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Abstract
Coastal sands are important natural recreational facilities that have become hotspots for tourism and economic development. 
However, these sands harbour diverse microbial assemblages that play a critical role in the balance between public health and 
ecology. In this study, targeted high-throughput sequencing analysis was used to identify sand-borne bacterial populations at 
four public beaches in Durban. The effect of heavy metal in shaping the distribution of bacterial metacommunities was deter-
mined using canonical correspondence analysis (CCA), while the functional gene profiles were predicted using PICRUSt2 
analysis. Sequences matching those of the bacterial phylum Proteobacteria were the most abundant in all samples, followed 
by those of the phyla Firmicutes, Actinobacteria, Bacteroidetes, and Gemmatimonadetes. Genus-level taxonomic analysis 
showed the presence of 1163 bacterial genera in all samples combined. The distribution of bacterial communities was shaped 
by heavy metal concentrations, with the distribution of Flavobacteria, Bacteroidia, and Deltaproteobacteria influenced by 
Pb and Zn, while B and Cr influenced the distribution of Clostridia and Gammaproteobacteria, respectively. Identified anti-
biotic resistance genes included the peptidoglycan biosynthesis gene II, III, IV, and V, as well as the polymyxin resistance 
gene, while the virulence genes included the sitA, fimB, aerobactin synthase, and pilL gene. Our findings demonstrate that 
beach sand-borne bacteria are reservoirs of virulence and antibiotic resistance genes. Contamination of beach sands with 
heavy metals selects for both heavy metal resistance and antibiotic resistance in beach sand bacterial communities. Children 
and immunocompromised people engaging in recreational activities on beaches may be exposed to higher risk of infection.
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Introduction

Sandy beaches are of prime importance for human recrea-
tion, tourism, and the development of coastal economic 
zones (Jonah et al. 2015). Worldwide, coastlines with long 
stretches of clean, and sandy beaches have become major 
economic zones, with tourist expenditures on accommo-
dation, food and drink, entertainment, and other services 
and goods topping US$1260 billion each year (UNWTO 
2016). Pre-COVID-19 predictions had placed global coastal 

tourism associated expenditures at above US$5 billion a day 
by the year 2020 (Orams 2003), underpinning the impor-
tance of sandy beaches to world economies. More people 
use sandy beaches than any other type of seashore as they 
provide the most productive fishing grounds, and offer per-
fect opportunities for sand bathing, a practice most com-
mon among the young and old beachgoers alike. However, 
sandy beaches are not just piles of sand; they harbour their 
own micro-ecosystems. They receive large inputs of organic 
matter supplied by the seawater, consisting of phytobenthos 
assimilates, and products washed and leached out from sea-
weeds, animal faeces, and remains of plants and animals 
(Mudryk et al. 2013). This creates optimal conditions for 
the growth of a high population of organisms such as small 
invertebrates, bacteria, actinomycetes, fungi, yeast, virus, 
algae, and diatoms (Zakaria et al. 2011; Whitman et al. 
2014; Di Piazza et al. 2017), making beach sand a potential 
reservoir for aetiological agents of disease (Solo-Gabriele 
et al. 2015). Since sandy beaches are dynamic and sensitive 
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places where life is under pressure, these sandy beach dwell-
ing microorganisms exhibit remarkable physiological and 
behavioural adaptation to changing environmental condi-
tions (Defeo et al. 2009). Microbiological assemblages in 
sandy shorelines play crucial roles in the decomposition 
of organic matter and pollutants, and nutrient mineraliza-
tion and recycling, ecosystem services which render sandy 
beaches safe for beachgoers (Amaral et al. 2016). At the 
same time, coastal sediments are the ultimate sink of heavy 
metals discharged into aquatic environments, and their anal-
ysis is thought to offer a more convenient and more accurate 
means of determining the degree of pollution (Al-edresy 
et al. 2019). This is because heavy metal toxicity has a dou-
ble effect on environmental microbial assemblages. First, 
heavy metal toxicity selects for heavy metal tolerance/resist-
ance (Dickinson et al. 2019). Second, it selects for antibiotic 
resistance in microbial pathogens (Sabry et al. 1997) by two 
main mechanisms, namely co-resistance and cross-resistance 
(Nguyen et al. 2019). The microbial risk posed to sand bath-
ers is therefore heightened if such microbes harbour antibi-
otic resistance genes.

The establishment of major urban centers in close 
proximity to the majority of sandy beaches has translated 
into increased anthropogenic pressure upon these natural 
resources, either as a result of discharge of sewage efflu-
ents and storm runoff, or as a direct consequence of rec-
reation associated pollutions such as bather faecal shedding 
(Orams 2003). Also, due to tidal wave action, the micro-
biological quality of beach sand is positively correlated to 
the microbiological quality of the beach water (Weiskerger 
et al. 2019). Where a beach is located close to a sewage 
treatment plant outfall, contact with beach sand increases 
the risk of gastrointestinal illness by a factor almost similar 
to that of coming into direct contact with sewage polluted 
water (Devine 2014). Beachgoers are impacted by contami-
nated beach sands either indirectly by degrading beach water 
quality through cycles of deposition and resuspension of 
pathogens between sand and water, or more directly through 
physical contact with/or ingestion of sands (Halliday et al. 
2014). Sensitive populations such as children, the elderly, 
or those with a weakened immune system are particularly 
at risk for long-term effects. From a public health perspec-
tive, knowledge of the microbial assemblages inhabiting 
recreational sand beaches could lead to the evaluation of 
the levels and trends of contaminants, as well as following 
human contact with sand; to an assessment of the effects 
on public health. Currently, beach advisories and closures 
are issued depending on faecal indicator bacterial densities 
in the beach water column (Zhang et al. 2015), with rela-
tively less attention paid to their densities in beach sands. 
However, at times bacterial counts in beach waters can fall 
to levels considered safe for swimming while higher densi-
ties remain in adjacent beach sands, exposing sand bathers 

to heightened risk compared to swimmers (Whitman and 
Nevers 2003). Therefore, this study was aimed at assess-
ing the bacterial communities in the sands of four popular 
recreational beaches which form the interface between the 
shoreline of the city of Durban and the Indian Ocean. A 
16S rDNA-targeted high-throughput sequencing approach 
was used to determine the bacterial community structure 
and composition across the four beaches. Furthermore, the 
study determined the possible correlations between heavy 
metal concentrations at the various study sites and the dis-
tribution of bacterial metacommunities. Finally, the study 
predicted the possible functional gene profiles of the bacte-
rial metacommunities using the Phylogenetic Investigation 
of Communities by Reconstruction of Unobserved States 
(PICRUSt2) analysis. Though such microbial communities 
are highly dynamic in nature, such that a study carried a 
year ago may not necessarily be used to predict the micro-
bial quality of recreational beach sand today, no study has 
ever been carried out to determine the bacterial and fungal 
communities of Durban’s sand beaches. This is a significant 
knowledge gap given the popularity of Durban’s beaches; 
a city that attracts the  6th most number of tourists into the 
African continent due to its year-round friendly climate and 
long expanses of sandy beaches. To the best of our knowl-
edge, this study stands to be the first ever to characterise 
the bacterial communities inhabiting the sandy beaches of 
Durban using high-throughput sequencing analysis.

Methodology

Description of study site and sample collection

Seventy-nine percent of the South African coastline is com-
posed of sandy beaches. The city of Durban boasts a wealth 
of coastal resources along its 97 km of coastline with the 
Indian Ocean. These include rocky shores, mangrove forests, 
coral reefs, coastal forests, wetlands, and sandy beaches. Of 
these, the least studied and most underappreciated are sandy 
beaches. Durban beaches are tourism hotspots owing to good 
weather that the City experiences all year-round, with aver-
age winter temperatures ranging from 11 °C to 24 °C, while 
summer temperatures average between 20 °C and 29 °C. 
Durban’s beaches are characterised by vast expanses of 
white sands, and gentle slopping coastlines, making them 
convenient for sand bathing, surfing, and swimming. Tour-
ism is very important to the local economy. Samples were 
collected from the South Beach, Harbour Beach, Central 
Beach, and North Beach (Fig. 1). The later three beaches are 
in the range of approximately 3 km from each other, while 
South Beach is furthest from the rest, approximately 15 km. 
Approximately 100 g of sand sample were collected at each 
beach from five points about 5 m apart. A core sampler was 
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used to collect sand samples in a vertical fashion from the 
surface down to about 10 cm deep at the foreshore zone. 
Sand samples from each beach were put in specimen bottles, 
labelled according to the collection sites, and transported to 
the laboratory at the University of South Africa in cooler 
boxes containing ice at 4 ºC for further processing.

Analysis of sand heavy metal concentration

Sand heavy metal concentrations were analysed following a 
previously described method (Sibanda et al. 2019). Briefly, 
the sand samples were dried at 105 °C for 2 h and then 
placed in a desiccator for 18 h after which ≈ 0.5 g of dried 
samples were each weighed and transferred into separate 
Mars6 microwave digestion vessels. To each, 9 mL analytic 
grade concentrated  HNO3 and 3 mL concentrated HCl were 
added, after which the samples were heated to 175 °C for 
20 min, and holding at that temperature for another 10 min. 
The samples cooled, filtered, and transferred into 50 mL 
volumetric flasks. Sample volumes were topped up with 
double-distilled water. Following this, 20 mL of the liquid 
samples were filtered and further acidified by adding 200 uL 
of concentrated  HNO3. A multi-elemental SRM was used to 
prepare calibration standards, which ranged from 0.1 to 10 
ug/L, and included a calibration blank. Analysis was per-
formed on a PerkinElmer NexION 300X Q-ICP-MS. After 

start-up and warm-up, the instrument was auto-tuned to 
maximise sensitivity and minimise double charge and oxide 
interference. Calibration standards and samples were meas-
ured under KED (Kinetic Energy Discrimination) mode. The 
software generates a calibration curve after measuring solu-
tions of known concentrations (standards), against which the 
unknown samples are measured.

DNA extraction and polymerase chain reaction 
amplification

For DNA extraction, about 10 g of each beach sand sample 
was initially mixed with 10 ml phosphate-buffered saline 
(PBS, pH 7.4). The mixtures were agitated by vortexing and 
allowed to stand for an hour at room temperature to dis-
lodge bacterial cells adhering to sand particles. Following 
this, 400 µl supernatant aliquots were then used as samples 
in the extraction of total genomic DNA using Faecal/Soil 
Total DNA™ extraction kit (Zymo Research Corporation, 
CA, USA) according to the manufacturer’s instructions. The 
extracted DNA was first amplified using the universal bacte-
rial 16S rDNA primers (27F and 1492R) to cover the whole 
variable region under the following PCR conditions: initial 
denaturation at 95 °C for 5 min, followed by 32 cycles of 
melting at 95 °C for 1 min, annealing at 55 °C for 1 min, 
and elongation at 72 °C for 1 min. The last step was final 
product elongation at 72 °C for 10 min, followed by cool-
ing at 4 °C. Subsequently, a second PCR run was carried 
out using the 27F and 518R primer sets, with overhanging 
adapter sequences that are compatible with Illumina index 
as described by Selvarajan et al. (2018).

Library preparation and sequencing

The resultant PCR products were cleaned and concentrated 
using AMPure XP beads (Beckman Coulter, Agencourt Bio-
science Corporation, Massachusetts, USA) according to the 
manufacturer’s instructions. Following the purification step, 
Illumina sequencing adapters and dual-index barcodes were 
added to the amplicon targets using a full complement of 
Nextera XT indices (Illumina, Inc. San Diego, CA, USA) 
through 8 cycle PCR as follows: 95 °C for 3 min, 8 cycles 
of {95 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s}, final 
extension at 72 °C for 5 min, and cooling at 4 °C. The result-
ing PCR product was cleaned again as already described. 
Fragments with an approximate size of 630 bp were vali-
dated using a Bioanalyzer DNA 1000 chip (Agilent, Santa 
Clara, CA, USA) and quantified using a fluorometric quan-
tification method (Qubit, USA) that uses dsDNA-binding 
dyes. Dilutions were done based on the quantified DNA 
using 10 mM Tris Buffer (pH 8.5). Five microliter (5 µl) 
aliquots of diluted DNA from each library were mixed for 
pooling libraries with unique indices. The pooled final DNA 

Fig. 1  Map showing the location of the four beaches from which 
samples were collected, along the Durban Indian Ocean coastline, 
South Africa
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library (4 nM) was denatured and sequenced on an Illu-
mina MiSeq System using paired 300-bp reads to generate 
high-quality reads of the V1–V3 region. Finally, raw fastq 
files were obtained after trimming the adapters and primer 
sequences for further bioinformatics analysis.

Data analyses

The obtained raw sequence (Fastq) datasets were initially 
scrutinized for PCR artefacts and low-quality reads (reads 
with > 50% bases having a quality score < 2) using ngsS-
hoRT (next-generation sequencing short reads) trimmer 
as described by Chen et al. (2014). Following the screen-
ing process, all the sequence data sets were analysed using 
the Mothur Pipeline v.1.40.0 as described by Schloss et al. 
(2009). During the analysis, sequence reads containing low 
nucleotides (< 50 nts), ambiguities (> 2%), and homopoly-
mers (7%) were excluded, along with sequences of mito-
chondrial and chloroplast origins. Chimeric sequences were 
removed using UCHIME algorithm as described by Edgar 
et al. (2011), while non-chimeric reads were classified using 
the Naïve Bayesian classifier algorithm as described by 
Wang et al. (2007) against the SILVA database version 132 
(Quast et al. 2013) with a confidence threshold of 80% to 
assign taxonomic identity of bacteria. A pairwise distance 
matrix (Euclidean distance matrix) was created from the 
curated aligned datasets to group sequences into Operational 
Taxonomic Units (OTUs) at a sequence similarity of 97% 
for identification. The diversity indices (Shannon–Weaver 
and Simpson indices) and microbial community richness 
index (Chao 1) were calculated at the genetic distance of 
0.03 to measure the diversity of bacterial species among the 
data sets. The identified dominant OTUs at phylum and class 
level were used to generate stacked bar chart using GraphPad 
prism v 8.01 Software. The raw high-throughput sequencing 
data were deposited into the NCBI Sequence Read Archive 
database (SRA accession: PRJNA604090).

Functional prediction analysis

Phylogenetic Investigation of Communities by Reconstruc-
tion of Unobserved States (PICRUSt2) software package 
(Douglas et al. 2019) was used to predict and understand 
the potential functional capabilities of the bacterial com-
munities at the different sampling sites. Towards this, the 
Nearest-Sequenced Taxon Index (NSTI) value was used to 
validate the reliability of predicted gene families and met-
abolic pathways as NSTI values ≥ 2 are considered noisy 
and unreliable. PICRUSt2 predicts gene families based on 
their nearest known taxonomic neighbour as interpolated 
from available fully sequenced genomes. In this case, the 
sequences were first aligned to HMMER (Eddy 2011). The 
aligned sequences were subsequently placed into a reference 

tree using EPA-NG (Barbera et al. 2019) and gappa (Czech 
et al. 2019). Normalisation of multiple 16S rRNA gene 
copies and prediction of gene families were achieved using 
Castor—a hidden state prediction tool (Louca and Doebeli 
2018). The predicted gene families were subsequently col-
lapsed into MetaCyc pathways using MinPath (Ye and Doak 
2009) to have a simple overview of the beach sand bacterial 
community metagenome. Detected pathways were subjected 
to differential abundance analysis using Aldex2 package 
(Fernandes et al. 2014) in R statistical software. Pathways 
with significant p values (≥ 0.05), Benjamini–Hochberg’s 
FDR score ≤ 0.05, and effect size ≥ 0.6 were considered dif-
ferentially abundant. The heatmap of the predicted relative 
abundances of genes related to different functions was gener-
ated using heatmap.2 package in R (v3.5.2) (R Core Team 
2019).

Results

Heavy metal analysis

Aluminum (Al) was the most abundant metalloid in all sam-
pling sites, with concentrations ranging from 508 ± 54.8 to 
2634 ± 187 µg/L (Table 1). Of the heavy metals, Cd was 
the least abundant metal in all sampling sites (0.1 ± 0 to 
0.5 ± 0 µg/L), while Mn was the most abundant (20.9 ± 1.3 
to 92.0 ± 4.6 µg/L).

16S rRNA targeted sequencing analysis

A total of 100 424 raw sequence reads were recovered from 
all beach sand samples. After cleaning of the sequences, 58 
568 sequences were obtained, representing about 58% of 
the raw sequences. The lowest number of reads (2 215) was 
obtained in Central Beach sand sample, while the highest 
number of reads (30 894) were obtained in the North Beach 
sand sample. A total of 3 204 operational taxonomic units 
(OTUs) were obtained in all sand samples combined, with 
246 OTUs from Central Beach sample and 1 314 OTUs from 
Harbour Beach sample. The sample-to-sample abundance-
based coverage estimator (ACE) and Chao1 indices, which 
are both used to estimate bacterial species richness, closely 
matched each other, indicating high levels of accuracy in 
the analysis. Both Chao1 and ACE indices revealed that 
the Harbour Beach sample had the highest bacterial spe-
cies richness followed by the North Beach sample, while 
the Central Beach sample had the lowest observed species 
richness. The bacterial species diversity of the sand samples 
was higher when estimated by the Shannon–Weaver index 
(H) than when it was estimated using the Simpson’s index 
(D). The highest bacterial diversity (Shannon index 5.93) 
was observed in the Harbour Beach sand sample, in which 
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was also recorded the highest number of bacterial phyla and 
classes (Figs. 2 and 3). Table 2 provides a summary of the 
bacterial species richness and diversity statistics.

Analysis of bacterial community distribution at phylum 
level resulted in the recovery of 11 major bacterial phyla. 
Sequences belonging to the phylum Proteobacteria were the 
most dominant in all samples combined, followed by those 
of the phyla Firmicutes, Actinobacteria, Bacteroidetes, and 
Gemmatimonadetes. At the Central Beach, 40% of the bacte-
rial sequences obtained belonged to the phylum Firmicutes, 
38% belonged to the phylum Actinobacteria, and 20% to 
the phylum Proteobacteria. The remainder of the recovered 
sequences belonged to some minor phyla, as represented in 
Fig. 2. At the Harbour Beach, Proteobacteria was the most 
dominant phylum with 45% of the recovered sequences. This 
was followed by the phyla Firmicutes and Actinobacteria 
each with 14% of the recovered sequences, Bacteroidetes 
with 10% of the sequences, and Planctomycetes and Ver-
rucomicrobia, each of which was represented by 4% of the 
recovered sequences. The remainder of the sequences rep-
resented some minor phyla represented by less than 1% of 
the recovered sequences. Samples from the North Beach 
were dominated by three major phyla, namely, Firmicutes 
(44% of the recovered sequences), Actinomycetes (14%), and 
Proteobacteria (39%), while the rest of the sequences repre-
sented some minor phyla. Similarly, South Beach sand sam-
ples were dominated by sequences representing three major 
phyla, namely, Proteobacteria (86%), Firmicutes (12%), and 
Actinobacteria (10%).

At class-level distribution, 16 bacterial classes were 
identified, the most dominant of which were, in order of 
overall sequence abundance, Alphaproteobacteria, Bacilli, 
Actinobacteria, Gammaproteobacteria, Betaproteobacteria, 
and Clostridia. Bacterial class sequence abundance closely 
mirrored the phylum-level distribution where most of the 
dominant classes (≥ 1% sequence representation) belonged 
to dominant phyla identified in Fig. 2. The Harbour Beach 
sand samples had the highest bacterial diversity at class level 
with 14 bacterial classes being represented by sequences 
with an abundance of ≥ 1% of the total sequences recov-
ered. The most dominant of the classes were in order of 
magnitude, Gammaproteobacteria, Deltaproteobacteria, 
Alphaproteobacteria, Clostridia, Acidimicrobiia, Actinobac-
teria, Flavobacteria, Bacteroidia, Bacilli, Kiritimatiellae, 
Oligoflexia, Planctomycetia, Phycisphaerae, and Betapro-
teobacteria (Fig. 3). The Central Beach sand sample har-
boured the second most diverse bacterial community with 10 
bacterial families each having ≥ 1% sequence representation. 
In order of representative sequence abundance, the identified 
classes were Actinobacteria, Bacilli, Clostridia, Alphapro-
teobacteria, Gammaproteobacteria, Betaproteobacteria, 
Deltaproteobacteria, Gemmatimonadetes (phylum Gemma-
timonadetes, Fig. 2), Bacteroidia, and Coriobacteriia. The Ta
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Fig. 2  Phylum-level bacterial 
community structure in sand 
samples from four recreational 
beaches in Durban

Fig. 3  Class-level bacterial 
community structure in sand 
samples from four recreational 
beaches in Durban
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North Beach sample was dominated by bacteria belonging 
to the following classes; Bacilli, Alphaproteobacteria, Act-
inobacteria, Betaproteobacteria, Gammaproteobacteria, 
Clostridia, Bacteroidia, Physcisphaerae, and Acidimicrobia. 
The least diverse bacterial community was observed in the 
South Beach sample, with 5 dominant bacterial classes iden-
tified as follows: Alphaproteobacteria, Betaproteobacteria, 
Bacilli, Gammaproteobacteria, and Actinobacteria.

Genus-level taxonomic analysis showed the presence of 
1 163 bacterial genera in all samples. Of these, 32 bacterial 
genera had a sequence representation of ≥ 1% in at least one 
sample, while the rest had under 1% sequence representation 
and were therefore classified as trace members. In terms of 
ubiquity, bacterial genera belonging to the phylum Proteo-
bacteria dominated, making more than 50% of the recovered 
genera. However, in terms of percentage sequence abun-
dance per sample, sequences representing the genus Bacillus 
(phylum Firmicutes) were the most abundant at 37.06% in 
the North Beach sample, followed by the genus Bifidobac-
terium (Actinobacteria) at 35.76% and 11.05% in Central 
Beach and North Beach samples, respectively. The genus 
Lactobacillus (Firmicutes) was the third most abundant with 
a sequence coverage of 28.80% in Central Beach sample fol-
lowed by the genus Methylobacterium (Proteobacteria) at 
14.02% sequence coverage in the South Beach sample. The 
phylum Bacteroidetes was also represented among the top 
32 bacterial genera, while sequences representing bacterial 
genera belonging to other phyla including Planctomycetes, 
Gemmatimonadetes, Verrucomicrobia, Lentisphaerae, Aci-
dobacteria, Chloroflexi, and Cyanobacteria were present 
in trace numbers. A summary of the bacterial phyla, class, 
order, and genera recovered from the beach sand samples is 
given in Table 3.

Canonical correspondence analysis (CCA)

Determination of the effects of heavy metal concentration 
on distribution and prevalence of bacterial metacommunities 
by CCA has showed that bacteria were differentially dis-
tributed with respect to heavy metal concentrations (Fig. 4). 
At the harbour sampling site, for instance, the metals Pb 
and Zn influenced the distribution of Flavobacteria, Bacte-
roidia, and Deltaproteobacteria, while the distributions of 
Clostridia and Gammaproteobacteria were correlated to the 
concentrations of barium (B) and Cr, respectively. Bacterial 

distribution at the South and North beach sampling sites, 
largely Alphaproteobacteria and Betaproteobacteria, was 
correlated to the metals Ni, Mn, As, and Al. However, bacte-
rial distribution at Central sampling site was not statistically 
linked to the concentration of any metal species.

Functional prediction analysis

PICRUSt2 prediction of functional genes among the sand-
borne bacterial metacommunities revealed the presence of 
both pathogenic and antibiotic resistance pathways. Identi-
fied antibiotic resistance genes included the peptidoglycan 
biosynthesis II (staphylococci) exhibited in the Harbour, 
North, and South samples (Fig. 5). Others included the pep-
tidoglycan biosynthesis III (mycobacteria), IV (Enterococ-
cus faecium), and V (beta-lactam resistance), as well as the 
polymyxin resistance gene, which was identified in all sam-
ples. The identified virulence genes included the sitA gene, 
the fimB gene, the aerobactin synthase gene, and pilL gene, 
all of which were detected in bacterial metacommunities 
from all sampling sites. 

Discussion

Data in Table 2 show that there were slight differences 
between the ACE and Chao1 species richness estimators. 
Hughes et al. (2001) point out that the ACE and Chao1 esti-
mators are similar in that they are nonparametric. They are 
different in that the Chao1 estimator gives greater weight 
to low abundance species (species with less than 10 indi-
viduals in a sample), while the ACE estimator gives greater 
weight to species sample coverage (species with more than 
10 individuals in a sample) (Kim et al. 2017). In this study, 
however, both estimators still showed high bacterial spe-
cies richness in all beach sand samples, as also observed 
in other beach sand samples (Mudryk et al. 2013; Romão 
et al. 2017). This confirms earlier findings that beach sands 
are microhabitats teaming with microbial life (Sabino et al. 
2014; Whitman et al. 2014; Solo-Gabriele et al. 2015). The 
disparities observed between the Shannon–Weaver diversity 
and the Simpson’s diversity indices imply that, while beach 
sand samples had high species richness, they had low species 
evenness. This trend has also been observed in other studies 
of a similar nature, including that of Gobet et al. (2012).

Table 2  Summary of the 
sequence reads, OTUs, and 
bacterial diversity and richness 
indices in four beach sand 
samples

Sample name Total reads After filtering OTUs ACE Chao Shannon Simpson

Central 3567 2215 246 393.71 423.60 3.52 0.09
Harbour 14,508 7728 1314 1612.93 1503.00 5.93 0.01
North 52,051 30,894 1071 1243.19 1194.20 3.89 0.10
South 30,298 17,731 573 618.11 593.65 4.23 0.04
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While most microbes found in beach sand are harmless, 
some are linked with human disease (Rettner 2018). There-
fore, understanding the microbial community structure and 
biodiversity of beach sand is useful for assessing the ecolog-
ical health of the beach sand, as higher biodiversity usually 
confers better resistance and resilience against environmen-
tal perturbation and contamination (Cui et al. 2013). The 
dominance of bacteria belonging to the phyla Proteobac-
teria, Bacteroidetes, Planctomycetes, Actinobacteria, and 
Gemmatimonadetes in beach sands has earlier been docu-
mented in coastal beach samples (Zheng et al. 2014; Romão 
et al. 2017). This may indicate that these phyla have evolved 
to be the main indigenous bacterial communities in coastal 

intertidal zones. Bacteria belonging to the phylum Proteo-
bacteria are known for their metabolic plasticity (Esposti 
2014), causing them to be able to colonise the most diverse 
environments compared to other bacterial phyla. This could 
be the reason why, at genus level, greater than 50% of recov-
ered OTUs belonged to the phylum Proteobacteria. As well 
as being metabolically diverse, this phylum is known for 
containing the most number of bacterial pathogens in its 
ranks (Rizzatti et al. 2017).

However, many other bacterial phyla identified in our 
study house essentially non-pathogenic bacteria. Most such 
bacteria have fundamental roles in the biogeochemical 
cycles of nutrients/mineral in the sediments (Zheng et al. 

Table 3  Bacterial communities (%) at the genus level in recreation sand beach samples

*Tr trace, representing sequence coverage of less than 1%

Taxonomy (Phylum; Class; Order; Genus) Bacterial communities %

Central Harbour North South

Proteobacteria; Betaproteobacteria; Burkholderiales; Achromobacter *Tr Tr 4.43 5.69
Bacteroidetes; Flavobacteria; Flavobacteriales; Actibacter Tr 1.14 Tr Tr
Proteobacteria; Gammaproteobacteria; Oceanospirillales; Alkalimarinus Tr 1.06 Tr Tr
Firmicutes; Clostridia; Clostridiales; Andreesenia Tr 1.20 Tr Tr
Proteobacteria; Betaproteobacteria; Burkholderiales; Aquabacterium Tr Tr 2.36 3.63
Actinobacteria; Actinobacteria_c; Micrococcales; Arthrobacter Tr Tr Tr 1.32
Proteobacteria; Alphaproteobacteria; Rhodospirillales; Azospirillum Tr Tr Tr 1.21
Firmicutes; Bacilli; Bacillales; Bacillus Tr Tr 37.06 2.54
Actinobacteria; Actinobacteria_c; Bifidobacteriales; Bifidobacterium 35.76 2.78 11.05 2.43
Proteobacteria; Alphaproteobacteria; Rhizobiales; Bradyrhizobium Tr Tr 2.33 5.23
Firmicutes; Clostridia; Clostridiales; Clostridium 4.42 1.77 Tr Tr
Proteobacteria; Deltaproteobacteria; Desulfobulbaceae_o; Desulfofustis Tr 3.96 Tr Tr
Proteobacteria; Deltaproteobacteria; Desulfobacterales; Desulfosarcina Tr 2.14 Tr Tr
Proteobacteria; Gammaproteobacteria; Enterobacterales; Enterobacteriaceae_g 1.22 Tr 4.97 6.27
Firmicutes; Clostridia; Clostridiales; Gottschalkiaceae_uc Tr 2.25 Tr Tr
Firmicutes; Bacilli; Lactobacillales; Lactobacillus 28.80 1.73 4.27 1.21
Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylobacterium Tr Tr 4.64 14.02
Actinobacteria; Actinobacteria_c; Frankiales; Nakamurella Tr 1.40 Tr Tr
Actinobacteria; Actinobacteria_c; Propionibacteriales; Nocardioides Tr Tr Tr 3.40
Proteobacteria; Betaproteobacteria; Burkholderiales; Noviherbaspirillum Tr Tr Tr 3.20
Proteobacteria; Gammaproteobacteria; Oceanospirillales; Oceanospirillum Tr 2.23 Tr Tr
Proteobacteria; Alphaproteobacteria; Rhizobiales; Ochrobactrum 1.17 Tr 1.82 2.25
Proteobacteria; Alphaproteobacteria; Rhodobacterales; Phaeobacter 1.13 Tr Tr Tr
Proteobacteria; Betaproteobacteria; Burkholderiales; Ralstonia Tr Tr 1.06 3.07
Proteobacteria; Alphaproteobacteria; Rhizobiales; Rhizobiaceae_uc Tr Tr Tr 1.21
Proteobacteria; Alphaproteobacteria; Rhizobiales; Rhizobium Tr Tr Tr 1.24
Proteobacteria; Alphaproteobacteria; Rhodobacterales; Rhodobacteraceae_uc Tr Tr Tr 8.18
Bacteroidetes; Flavobacteria; Flavobacteriales; Robiginitalea Tr 1.09 Tr Tr
Proteobacteria; Alphaproteobacteria; Sphingomonadales; Sphingomonas Tr Tr Tr 1.75
Firmicutes; Clostridia; Clostridiales; Sporobacter 1.31 Tr Tr Tr
Proteobacteria; Alphaproteobacteria; Rhodospirillales; Terasakiella Tr 7.76 Tr Tr
Proteobacteria; Gammaproteobacteria; Enterobacterales; Wigglesworthia 1.35 Tr Tr Tr
Others 17.88 66.65 20.38 31.52
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2014; Cardenas 2016). For example, bacteria belonging to 
the phylum Chloroflexi have been recognized for their key 
role in oil degradation (Zheng et al. 2014), while bacteria of 
the genus Ochrobactrum are known for hydrocarbon degra-
dation (Octaviany et al. 2019).

Sequences representing harmless bacterial popula-
tions were the most abundant in this study. These included 
sequences for Bifidobacterium longum, Lactobacillus para-
casei, Lactobacillus helveticus, Bifidobacterium animalis, 
Bifidobacterium pseudolongum, Bifidobacterium bifidum, 
and Lactobacillus buchneri, which are largely used in the 
food industry as probiotics (Margolles and Sánchez 2012; 
Smokvina et al. 2013; Sugahara et al. 2015; Wong et al. 
2019). Nonetheless, because these probiotic bacteria are 

natural flora of the gastrointestinal tracts of humans, and that 
of other animals (Mikkelsen et al. 2003), the abundance of 
sequences representing these bacterial species in beach sand 
samples serves as an important indicator of faecal pollution. 
Such faecal pollution could emanate either from faecal shed-
ding by sand bathers, direct faecal deposition by animals 
and birds, or from faecally contaminated sea water washing 
onto the beach sands (Whitman et al. 2014). However, the 
presence of other Bifidobacterium sp. like Bifidobacterium 
dentium can be used to determine faecal contamination of 
exclusively human origin (Nebra et al. 2003; Furet et al. 
2009), and can be useful in determining the public health 
safety of recreational beaches. Although such allochthonous 
microorganisms get subjected to various biotic and abiotic 

Fig. 4  Canonical correspond-
ence analysis (CCA) showing 
the effects of different heavy 
metal concentrations on bacte-
rial distribution patterns along 
the four sample sites

Fig. 5  Virulence enzymes and 
pathways detected in the beach 
samples (differences in the 
overall abundance of virulence 
and resistance genes in the 
various sample were significant; 
p = 0.028)

Low
High

S
ou

th

H
ar

bo
ur

C
en

tr
al

N
or

th

Samples

hlyE, clyA, sheA; hemolysin
ompT; omptin [EC:3.4.23.49]
uidA, GUSB; beta-glucuronidase [EC:3.2.1.31]
fimE;t ype 1 fimbriae regulatory protein
papA; major pilin subunit
polymyxin resistance
pilL; type IV pili sensor histidine kinase and response regulator
peptidoglycan biosynthesis III (Mycobacterium)
iucC; aerobactin synthase [EC:6.3.2.39]
peptidoglycan biosynthesis II (Staphylococci)
peptidoglycan maturation (meso-diaminopimelate containing)
peptidoglycan biosynthesis V(&beta-lactam resistance)
sitA; manganese/iron transport system substrate-binding protein
tadF; tight adherence protein F
fimB; type 1 fimbriae regulatory protein
peptidoglycan biosynthesis IV(Enterococcus faecium)
actA; actin-assembly inducing protein
peptidoglycan biosynthesis I (meso-diaminopimelate containing)



1762 Archives of Microbiology (2021) 203:1753–1766

1 3

pressures that affect their fate in the new environment (Feng 
et al. 2010; Gobet et al. 2012), microorganisms of enteric 
origin in beach sands may be incidentally ingested, leading 
to carriage, colonization, or even infection.

Sequences belonging to the genera Achromobacter 
xylosoxidans and Methylobacterium were both detected in 
the South and North beach sand samples. Achromobacter 
xylosoxidans is an emerging, multidrug-resistant opportunis-
tic pathogen which invades cystic fibrosis (CF) patients’ air-
ways, as well as cause a wide variety of infections in immu-
nocompromised patients (Marion-sanchez et al. 2019). Its 
presence in recreational beaches presents a potential health 
risk to beach goers, more so to immunocompromised per-
sons. Amoureux et al. (2013) earlier reported that this bac-
terium is innately resistant to cephalothin, cefoxitin, cefo-
taxime, aztreonam, and aminoglycosides, and frequently 
shows acquired resistance to carbapenems, ceftazidime, 
and ciprofloxacin, drastically limiting therapeutic choices for 
infected individuals. However, that largely depends on the 
environment from which it is isolated, with clinical strains 
having proven pathogenesis. Apart from this study, there are 
no previous reports linking A. xylosoxidans to beach sands. 
Previous reports show that it has been found in some plants, 
polluted soils, well water, domestic and hospital drains, as 
well as freshwater bodies frequently used for recreational 
purposes (Amoureux et  al. 2013). Being an emerging 
pathogen, the natural habitat for A. xylosoxidans, as well 
as its medium of spread are not yet known. Therefore, the 
identification of potential environmental reservoirs of this 
bacterium might aid in the prevention of infection among 
CF patients as well as immunocompromised individuals. 
Transmission of infectious diseases in beach environments 
can occur via direct exposure to microbes found in the sand 
through such routes as dermal contact, contact with eyes and 
ears, inhalation, and ingestion (Solo-Gabriele et al. 2015). 
The varied, though inevitable interactions between different 
beach sand zones and beach water make beach sand a poten-
tial source of such pathogens in beach water also (Feng et al. 
2010; Cui et al. 2013), which increases the risk of exposure 
to not only the sand bathers but the surfers and swimmers 
too. Methylobacterium sp., meanwhile, is an opportunistic 
bacterial pathogen in immunocompromised persons. It is 
reported to form biofilms, and to be tolerant to disinfecting 
agents, high temperatures, and drying (Kovaleva et al. 2014), 
a befitting reason as to why their sequences were found in 
relatively high percentage abundances in beach sand samples 
in this study.

We also recovered sequences belonging to the species 
Aeromicrobium erythreum from all sampling sites though 
in low relative abundances ranging from 0.06% of the total 
sequences recovered from the Harbour Beach sample to 
0.41% of those recovered from the Central Beach sam-
ple. Bacteria belonging to the genus Aeromicrobium have 

previously been isolated from sea water by Bruns et  al 
(2003) who described it as an obligately salt-dependent 
Gram-positive bacterium affiliated to the family Nocardioi-
daceae, within the order Actinomycetales. While there are 
currently no reports of its recovery from other environments 
except sea water, the recovery of sequences representing a 
species in this genus from beach sand provides further proof 
of tide-assisted microbial interactions between the beach 
sand and the sea water. Alternatively, this finding could 
suggest that this bacterium could be found in more diverse 
environments, and not just in the seawater. However, both 
the health significance and the influence of anthropogenic 
pressure on the distribution of this bacterium is currently 
unknown. Further studies are needed to, at the least, estab-
lish its ecological significance.

PICRUSt2 determination of functional genes also showed 
that beach sand bacterial metacommunities are important 
reservoirs of antibiotic and virulence genes. And, just like in 
other studies (Sandaa et al. 1999; Yao et al. 2016), canoni-
cal correspondence analysis (CCA) in this study revealed 
differential but positive correlations between heavy metal 
concentrations and certain bacterial metacommunities. The 
relationship between antimicrobial resistance and potentially 
toxic metal resistance in bacteria has been a subject of study 
for a long time (Chen et al. 2019; Quero et al. 2015). Find-
ings suggest that environmental heavy metal concentrations 
both shape the microbial community compositions as well 
as induce antimicrobial resistance by either cross- or co-
resistance phenomena (Chen et al. 2015; Nguyen et al. 2019; 
Yazdankhah et al. 2018). Environmental reservoirs of antibi-
otic resistance genes such as those observed in this study are 
of particular public health concern, considering that poly-
myxin is an antibiotic of last resort in the treatment of Gram-
negative bacterial infections (Srinivas and Rivard 2017; Li 
et al. 2019). By almost the same measure, β-lactams are the 
first and most frequently used class of antibacterial agents 
used to treat severe infections due to Gram-positive bacteria 
(Bugg and Walsh 1992; Mainardi et al. 2005). However, 
peptidoglycan biosynthesis II in staphylococci and pepti-
doglycan biosynthesis IV in enterococci usually give rise 
to β-lactams resistance due to production of low-affinity 
penicillin-binding proteins (PBPs), like the PBP2a D,D-
transpeptidase protein which results in methicillin resist-
ance in staphylococci, and the PBP5 D,D-transpeptidase 
protein which results in ampicillin resistance in enterococci 
(Mainardi et al. 2000, 2008). Furthermore, some entero-
cocci strains have been found to acquire antibiotic resist-
ance by completely bypassing the D,D-transpeptidase by an 
L,D-transpeptidase which confers resistance towards most 
β-lactam antibiotics on the organism (Mainardi et al. 2008).

Type IV Pili, that were possessed by the bacterial meta-
communities from all sampling sites, are important virulence 
factors used by many pathogens including Pseudomonas 
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aeruginosa for attachment to surfaces and host tissues and 
twitching motility (Kilmury and Burrows 2016). Transcrip-
tional activation of the fimB gene in uropathogenic Escheri-
chia coli (UPEC) leads to increased expression of type 1 pili, 
a chief virulence factor responsible for UPEC pathogenicity 
(Zhang et al. 2016). Urinary tract infections afflict mostly 
women, with UPEC emerging as the primarily agents of 
infections in humans (Schwan et al. 2018). Inside their hosts, 
pathogenic bacteria are often have to contend with extremely 
low bioavailability of iron, which thus becomes a limiting 
factor for survival (Bailey et al. 2018). Bacterial pathogens 
circumvent this limitation using unique strategies to scav-
enge iron, including the synthesis, secretion, and reuptake 
of iron chelators (siderophores) such as aerobactin, which 
has since been demonstrated to be critical for virulence in 
pathogens like Klebsiella pneumoniae (Bailey et al. 2016) 
and Vibrio mimicus (Moon et al. 2004). The sitA gene is 
most prominent among bacterial pathogens which utilize it 
to mobilize iron and manganese inside eukaryotic cells and 
is therefore associated with bacterial virulence (Runyen-
Janecky et al. 2003; Tivendale et al. 2009). Environmen-
tal bacteria harbouring reservoirs of both virulence and 
antibiotic resistance genes, therefore, pose increased risks 
of human infections, particularly in settings like beaches, 
since beach visitors tend to spend more time in contact with 
beach sand than with water (Whitman and Nevers 2003). 
Chances of infection are significantly increased if higher 
pathogen densities are found in the sand than in the water 
column, as previously observed (Sato et al. 2005). In par-
ticular, children are exposed to greater risk, because they 
spend more time playing and digging in the sand, where 
potentially pathogenic bacteria are likely to persist longer 
due to adsorption to sand particles, unlike free bacteria in the 
water. In what is a limitation of our study, PCR confirmation 
of the presence of virulence and antibiotic resistance genes 
as predicted by PICRUSt2 results could have made our find-
ings very concrete.

The identification of bacterial sequences belonging to 
the family Enterobacteriaceae in all but the Harbour Beach 
sample could indicate the likely contamination of beach 
sands with enteric microorganisms, which might translate 
to increased health risks to beach goers as most of these 
microbes are potential pathogens. Moreover, most environ-
mental pathogenic strains of this family are known to be 
multi-drug-resistant (Gonçalves et al. 2019).

Sequences belonging to some unique bacterial genera 
were also found, some of them with no previous history of 
being isolated from beach sands or marine environments. 
These included sequences belonging to the genera Naka-
murella, Robinginitalea and Teresakiella (Harbour Beach 
sample), Phaeobacter, Ralstonia, Sporobacter, and Wig-
glesworthia (Central Beach sample). Bacteria of the genus 
Wigglesworthia are otherwise known to reside within the 

cytoplasm of differentiated epithelial cells (bacteriocytes) of 
tsetse flies (Pais et al. 2008; Soumana et al. 2014). Bacteria 
belonging to the genus Ochrobactrum and the family Rhodo-
bacteraceae have been identified as etiological agents of the 
black band disease in corals (Miller and Richardson 2010), 
while Teresakiella sp. (either pusilla or brassicae) is thought 
to colonise marine shellfish (Han et al. 2016), and could 
have been deposited onto the beach sand by ocean tides.

In conclusion, the results of this study demonstrate that 
beach sand-borne bacteria are potential reservoirs of viru-
lence and antibiotic resistance genes. Contamination of 
beach sands with heavy metals selects for both heavy metal 
resistance and antibiotic resistance in beach sand microbial 
communities. The abundance of pathogenic bacterial OTUs 
in beach sand shows the likelihood of health risks to people 
engaging in recreational activities in beach sands. In particu-
lar, immunocompromised persons are at an increased risk of 
contracting bacterial infections after beach visits, especially 
taking into consideration the likelihood of incidental inges-
tion of beach sand and water. To validate this possibility, 
future studies may need to quantitatively assess the micro-
bial risk that beach goers are exposed to. However, not all 
microorganisms in beach sand are pathogenic as others play 
significant ecological roles including suppression of bacte-
rial pathogens, nutrient recycling, and also as bio-filters.
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