
Published online 19 March 2018 Nucleic Acids Research, 2018, Vol. 46, No. 10 e60
doi: 10.1093/nar/gky175

Efficient pathway enrichment and network analysis of
GWAS summary data using GSA-SNP2
Sora Yoon1,†, Hai C. T. Nguyen1,†, Yun J. Yoo2,3, Jinhwan Kim1, Bukyung Baik1,
Sounkou Kim1, Jin Kim4, Sangsoo Kim5 and Dougu Nam1,6,*

1School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea,
2Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, South Korea, 3Department of
Mathematics Education, Seoul National University, Seoul 08826, Republic of Korea, 4SK Telecom, Seoul 04539,
Republic of Korea, 5School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea and
6Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic
of Korea

Received March 09, 2017; Revised February 19, 2018; Editorial Decision February 23, 2018; Accepted March 13, 2018

ABSTRACT

Pathway-based analysis in genome-wide association
study (GWAS) is being widely used to uncover novel
multi-genic functional associations. Many of these
pathway-based methods have been used to test the
enrichment of the associated genes in the pathways,
but exhibited low powers and were highly affected by
free parameters. We present the novel method and
software GSA-SNP2 for pathway enrichment analy-
sis of GWAS P-value data. GSA-SNP2 provides high
power, decent type I error control and fast computa-
tion by incorporating the random set model and SNP-
count adjusted gene score. In a comparative study
using simulated and real GWAS data, GSA-SNP2 ex-
hibited high power and best prioritized gold stan-
dard positive pathways compared with six existing
enrichment-based methods and two self-contained
methods (alternative pathway analysis approach).
Based on these results, the difference between path-
way analysis approaches was investigated and the
effects of the gene correlation structures on the path-
way enrichment analysis were also discussed. In ad-
dition, GSA-SNP2 is able to visualize protein interac-
tion networks within and across the significant path-
ways so that the user can prioritize the core subnet-
works for further studies. GSA-SNP2 is freely avail-
able at https://sourceforge.net/projects/gsasnp2.

INTRODUCTION

Improving the power of genome-wide association study
(GWAS) has been a major challenge for the last decade.
The multiple testing correction in GWAS typically resulted

in only a handful of single nucleotide polymorphism (SNP)
markers. Analysis of such top-ranked SNPs discarding all
except ‘the tip of the iceberg’ was capable of revealing only
a small number of associated functions. As the sequencing
cost keeps dropping, whole genome sequencing data have
come to be used for GWAS (1), which poses a much greater
multiple testing burden. A number of multi-loci (gene or
pathway)-based association analysis methods were devel-
oped to address the problem. These methods substantially
increased the statistical power, and revealed many novel
genes and pathways that were not found by the SNP-based
approach (2–4). In particular, pathway-based association
analysis methods directly provide biological interpretations
and are capable of detecting aggregate association of mul-
tiple genes even when the individual genes are only moder-
ately associated.

In earlier efforts, most of the pathway-based GWAS anal-
ysis methods incorporated the competitive null hypothesis
(5), and tested the relative enrichment of the associated
genes in each pathway gene set. GenGen (6), GSEA-SNP
(7), iGSEA4GWAS (8), SSEA (9) and MAGENTA (10)
implemented modified GSEA algorithms which were orig-
inally developed for the pathway analysis of gene expres-
sion data; GSA-SNP (11) implemented a modified Z-test as
well as two GSEA algorithms; Aligator (12) and Gowinda
(13) provided Gene Ontology over-representation analysis
accounting for the gene size (or SNP count); INRICH (14)
tested enrichment of pathway gene-sets across independent
genomic intervals; and MAGMA (15) exploited multiple
regression models for gene and gene-set analysis. Whereas
competitive methods for GWAS data provide fast and sim-
ple implementations, many of them exhibit low powers and
are susceptible to some free parameters.

The pathway-based association analysis methods were
then developed for the self-contained null hypothesis in re-
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cent years (3,5,16,17). Competitive methods directly target
pathway-level aberrations by testing the enrichment of the
associated genes in each pathway, whereas self-contained
methods test the existence of an associated gene therein
(18). Thus, self-contained methods are in general highly sen-
sitive and therefore are useful in discovering novel pathways.
However, genes typically have multiple functions and the
mere existence of an associated gene does not always im-
ply a pathway-level aberration. Thus, both approaches are
useful and complement each other.

Furthermore, protein–protein interaction (PPI) networks
have also been considered for analyzing GWAS summary
data to identify large modules of associated proteins beyond
the pre-defined pathway gene-sets (19,20). Overall, interro-
gation of GWAS data from different levels of biologic ob-
jects (SNP, gene, pathway and network) has proven useful
for revealing novel associations with a phenotype of inter-
est.

Here, we present the novel method and C++ standalone
tool GSA-SNP2. It accepts GWAS SNP P-values and im-
plements a powerful competitive pathway analysis as well as
PPI network visualization in the significant pathways. Com-
pared with the previous version (11), GSA-SNP2 provides
a greatly improved type I error control by using the SNP-
count adjusted gene scores, while nevertheless preserving
high statistical power. The gene scores are adjusted for the
SNP counts in each gene using monotone cubic spline trend
curve. It was critical to remove high scoring (potentially
associated) genes before the curve fitting to achieve high
power. The performance of GSA-SNP2 was compared with
those of six existing competitive pathway analysis meth-
ods and two recently developed self-contained methods us-
ing GWAS data simulated under linear model (21) and
three publicly available GWAS summary datasets. GSA-
SNP2 exhibited high power and surpassed other methods
in prioritizing the curated gold standard pathways. Based on
these results, the different pathway analysis approaches for
GWAS data are compared and discussed. Furthermore, the
difference in the gene correlation structures between GWAS
and gene expression data, and their effects on competi-
tive pathway analysis are investigated. In addition, GSA-
SNP2 is able to visualize the PPI networks within (local)
and across (global) the significant pathways. These net-
works suggest how the key proteins interact with each other
and affect their neighbors in the aberrant pathways. The
global network, in particular, shows the core PPI struc-
ture that cannot be captured by single pathways guiding a
mechanistic study. GSA-SNP2 is freely available at https:
//sourceforge.net/projects/gsasnp2.

MATERIALS AND METHODS

Methods used in GSA-SNP2

GSA-SNP2 employs the Z-statistic of the random set model
(22) for evaluating gene-sets (pathways). The critical im-
provement from the previous version (11) is obtained from
the usage of the gene scores adjusted for the SNP counts for
each gene using a monotone cubic spline trend (23).

Adjusted gene scores. SNPs that are located in the range
of a gene [gene start − padding, gene end+padding] are as-
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Figure 1. The monotone cubic spline trend curves. Red circles represent
high scoring genes that have zero correlation coefficient (red dotted line).
Both the trend curves with (purple dash) or without (blue solid) red circles
are depicted. The blue curve is used for calculating the adjusted gene scores.

signed to the gene. The padding size of a gene is chosen
among 0, 10 000 and 20 000 (default) and the same padding
size is applied to all genes. According to Pickrell et al.
(24), 90% of SNPs affecting expression quantitative trait
loci were observed within 15 kb from the 5′ and 3′-end of
a gene. Thus, padding sizes around 15 kb (10 or 20 kb)
may be reasonable. Then, the initial gene score is given as
the maximum of –log(SNP P-value) for those SNPs. These
gene scores in general tend to increase as the number of as-
signed SNPs is increased. Thus, the initial gene scores are
adjusted for the number of assigned SNPs using monotone
cubic spline trend as shown in Figure 1. Note that a number
of genes have very high scores irrespective of the increas-
ing trend for the SNP counts. Therefore, such high scor-
ing (presumably associated) genes are removed before fitting
the trend curve. In other words, a range of top gene scores
where their correlation coefficient becomes zero (red circles)
is searched and the corresponding genes are removed. And
then, a monotone cubic spline curve (blue solid curve) is fit-
ted for the remaining genes (blue circles). We note that if
such high scoring genes are not removed, the trend curve
rather moves up (purple dash), which considerably lowers
the power of our method. The meaning of these high scoring
‘uncorrelated’ genes is discussed in Supplementary Data.
The adjusted gene score for ith gene gi is given as:

Ad j (gi ) = −log(pi ) − C (gi ) ,

where pi is the best P-value among the SNPs assigned to
gi and C(gi ) is the estimated gene score on the trend curve.
Note that the removal of the high scoring genes is only for
the curve fitting and they are all restored when calculating
the adjusted gene scores. See ‘Supplementary Data’ section
for the detailed description of the algorithms for the outlier
treatment, the novel algorithms for data sampling and con-
version to monotonic data using dual cubic splines for the
final curve fitting.
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Pathway statistic. Each pathway gene-set Pj (1 ≤ j ≤ K)
can be assessed by Z-statistic as follows:

Z
(
Pj

) = Pj − m

σ/
√

Nj
,

where Pj is the average of the adjusted gene scores in the
gene-set Pj , m and σ are respectively the mean and standard
deviation of all the adjusted gene scores, Nj is the number
of genes in Pj . In this method, each pathway gene-set is as-
sumed to be a random collection of genes from the genome;
hence the pathway statistic Z(Pj ) is assumed to have stan-
dard normal distribution. The pathway P-value is obtained
from the right-tailed test and Benjamini–Hochberg method
is used for the multiple testing correction (25). It was also
shown that one-tailed Z-test (used for GWAS data) bet-
ter controls false positives compared with two-tailed Z-
test (used for gene expression data), rendering our Z-test-
based approach more attractive (26). GSA-SNP2 uses a
modified Z-statistic (22) to capture more closely the im-
pact of the set size on the set statistic by replacing σ with
σ ∗ = σ · ( |G|−Nj

|G|−1 )
1
2 , where |G| is the total number of genes

analyzed. This modification slightly increases the power of
our method by amplifying the original Z-statistic. This Z-
statistic indeed had standard normal distribution (Supple-
mentary Figure S1).

Adjacent gene filtering. Some genes in a pathway can be
closely located on the genome or highly overlapping fam-
ily genes, and some of those genes may also belong to the
same linkage disequilibrium (LD) block. Such genes exhibit
a positive correlation in their P-values and may contribute
to increasing false positive pathways. To prevent this possi-
bility, the adjacently located genes within a pathway are al-
ternatively removed if they also have high positive genotype
correlations (>0.5) in the 1000 Genomes data. See ‘Sup-
plementary Data’ section for the detailed algorithm and
test results for different correlation thresholds (Supplemen-
tary Table S4). However, in practice, only a small portion
of genes in a pathway were adjacently located while at the
same time having high correlations (<1% on average even
for lower correlation threshold 0.3). Thus, this filtering pro-
cess seems to have a limited effect in reducing false positives.

Pathway analysis methods compared with GSA-SNP2

The type I error rate control and statistical power of GSA-
SNP2 were compared with those of six existing competitive
pathway analysis methods that analyze GWAS summary
data as follows: Z-test of GSA-SNP (denoted GSA-SNP1),
iGSEA4GWAS, MAGMA, INRICH, Gowinda and MA-
GENTA. MAGMA was tested for mean, top 1 SNP
statistic, as well as their combination (denoted MAGMA-
mean, MAGMA-top1 and MAGMA-multi, respectively).
For MAGENTA, two default enrichment cutoffs (75 and
95 percentiles of all gene scores) were used. For INRICH,
the SNP intervals were constructed for top 1% association
P-values. Using other larger percentages resulted in a very
long computation time in the simulation test. R2 = 0.5 was
used for the LD-clumping parameter. Gowinda was tested
for gene-mode, and candidate SNPs were selected for the

top 1, 5 or 10% of P-values. For other parameters, the de-
fault values were used.

In the power simulation test, the relative ‘enrichment’ of
associated genes in the target pathway was simulated; there-
fore, only the competitive methods described above were
compared. In analyzing public GWAS datasets, however,
two self-contained methods, sARTP and self-contained ver-
sions of MAGMA were also compared.

Simulation of GWAS data based on linear model

We simulated the genotypes of 10 000 individuals by ran-
domly pairing the haplotypes of 1000 Genomes European
samples. The phenotype Y of each individual was calculated
based on linear model (quantitative trait) (21). For testing
the type I error rate control, the following model was used.

Y = β1 X1 + · · · βk Xk + ε

where X1, · · · , Xk are normalized additive genotypes of k
effective SNPs, β1, · · · , βk are SNP effects (set as one in this
study) and ε is the residual with ε ∼ N(0, σ 2). In the type
I error rate test, 300 effective SNPs were randomly selected
within gene regions (including the padding parts). The phe-
notype variance σ 2 is determined by the narrow-sense heri-
tability (h2). In this case, the simulation data were generated
for h2 = 25 or 50%.

For testing the statistical power, the following model was
used.

Y = β1 X1 + · · · βk Xk + γ (G1 + · · · + G M) + ε

where γ is the gene-set effect and G1, · · · , G M are the ef-
fects of M causal genes in the target pathway. The target
pathway is randomly selected among the pathway gene-set
database. The effect of a gene g is defined as Gg= (Xg1 +
· · · + XgL)/

√
L where Xg1 , · · · , XgL are normalized additive

genotypes of L causal SNPs within gene g. In this case,
the total heritability was decomposed into the background
heritability h2

b = Var (β1 X1+···βk Xk)
Var (Y) and gene-set specific her-

itability h2
g = Var (γ (G1+···+G M))

Var (Y) , assuming that X1, · · · , Xk

and G1, · · · , G M have no correlation. The gene-set effect γ
and phenotype variance σ 2 are determined by the combina-
tion of h2

b and h2
g. The power simulation data were generated

for h2
b = 25% or 50% and h2

g = 4% or 8%. A hundred of
background SNPs were randomly selected within gene re-
gions, and 10–40% of causal genes in the target pathway
were randomly chosen. For each causal gene, one causal
SNP was randomly assigned. The 674 Reactome pathway
gene-sets (set size: 10–200) were used for both type I error
rate and power simulation tests (27,28).

RESULTS AND DISCUSSION

Simulation results for type I error rate control

False discovery rate (FDR) control simulation was re-
peated 20 times for two conditions h2 = 25 or 50%, and
the numbers of significant gene-sets (FDR < 0.05) de-
tected by each method were depicted in Figure 2. Al-
though the causal SNPs were randomly sampled from the
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Figure 2. Comparison of false discovery controls. False discovery counts
(FDR < 0.05) for competitive pathway analysis methods are shown. The
simulation was performed for two heritability values (25 and 50%) and
each simulation was repeated 20 times. MAGMA was tested for three gene
models; INRICH was tested for approximately top 1% SNPs; Gowinda
was tested for approximately top 1, 5 and 10% SNPs; and MAGENTA was
tested for 75 and 95% of enrichment cutoffs. The red dashed line indicates
the 5% of the total pathways.

genome, iGSEA4GWAS and GSA-SNP1 detected a num-
ber of significant gene-sets (median false discovery counts
for iGSEA4GWAS: 59.5 for h2 = 25%, 42 for h2 = 50%;
GSA-SNP1: 26 for h2 = 25%, 35.5 for h2 = 50% out of 674
pathway gene-sets). GSA-SNP2 showed greatly improved
FDR control compared with GSA-SNP1 (Median false dis-
covery: 2 for h2 = 25% and 1 for h2 = 50%). INRICH,
MAGMA and MAGENTA exhibited strict FDR controls
(almost zero false discoveries), whereas Gowinda exhibited
rather varied FDR controls depending on the SNP P-value
cutoff.

Simulation results for statistical power

The statistical power of each method was tested for com-
binations of two background heritability values ( h2

b=
25%, 50%) and two set-specific heritability values ( h2

g=
4%, 8%). In each parameter setting, simulations were re-
peated 50 times and we counted the cases where the tar-
get pathway was successfully detected (FDR < 0.05). GSA-
SNP1 and iGSEA4GWAS were not included because they
exhibited poor FDR controls. Figure 3 shows the pow-
ers of each method for the four different parameter set-
tings. GSA-SNP2 exhibited outstanding powers for all the
test conditions among the competitive pathway analysis
methods (78.0% for h2

b = 25%, h2
g = 8%; 60.0% for h2

b =
25%, h2

g = 4%; 65.3% for h2
b = 50%, h2

g = 8%; 44.0%
for h2

b = 50%, h2
g = 4%). MAGMA exhibited varied pow-

ers depending on the gene scoring method and the simu-
lation parameters. For three out of four cases, MAGMA-
mean had slightly better powers than MAGMA-top1. Their
combination, MAGMA-multi, showed an improved power
when h2

b = 25% and h2
g = 8%. INRICH and MAGENTA

exhibited low powers compared with other methods; the
best powers of INRICH, MAGENTA (75%) and MA-
GENTA (95%) were only 16.3, 12.2 and 14.3%, respectively.

Figure 3. Comparison of statistical powers. Powers of competitive path-
way analysis methods under the four different simulation settings ( h2

b =
25%, h2

g = 8%; h2
b = 25%, h2

g = 4%; h2
b = 50%, h2

g = 8%; and
h2

b = 50%, h2
g = 4%) are represented. In each method, the same param-

eters as used in the false discovery control test were used.

Gowinda exhibited varied powers depending on the SNP P-
value cutoff.

Performance comparison using real GWAS summary data

GSA-SNP2, six other competitive methods, as well as two
self-contained methods were tested for three public GWAS
summary datasets (DIAGRAM (29), GIANT height (30)
and KARE height (31)), and their performances were com-
pared based on curated gold standard pathways. In addi-
tion, we tested hybrid methods where the adjusted gene
scores in GSA-SNP2 are replaced with VEGAS (3,32) or
GATES (4) gene scores. VEGAS provides empirical P-
values for each gene using multivariate normal distribution,
and GATES also provides gene-based P-values taking into
account the effective number of SNPs in each gene. Be-
tween them, only VEGAS provided reasonably good path-
way analysis results, so was included in the performance
comparison. For VEGAS, two options of using all SNPs
in each gene (denoted GS2VEGAS-all) and only the top
SNP (denoted GS2VEGAS-top1) were tested. INRICH (P
= 1E-6 and P = 1E-8), Gowinda (P = 1E-3, P = 1E-2 and P
= 5E-2) and MAGENTA (enrichment cutoff: 75 and 95%
gene scores) were tested for a couple of free parameter val-
ues.

First, the type 2 diabetes (T2D) GWAS summary P-
values (stage 1 metadata; case 12 171 and control 56 862
samples) were downloaded from the DIAGRAM consor-
tium site (http://www.diagram-consortium.org/). Morris et
al. have curated 16 hallmark pathways for T2D (29). These
pathways as well as those including the word ‘diabetes’ in
the pathway name were regarded as gold standard (GS) pos-
itives and were summarized into 15 GS categories (Table 1
and Supplementary Data). Among the 1264 MSigDB C2
canonical pathways (28,33), 136 pathways were found to
belong to one of these categories (denoted GS pathways)
and are listed in Supplementary Data. Figure 4A shows
the comparison results between different methods; the cu-
mulative GS pathway counts corresponding to the path-
way ranks were depicted for each method up to q-value <
0.25. These graphs show how well each method prioritizes

http://www.diagram-consortium.org/
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Figure 4. Performance comparison using real data. For three public GWAS summary datasets from (A) DIAGRAM, (B) GIANT height and (C) KARE
height data, the cumulative gold standard pathway counts for competitive and self-contained pathway analysis methods were plotted. The results from
INRICH were not represented because it detected only one GS pathway. The blue dashed lines indicate the expected cumulative gold standard pathway
counts for random prediction.

the GS pathways. The graphs corresponding to a stricter
cut-off (q-value < 0.05) are also shown in Supplementary
Figure S2. See also Supplementary Table S1 for detailed
analysis results of each method. GSA-SNP2 exhibited a
high power and outperformed the other competitive and
MAGMA self-contained methods in the overall GS path-
way ranks. It also showed slightly better performance com-
pared with sARTP. Except for GSA-SNP2, GSA-SNP1 and
iGSEA4GWAS, most competitive methods detected only
a small number of GS pathways (≤15) due to their low
powers. GSA-SNP2, GSA-SNP1 and iGSEA4GWAS de-
tected 41, 47 and 49 GS pathways out of the 108, 232 and
240 significant pathways (FDR < 0.25), respectively. All
the self-contained methods exhibited high powers as ex-
pected. sARTP detected 52 GS pathways out of 193 sig-

nificant pathways, and self-contained MAGMA-mean that
showed the best result among the MAGMA methods de-
tected 85 GS pathways out of 552 significant pathways.

Then, we compared the GS categories detected by each
method. Here, we focused on four methods that de-
tected more than 25 GS pathways within the top 100
ranks (GSA-SNP2, iGSEA4GWAS, sARTP and the self-
contained MAGMA-mean). These four methods success-
fully detected all the three GS pathways in the ‘regula-
tion of beta cell’ category. Among the other categories,
GSA-SNP2 predicted the largest number of GS pathways
in the ‘diabetes’, ‘blood glucose regulation’, ‘branched chain
amino acid metabolism’, ‘inflammation’ and ‘Notch signal-
ing’ categories. iGSEA4GWAS best predicted in the ‘un-
folded protein response’ and ‘glycolysis and gluconeoge-
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Table 1 Power comparison for the 15 gold standard categories for type 2 diabetes

Category GSASNP2
GS2VEGAS
(best P) GSASNP1

iGSEA
4GWAS

MAGMA-
multi

MAGENTA
(75%)

GOWINDA
(P = 0.01) sARTP

MAGMA-
mean-sc*

Diabetes 3/4 1/4 3/4 2/4 0/4 1/4 2/4 3/4 3/4
Regulation of beta cell 3/3 3/3 1/3 3/3 0/3 2/3 3/3 3/3 3/3
Insulin/blood glucose level 10/25 0/25 8/25 2/25 0/25 0/25 1/25 4/25 7/25
Adipocytokine signaling 1/6 0/6 0/6 0/6 0/6 0/6 0/6 2/6 1/6
Cell cycle 4/22 1/22 1/22 5/22 2/22 0/22 1/22 4/22 6/22
Circadian rhythm 0/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6
Unfolded protein response 0/2 0/2 0/2 2/2 2/2 0/2 0/2 2/2 2/2
Branched-chain a.a.** metabolism 1/2 0/2 1/2 0/2 0/2 0/2 1/2 0/2 0/2
Fatty acid metabolism 2/10 0/10 3/10 1/10 0/10 1/10 0/10 5/10 3/10
Glycolysis and Gluconeogenesis 0/3 0/3 0/3 2/3 0/3 0/3 1/3 0/3 0/3
Inflammation 8/22 0/22 2/22 3/22 0/22 0/22 0/22 4/22 0/22
NOTCH signaling 6/14 0/14 3/14 5/14 0/14 0/14 4/14 5/14 5/14
PPARG signaling 0/1 0/1 0/1 0/1 0/1 0/1 0/1 1/1 0/1
WNT signaling 0/11 0/11 2/11 1/11 0/11 0/11 0/11 2/11 0/11
Mitochondrial dysfunction 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 1/5

Total GS pathways 38/100 5/7 24/100 26/100 4/11 4/9 13/23 35/100 31/100

Gold standard pathways detected within the top 100 pathways were counted for each category. Insignificant pathways (FDR > 0.25) were excluded. Total counts are shown in
the bottom. The best counts in each category were marked in bold. *sc: self-contained method, **a.a.: amino acid.

nesis’ categories. Self-contained MAGMA-mean best pre-
dicted in the ‘diabetes’, ‘cell cycle’, ‘unfolded protein re-
sponse’, ‘Notch signaling’ and ‘mitochondrial dysfunction’
categories. sARTP best predicted in as many as seven cat-
egories such as ‘diabetes’, ‘adipocytokine signaling’, ‘un-
folded protein response’, ‘fatty acid metabolism’, ‘PPARG
signaling’ and ‘WNT signaling’. Some pathways showed
the characteristics of self-contained methods. For exam-
ple, the ‘KEGG PPAR signaling pathway’ contained only
one strongly associated gene (PPARG) and was detected
only by the self-contained methods (q-value: 0.05 and 0.002
for sARTP and self-contained MAGMA-top1, respectively)
demonstrating their high sensitivity. These results indicate
that different pathway analysis methods exhibit different
preferences for GS categories. Overall, GSA-SNP2 detected
the largest number of GS pathways within the top 100 path-
ways, and also showed a wide coverage of GS categories that
is comparable to two powerful self-contained methods.

Next, the human height GWAS meta-analysis P-values
from the GIANT consortium 2010 (total sample size 183
727) were analyzed (30). In total, 15 GS categories as-
sociated with height and bone regulation were curated
from three independent studies. First, Pers et al. performed
DEPICT pathway analysis using the height GWAS meta-
analysis summary data from the GIANT consortium 2012–
2015 (total sample size: 253 288) (34,35). Because the large
sample size increases the statistical power, and DEPICT is
shown to properly control the type I error rate and account
for confounding factors, we regarded the DEPICT anal-
ysis result as a good source for interrogating the height-
associated pathways. From 183 significant pathways ob-
tained using a rather strict cutoff FDR < 0.01, we found
12 GS categories that are supported in the literature such as
skeletal system development and epigenetics (36,37). Sec-
ond, Marouli et al. analyzed the rare and low-frequency
coding variants that affect human height, and suggested
several height-associated genes and pathways (38). Among
them, ‘proteoglycan’ and ‘reactive oxygen species (ROS)’
were experimentally validated in other studies, so we in-
cluded them in the GS categories (39,40). Third, ‘telomerase
activity’ is known to have an important role in chondrocyte
proliferation during bone elongation, and thus was also in-

cluded in the GS categories (41). These 15 height-related GS
categories, supports in the literature, as well as all the corre-
sponding GS pathways from the MSigDB C5 gene ontology
terms (v 6.0) (28,33) are listed in the Supplementary Data.

Based on these GS pathways, performances of the
pathway analysis methods except sARTP were compared;
sARTP cannot be applied without effect values. Because of
the high powers caused by the large sample size, the cumu-
lative GS pathway counts were plotted up to q-value < 0.05
in each method (Figure 4B). With the GIANT height data,
GSA-SNP2 still exhibited a high power and best prioritized
the GS pathways. It detected 50 GS pathways within the
top 100 significant pathways. The other GSA-SNP methods
including GSA-SNP1, GS2VEGAS-all and GS2VEGAS-
top1 also showed similar high performances except that
GS2VEGAS-all and GS2VEGAS-top1 exhibited relatively
less powers (i.e. lower upper bounds of the curves) com-
pared with GSA-SNP1 and GSA-SNP2. Such a power re-
duction is attributed to the empirical approach of VEGAS
which only provides gene P-values > 10E-6. However, their
precisions do not seem to be reduced; within the top 100
significant pathways, GS2VEGAS-mean and GS2VEGAS-
top1 detected 50 and 53 GS pathways, respectively. Due
to the large sample size, most competitive methods includ-
ing MAGMA, MAGENTA (95%) and Gowinda showed
greater powers compared with the T2D case. MAGENTA
and MAGMA better prioritized GS pathways compared
with the self-contained MAGMA methods (MAGENTA
detected 35 GS pathways out of 73 significant pathways;
MAGMA-multi detected 40 out of top 100 pathways; and
self-contained MAGMA-multi detected 37 out of top 100
pathways).

In addition, there were clear differences in the prefer-
ence of GS categories between the pathway analysis meth-
ods. For example, the competitive MAGMA methods de-
tected the largest number of ‘skeletal system development’
pathways such as ‘cartilage and chondrocyte development’
(e.g. MAGMA-multi detected 23 related terms), and many
of them were in the top ranks. They were also top-ranked
in the MAGENTA result. In contrast, GSA-SNP methods
detected relatively more ‘epigenetics’ pathways (21–22 re-
lated terms) in the top ranks. GSA-SNP methods specifi-
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cally detected four ‘telomerase activity’ pathways within the
top 100 ranks, whereas the other competitive methods de-
tected only one or no telomerase related term. Addition-
ally, GSA-SNP2 detected two ‘ROS’ pathways within the
top 100 ranks, which were reported from a large-scale rare
and low-frequency variant analysis (38), whereas most of
the other methods failed to detected these pathways; only
GS2VEGAS-top1 and Gowinda (P = 0.05) detected one
of the ROS pathways. GS2VEGAS-all detected as many as
six ‘insulin-like growth factor and growth hormone’ path-
ways, whereas the other methods detected three or less cor-
responding terms. All the detailed analysis results for each
method are available in Supplementary Table S2.

Lastly, we analyzed the Korean height GWAS P-values
from the KARE consortium where much smaller samples
(8842) were used compared with the GIANT height data
(31). Comparison of pathway analysis methods using rela-
tively small-sample data is particularly important, because
pathway analysis has been applied to GWAS to overcome
the low powers of the conventional SNP-based analysis. In
this case, the cumulative GS pathway counts were plotted
up to q-value < 0.25 due to the lowered powers in each
method (See Supplementary Figure S2 for the graphs corre-
sponding to q-value < 0.05). GSA-SNP2 still showed high
power and outperformed the other methods in prioritizing
the GS pathways. It detected 41 GS pathways out of top 100
terms. Here, GS2VEGAS and MAGENTA (75%) methods
showed slightly better rank distributions than GSA-SNP2
in the former part (up to 40th rank). Although MAGENTA
had a relatively low power, it exhibited the highest density
of GS pathways (25 GS pathways within top 41 pathways:
61.0%) demonstrating its strict false positive control. The
powers of MAGMA methods were severely decreased com-
pared with the GIANT height case. MAGMA-mean and
MAGMA-multi detected no significant pathways and only
MAGMA-top1 detected five ‘skeletal system development’
and one ‘epigenetics’ pathways. It seems that MAGMA is
very sensitive to GWAS sample size. The preferred GS cate-
gories in each method were similar to the GIANT height
case. For example, self-contained MAGMA methods de-
tected many ‘skeletal system development’ pathways (13–
16 pathways; GSA-SNP2 detected 11 and the other meth-
ods detected eight or less corresponding pathways), whereas
GSA-SNP2 and two GS2VEGAS methods detected many
‘epigenetics’ pathways (17 pathways) and four ‘telomerase’
pathways. Among the rare and low-frequency variant asso-
ciated pathways, only GSA-SNP1 and GSA-SNP2 detected
four and one ‘proteoglycan’ pathways within the top 100
ranks, respectively. None of the tested methods detected an
ROS pathway within the top 100 ranks. See Supplementary
Table S3 for detailed analysis results for each method.

Comparison of competitive and self-contained pathway anal-
ysis results

GSA-SNP2 and sARTP results for the DIAGRAM data
were further compared by the pathways exclusively detected
by either method. The top 10 pathways that were signifi-
cant with GSA-SNP2 but were not significant with sARTP,
and vice versa were selected and the distributions of gene P-
values (VEGAS best p option) were compared in Figure 5.

In the former case, several genes had similar low P-values
which seemed to collectively represent the pathway-level
aberrations. On the other hand, in the latter case, most path-
ways contained one or two extreme gene P-values which
seemed to dominate those pathways. If such extreme genes
also belong to many other pathways, the association of the
corresponding pathway may not be very reliable. We note
that competitive methods are also affected by such outlier
genes and self-contained methods are also capable of de-
tecting pathways composed of moderately associated genes
only; however, this example demonstrates the difference of
the two GWAS pathway analysis approaches.

Comparison with the competitive pathway analysis for gene
expression data

The core algorithms used for competitive pathway analy-
sis of GWAS data are virtually the same as those used for
gene expression data. It is well known that the competi-
tive methods for gene expression data suffer from inflated
type I errors caused by the inter-gene correlations in each
pathway (5,18,42). Interestingly, in our test for GWAS sum-
mary data, many competitive methods yielded little false
positives. There is a substantial difference in the inter-gene
correlation structure in each pathway between the two data
types. In the gene expression case, many genes in each path-
way are involved in the same biological process and exhibit
positive correlations. However, in the GWAS case, only ad-
jacently located genes in each pathway that belong to the
same LD block exhibit positive correlations. Indeed, only
a small portion of genes were adjacently located in each
MSigDB C2 canonical pathway (median = 1.4%, mean =
4.3%), and only a portion of them had meaningful corre-
lations (median = 0.0%, mean = 0.9% for the correlation
threshold 0.3). Therefore, inter-gene correlations in GWAS
data seem to exert very limited effect on false positive gen-
eration. Note that GSA-SNP2 removes those highly corre-
lated adjacent genes in calculating pathway scores to further
reduce false positives (Supplementary Data). Many com-
petitive methods for GWAS data based on GSEA proce-
dure (6,7,9) perform sample label permutation of genotype
data in order to control false positives. Our results suggest
that the simple competitive methods that randomize gene
or SNP labels reasonably control false positives without the
heavy permutation of genotype data.

Comparison of running times

At last, the running times for each software were compared
for the DIAGRAM data and the C2 canonical pathway sets
(Table 2). GSA-SNP1, GSA-SNP2, MAGMA-mean, IN-
RICH and Gowinda were quite fast taking only a few min-
utes, while sARTP took over 10 days run on the same PC
(Intel Xeon Processor X5670 @ 2.93GHz, 12 CPUs and
24GB of RAM).

Network visualization

GSA-SNP2 is able to visualize protein interaction networks
within individual and across significant pathways. Network
plots are generated based on STRING (43) or HIPPIE (44)
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Figure 5. Comparison of gene P-value distributions in the pathways that are only significant with (A) GSA-SNP2 or (B) sARTP. The gray vertical line
indicates the significance cutoff (VEGAS2 P-value = 0.05). GS2 represents GSA-SNP2. Pathway P-values for sARTP and GSA-SNP2 are also represented.

Table 2 Running times for eight pathway analysis programs for GWAS
summary data

Method Time Permutation

GSA-SNP2 1.53 min
GSA-SNP1 1.49 min
MAGMA-mean 3.03 min
MAGMA-top1 34.85 min
MAGMA-multi 41.85 min
iGSEA4GWAS 30 min
MAGENTA 114.18 min 10 000
Gowinda (P = 0.001) 0.62 min 10 000
Gowinda (P = 0.01) 0.80 min 10 000
Gowinda (P = 0.05) 2.01 min 10 000
INRICH (P1 = 1E-6) 0.85 min 10 000
INRICH (P1 = 1E-4) 2.41 min 10 000
sARTP 10.41 days 100 000

networks, and the cut-offs for gene and pathway scores for
visualization are selected by the user. Clicking on the gene
node pops up a table which shows the gene name, mapped
SNPs, the neighboring genes, their association scores as well
as further detailed information via the hyperlink to outer
databases such as GeneCards (45) and dbSNP (46). The net-
work data are also provided as a text file which also shows
the pathways that contain the interacting protein pairs.

In particular, the global networks are able to show in-
teracting protein pairs that do not belong to any of the
single pathways. Such protein pairs may have drawn rela-
tively less attention, but can provide useful information for
mechanistic study. For example, the global networks (ex-
tracted from HIPPIE networks) of the significant pathways
(FDR < 25%, gene score < 0.01) obtained by analyzing
DIAGRAM data contained a sub-network composed of
eight genes such as TNF, RAB5A, CHUK, LTA, CARS,
IGF2BP2, HSPA1L and HSPA1A (Figure 6). Among them,
TNF and RAB5A have been individually studied and both
are known to regulate the insulin-responsive glucose trans-
porter (GLUT4) (47–49), a key protein that regulates the

concentration of blood glucose by transporting it to mus-
cle or fat cell. Thus, the deregulation of GLUT4 can lead
to insulin-resistance and T2D (50,51). The global networks
show the two proteins have a medium level of interaction
score 0.63 (affinity chromatography technology), and their
interaction may have an important implication in T2D.

The DIAGRAM data were also analyzed using STRING
networks. It provided much denser interaction networks
among the high scoring proteins than those for HIPPIE net-
works, and the key T2D proteins TNF and PPARG were
represented as hub proteins. Note that many of the interac-
tion edges in the STRING networks were generated from
the text-mining of the literature including GWAS papers,
and should be carefully analyzed to avoid circular argu-
ment.

CONCLUSION

GSA-SNP2 is a powerful and efficient tool for pathway en-
richment analysis of GWAS summary data. It provides both
local and global protein interaction networks in the associ-
ated pathways, and may facilitate integrated pathway and
network analysis of GWAS data. Five features of GSA-
SNP2 are summarized as follows:

i) Decent type I error control by incorporating gene scores
adjusted to the corresponding SNP counts using mono-
tone cubic spline trend.

ii) High power and fast computation based on the random
set model.

iii) Without any critical free parameter
iv) Protein interaction networks are visualized for the signif-

icant pathways. This function enables the user to priori-
tize core sub-networks within and across significant path-
ways.

v) Easy to use: only requires GWAS summary data (or
gene P-values) and takes only a minute or two to get
results. Other powerful self-contained pathway analysis
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Figure 6. Gene network (HIPPIE) derived from DIAGRAM data analysis. (A) Global network from significant gene-sets (FDR < 0.25; gene score < 0.01).
(B) A sub-network composed of eight nodes from the global network. (C) A heatmap representing the membership of each gene node in the significant
pathways.

tools also require SNP correlation input and take much
longer time.
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