baseline. To prevent very small or nega-

tive baselines, we set the baseline as the maximum of the median filter-estimated baseline and the

standard deviation of the estimated noise of the fluorescence trace. All analyses of cell responses

were performed on L0 penalized detected events (Jewell and Witten, 2018; Jewell et al., 2019).

Two-photon imaging data was collected from the retinotopic center of primary visual cortex that

was identified through mapping during widefield intrinsic signal imaging. Cux2-CreERT2;Camk2a-

tTA;Ai93 and Vip-IRES-Cre;Ai148 were imaged at 175 um below the cortical surface in layer 2/3; Sst-

IRES-Cre;Ai148 mice and Rorb-IRES2-Cre;Camk2a-tTA;Ai93 mice were imaged at 275 um below the

cortical surface in layer 4; Rbp4-Cre_KL100;Camk2a-tTA;Ai93 mice were imaged at 375 um below
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the cortical surface in layer 5; and Ntsr1-Cre_GN220;Ai148 mice were imaged at 550 um below the

cortical surface in layer 6. (These Cre lines and imaging depths match those used in the Allen Brain

Observatory.) Some mice were imaged in two different fields of view at the same depth; the sample

sizes for number of imaging sessions and mice are given in Figure 1—source data 1. Some mice

were imaged in multiple sessions; in cases in which a subset of cells was imaged in multiple sessions,

only data from the first imaging session for each cell was analyzed. Mice were excluded for evidence

of epileptiform activity, and individual imaging sessions were failed if there were signs of bleaching,

saturation, excessive z-drift, or animal stress, among other factors.

Visual stimulus
As experimental sessions took place on the same data collection pipeline as the Allen Brain Observa-

tory, visual stimulus monitor calibration and positioning (ASUS PA248Q LCD monitor with

1920�1200 pixels; center of monitor was 118.6 mm lateral, 86.2 mm anterior, and 31.6 mm dorsal

to the right eye; normal distance from the right eye to center of monitor was 15 cm) were identical.

Each monitor was gamma corrected and had a mean luminance of 50 cd m�2. Spherical warping was

applied to all stimuli to ensure constant spatial and temporal frequencies across the monitor as seen

from the mouse’s perspective. See de Vries et al., 2020 for further visual stimulus presentation

details. The stimulus consisted of a full field drifting sinusoidal grating that was presented at a single

spatial frequency (0.04 cycles/degree) and temporal frequency (1 Hz), eight directions uniformly dis-

tributed in 45 degree increments (0 degrees = horizontal front-to-back motion), and six contrasts

(5%, 10%, 20%, 40%, 60%, and 80%). Direction of motion was always orthogonal to the orientation

of the grating. Each grating was presented for 2 s, followed by 1 s of mean luminance gray before

the next grating. Each grating condition (direction, contrast combination) was presented 15–24

times. Trials were randomized with 30 randomly interleaved blank (i.e. mean luminance gray, zero

contrast) trials.

Analysis
Statistical test for responsiveness
A chi-square test for independence was used to determine significantly responsive cells to the drift-

ing grating stimulus set. A chi-square test statistic was computed �2 ¼
P

n

i¼0

Ei�Oið Þ2

Ei
, where

Oi ¼
1

mi

P

mi

j¼0

Ri;j is the observed average response (R) of the neuron over m presentations of a grating

stimulus of a particular condition (i.e. direction-by-contrast pair or blank, n = 49 total conditions),

and Ei ¼

P

n

i

P

mi

j

Ri;j

P

n

i

mi

is the expected (grand average) response per stimulus presentation. A p-value

was then calculated for each cell by comparing the test statistic against a null distribution of 200,000

test statistics, each computed from the cell’s responses after shuffling (with replacement) cell

responses across all presentations.

Response significance by stimulus condition and test for suppression by
contrast
The distribution of responses to stimulus presentations varied substantially across cells. A statistical

measure was used to normalize response magnitudes. The mean blank-subtracted response to a

given stimulus condition was calculated as: R
�
¼ 1

mi

P

mi

j¼0

Ri;j �
1

mblank

P

mblank

j¼0

Rblank;j. Then, a bootstrapped

null distribution of such mean (blank-subtracted) condition responses was generated by sampling

with replacement from all of the cell’s responses across all stimulus presentations. The percentiles of

each cell’s observed mean condition response within its own bootstrapped distribution was then

computed. Cells were determined to be suppressed by high contrast if this percentile for the peak

direction grating condition at 80% contrast was below 0.05.
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Orientation and direction selectivity metrics
Global orientation selectivity was computed from mean extracted event responses to drifting gra-

tings, at the cell’s preferred contrast as,

gOSI ¼

P

R�e
i�

P

R�

where � is the direction of grating movement, and R� is the mean response to that direction of

motion.

Direction selectivity was computed from mean extracted event responses to drifting gratings, at

the cell’s preferred contrast, as

DSI ¼
Rpref �Rnull

Rpref þRnull

where Rpref is a cell’s mean response in its preferred direction (i.e. largest response-evoking direc-

tion) and Rnull is its mean response to the opposite direction.

Contrast preference metric
Contrast preference was computed from mean extracted event responses to drifting gratings, at the

cell’s preferred direction, as

cCoM ¼ e

P

Rc lnc
P

Rc

� �

where c is the contrast of the drifting grating, Rc is a cell’s mean response at contrast c, and cCoM is

the log-scaled center of mass of the cell’s contrast response tuning.

Bias in population direction preference
The direction and magnitude of bias in direction preference for a population of cells (e.g. all cells

recorded from one mouse or all cells recorded from all mice of a particular Cre line) was calculated

as the direction and magnitude of the vector sum of the direction preferences of the cells that com-

prise the population, at a particular contrast as,

�bias ¼ tan�1

P

sin�i
P

cos�i

� �

rbias ¼
1

ncells

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

cos�i

� �2

þ
X

sin�i

� �2

r

where �i is the preferred direction of cell i, ncells is the number of cells in the population, �bias is the

direction of the vector sum over the population, and rbias is the magnitude of the vector sum over

the population.

Stimulus tuning conditioned on locomotion behavior
As part of the standardized pipeline for the Allen Brain Observatory, mice were held on a running

wheel during experimental sessions and locomotion behavior was recorded (See de Vries et al.,

2020 for further run speed measurement details). The mean running speed was calculated for each

trial over the same time window as the mean cellular response was calculated. Trials for which the

mean running speed was greater than or equal to 1 cm/s were categorized as running trials, whereas

trials for which the mean running speed was below 1 cm/s were categorized as stationary trials. The

mean and standard error of the mean event magnitude for each contrast and direction condition

shown in Figure 3 was calculated separately for running and stationary trials. The criterion for a cell

to be included in the calculation for a given direction-by-contrast condition was that the mouse had

to be running for a minimum of four trials and be stationary for a minimum of four trials of that con-

dition. At least three responsive neurons needed to be present to include an experiment in this

analysis.
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Contrast response function fitting and model comparison
Event responses as a function of contrast, at a cell’s preferred direction, were fit to a rising sigmoid

(‘high pass’), a falling sigmoid (‘low pass’), and the product of one rising and one falling sigmoid

(‘band pass’).

Rhigh pass c;h;b; s;cr
50

� �

¼ bþ h 1

1þe
�s c�cr

50
ð Þ

Rlow pass c;h;b; s;cf
50

� �

¼ bþ h 1

1þe
s c�c

f

50
ð Þ

Rband pass c;h;b; s;cr
50
;cf

50

� �

¼ bþ h 1

1þe
�s c�cr

50
ð Þ

� �

1

1þe
s c�c

f

50
ð Þ

� �

where c is the contrast, cr
50

is the contrast at which the response rises halfway between the base

and height, cf
50

is the contrast at which the response falls halfway between the base and height, b is

the lowest response, h is the response amplitude, and s is the slope of the sigmoid (fixed at s¼ 10).

The best fit model was determined by calculating the Akaike Information Criterion (AIC) for each

model and selecting the model with the lowest AIC.

The AIC can be calculated as:

AIC ¼ 2k� 2 lnL

L ¼
contrasts

Y

trials

Y

N Ri
cj�¼ R̂c;s

2

R

� �

lnL ¼� 1

2s2

R contrasts

X

trials

X

Ri
c � R̂c

� �2

þconstant

where k is the number of parameters fit in the model, L is the likelihood of observing the

responses given the fitted model and response distribution, Ri
c is the cell’s response to a grating

stimulus of contrast c (at the cell’s preferred direction) on trial i, Rc is the response predicted by the

model to a grating stimulus of contrast c, s2

R is the variance of all of the cell’s responses, and N is

the normal distribution. In practice, it is more convenient to directly calculate the log-likelihood than

to calculate the likelihood and subsequently take the log, and the constant can be ignored for model

selection since the same constant applies to all models being compared.

Due to the non-normal response distribution, possibly arising from calcium imaging as well as an

underlying non-normal spiking distribution, we bootstrapped the log-likelihood rather than assume

normality. Therefore, the likelihood was calculated numerically by shuffling responses across trials

1000 times and calculating the sum of square residuals from the predicted responses as

SS ¼
contrasts

X

trials

X

Ri
c � Rc

� �2

for each shuffle. The likelihood was taken as the fraction of shuffles for

which SS was greater than the observed SS.

Generalized linear model
We constructed Generalized Linear Models, specifically a Poisson (i.e. exponential function) models,

to predict the population response of each neuron type (e.g. VIP neurons) on each trial from stimulus

contrast, stimulus direction, locomotion state (i.e. binary run or not run variable), and the interactions

between these terms. The model was

R̂b;r;d;c ¼ e
wbabþwrarþ

P

d
ad wdþwd;rarð Þþ

P

c
ac wcþwc;rarð Þþ

P

d

P

c
adac wd;cþwd;c;rarð Þþkð Þ

where R̂b;r;d;c is the predicted response for a trial, w terms are the weights of the model, a terms are

binary variables that equal 1 if the trial attribute is true and equal 0 otherwise; the trial attributes are

blank (b), run state (r), stimulus direction (d), and stimulus contrast (c); and k is a constant. The

weights of the model were computed by minimizing the cost function L using iterative reweighted

least squares,

L¼ SSEþ ll1

where SSE is the reconstruction error.
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SSE¼
X

b;r;d;c

Rb;r;d;c � R̂b;r;d;c

� �2

and l1 is an L1-regularization penalty that serves to identify only weights that significantly contribute

to neuronal responses,

l1 ¼ wbj jþ wrj jþ
X

d

wdj j þ wd;r

�

�

�

�

� �

þ
X

c

wcj j þ wc;r

�

�

�

�

� �

þ
X

d

X

c

wd;c

�

�

�

�þ wd;c;r

�

�

�

�

� �

The strength of regularization, l, was determined through leave-one-out cross validation in which

one experimental session was left out for each fold.

Stabilized supralinear network (SSN) model
The SSN was modeled as a ring network, largely maintaining the basic architecture and dynamics

described in Rubin et al., 2015 but deviating primarily in the diversity of inhibitory neurons and dis-

tributions of connections between neuron populations (including untuned inhibitory connections,

described below). Our network consisted of one excitatory population (representing layer 2/3 CUX2

pyramidal neurons) and three inhibitory populations (representing PV, SST, and VIP interneurons,

respectively). The ring network structure was imposed by providing each excitatory neuron with

external (‘sensory’) excitatory input that had Gaussian tuning with the mean (i.e. peak/preferred

direction) corresponding to the neuron’s position on the ring and standard deviation of 30 degrees;

PV neurons also received external input which was not tuned (i.e. all PV cells receive input of equal

strength). The entire network covered 180 degrees of orientation (or direction). The strength of

external input was intended to represent a monotonically-increasing function of stimulus contrast,

though no specific relationship between input magnitude and contrast is claimed here.

Connections between neurons also had Gaussian tuning that depended on the difference

between the orientation preferences of the pre- and post-synaptic neurons (Figure 5b). The distribu-

tions of recurrent excitatory connections onto CUX2 cells and excitatory connections onto Vip cells

were narrow (standard deviation of 30 degrees) compared to the distributions of connections to and

from PV and Sst cells (standard deviation of 100 degrees).

The network consisted of 184 excitatory neurons, 40 PV neurons, 15 SST neurons, and 15 VIP neu-

rons. The excitatory population had 180 neurons with uniform 1-degree spacing of peak directions

to tile the ring, plus four extra neurons with peak direction of zero degrees to capture the slight bias

of the CUX2 neurons. All model VIP neurons had a peak direction of zero degrees to capture the

strong bias for front-to-back motion observed for VIP neurons. In addition, all SST and PV model

neurons also had a peak direction of zero degrees, though the very broadly-tuned inputs to these

neurons results in a much weaker bias of net input to these neurons than the bias to VIP neurons. All

neurons were implemented as rate models with firing rate that was a rectified quadratic function of

the summed input to the neuron,

rss Ið Þ ¼
kI2 I>0
0 I � 0

�

where I is the input strength, rss is the steady state firing rate, and k is a constant of proportionality.

For ease of comparison with the SSN models developed by Rubin et al., 2015, we used k¼ 0:04 for

all models.

For a given external input, the firing rates of all neurons in the network were obtained by evolving

the network in time, with dynamics:

_r ¼ rss Isum tð Þð Þ� r tð Þ

I jsum tð Þ ¼ I jspþ
i

X

Wi;jr
i tð Þ

where r tð Þ is the time-dependent firing rate, r
_
is the time derivate of the neuron’s firing rate, rss is

the steady state firing rate that varies in time based on the inputs to the neuron, I jsum is the net input

to neuron j, I jsp is a constant spontaneous input to neuron j, and Wi;j is the connection strength from

presynaptic neuron i onto postsynaptic neuron j. To provide a spontaneous activity to the network,
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and account for the higher spontaneous activity of VIP neurons (Roux and Buzsáki, 2015), we set

ICUX2sp ¼ IPVsp ¼ ISSTsp ¼ 2 and IVIPsp ¼ 10. The network is evolved with Euler integration with updates of

rj ¼ t
t

j r
_ j

at each time step of t¼ 0:1 ms, where the time constants of the different neuron types are

t

CUX2 ¼ t

SST ¼ t

VIP ¼ 20 ms and t

PV ¼ 10 ms.

We calculated the stability of the steady state of activity at zero degrees with respect to a spa-

tially homogenous perturbation of the inputs. The stability matrix is, in the spatial Fourier domain,

J x;nð Þ ¼ gi xð ÞWijGij x;nð Þ

where x is the postsynaptic location in degrees, n is the spatial frequency corresponding to the

orientation difference between the presynaptic and postsynaptic cells, gi xð Þ is the postsynaptic gain

at its steady-state rate, W is the weight matrix and Gij x;nð Þ is the Fourier transform of the wrapped

Gaussian connectivity profile:

G x;nð Þ ¼ 30

ffiffiffiffi

2

p

r

e�2 npseð Þ
2 e�2 npsbð Þ

2

e�2 npsbð Þ
2 e�2 npsbð Þ

2

e�2 npsbð Þ
2 e�2 npseð Þ

2

e�2 npsbð Þ
2 e�2 npseð Þ

2

e�2 npsbð Þ
2 e�2 npsbð Þ

2

e�2 npseð Þ
2 e�2 npsbð Þ

2

e�2 npsbð Þ
2 e�2 npseð Þ

2

e�2 npsbð Þ
2 e�2 npseð Þ

2

0

B

B

@

1

C

C

A

where se ¼ 30 degrees is the projection width for E!E, E!VIP and VIP projections and sb ¼ 100

degrees is the projection width for the remaining inhibitory projections. If EEstability ¼ J00 x;nð Þ� 1 is

greater than zero, the network at orientation x is in an inhibitory-stabilized state with respect to per-

turbations at spatial frequency n.
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