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a b s t r a c t 

Imaging profiles from a longitudinal single-centre motor neu- 

ron disease study are presented. A standardized T1-weighted 

MRI protocol was implemented to characterise cortical dis- 

ease burden trajectories across the UMN (upper motor 

neuron) - LMN (lower motor neuron) spectrum of motor 

neuron diseases (MNDs) (Tahedl et al., 2021). Patients with 

amyotrophic lateral sclerosis (ALS n = 61), patients with pri- 

mary lateral sclerosis (PLS n = 23) and poliomyelitis sur- 

vivors (PMS n = 45) were included. Up to four longitudinal 

scans were available for each patient, separated by an inter- 

scan-interval of four months. Individual and group-level cor- 

tical thickness profiles were appraised using a normalisation 

procedure with reference to subject-specific control groups. 

A z -scoring approach was utilised, where each patients’ cor- 

tex was first segmented into 10 0 0 cortical regions, and then 

rated as ‘thin’, ‘thick’, or ‘comparable’ to the corresponding 

region of a demographically-matched control cohort. Frac- 

tions of significantly ‘thin’ and ‘thick’ patches were calculated 
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across the entire cerebral vertex as well as in specific brain 

regions, such as the motor cortex, parietal, frontal and tem- 

poral cortices. This approach allows the characterisation of 

disease burden in individual subjects as well as at a group- 

level, both cross-sectionally and longitudinally. The presented 

framework may aid the interpretation of individual cortical 

disease burden in other patient cohorts. 

© 2021 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND 

license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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pecifications Table 

Subject Clinical neurology 

Specific subject area Magnetic resonance imaging, Quantitative neuroimaging, Cortical thickness, Motor 

neuron disease, Amyotrophic Lateral Sclerosis 

Type of data High-resolution T1-weighted magnetic resonance imaging (MRI) data acquired using 

a standardized acquisition protocol was used to calculate measures of cortical 

disease burden. 

How data were acquired Magnetic resonance imaging: quantitative neuroimaging metrics retrieved form a 

standardised acquisition protocol on a 3 Tesla Philips Achieva system using an 

8-channel head coil (Philips Medical Systems, Best, The Netherlands) 

Data format Cortical thickness measures are provided as raw values (in millimetres); thin/thick 

patch counts are given as fractions (indicating, per subject, how many of all patches 

spanning the distinct cortices were affected) 

Parameters for data collection Local acquisition protocol for patients and healthy controls: 3D T1-weighted 

sequence: spatial resolution: 1 × 1 × 1 mm, Field of view: 256 × 256 × 160 mm, 

repetition time (TR) = 8.5 ms, echo time (TE) = 3.9 ms, Inversion time (TI) = 

1060 ms, flip angle (FA) = 8 °, SENSE factor = 1.5 

Cam-CAN database parameters: spatial resolution 1 × 1 × 1 mm, 

FOV = 256 × 240 × 192 mm, TR/TE 2.25/2.99 ms, TI 900 ms, FA 9 °, 
GRAPPA factor 2. 

Description of data collection Data were collected on a 3 Tesla MRI system. Demographic variables were recorded 

before the MRI scan, and a standardised neurological examination was also 

performed on the day of the MRI. 

Data source location Institution: Computational neuroimaging group, Trinity Biomedical Sciences 

Institute, Trinity College Dublin 

City/Town/Region: Dublin 

Country: Ireland 

Data accessibility Raw cortical thickness and thin/thick patch fractions per subject and session data 

are available online at Mendeley Data; 

https://data.mendeley.com/datasets/3pnp4hkhnw/1 

Related research article Tahedl M, Li Hi Shing S, Finegan E, Chipika RH, Lope J, Hardiman O, Bede P. 

Propagation patterns in motor neuron diseases: individual and 

phenotype-associated disease-burden trajectories across the UMN-LMN spectrum of 

MNDs. Neurobiol Aging. 2021 In Press 

alue of the Data 

• Cortical thickness values permit the interpretation of individual cortical thinning profiles in

other neurological conditions. 

• Regional ‘thin-patch’ fractions allow the characterisation of atrophy patterns in other condi-

tions across the spectrum of motor neuron diseases. 

• The presented statistical framework and methodological description may aid individualised

data interpretation in other neurodegenerative conditions. 

• Data may be incorporated in meta-analyses to probe the generalizability of our findings. 

• Control data offer reference values for the interpretation of ‘external’ patient data. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://data.mendeley.com/datasets/3pnp4hkhnw/1
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1. Data Description 

Anatomical patterns of cortical disease burden were evaluated in three patient cohorts across

the spectrum of motor neuron diseases (MNDs): 61 patients with amyotrophic lateral sclerosis

(‘ALS’: 43 males, age: 60.20 + /– 9.62), 23 patients with primary lateral sclerosis (‘PLS’: 12 males,

age: 58.52 ± 9.79), and 45 poliomyelitis-survivors (‘PMS’: 20 males, age: 66.07 ± 6.52). To char-

acterise anatomical progression patterns, longitudinal data were also analysed. Cortical thick-

ness values for up to four scans are presented per patient using a uniform inter-scan interval

of four months. In Fig. 1 , the availability of baseline and follow-up scans is presented in each

clinical cohort ( Fig. 1 ). Cross-sectional patient data were first contrasted to pooled normative
Fig. 1. Flow diagram indicating the number of patients in each study group at each timepoint. 
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Fig. 2. Flow chart illustrating the methodological framework for calculating ‘thin’ and ‘thick’ patch load. Please see text 

for specific details (section experimental design, materials and methods). 

Fig. 3. The statistical brain maps of patients with amyotrophic lateral sclerosis (ALS) depicting the percentage of subjects 

exhibiting cortical thinning/hypertrophy in each cortical region, at each timepoint. Cool colours indicate cortical atrophy, 

hot colours refer to thick patches with respect to controls. 

d  

D  

C  

i  

t  
ata set of healthy controls (‘HC’, n = 776, 383 males, age: 55.08 ± 17.63) from Trinity College

ublin ( n = 125) and subjects from the Cambridge Centre for Ageing and Neuroscience (Cam-

AN) database ( n = 651) [2] . The cortical thickness profile of the healthy controls scanned at our

nstitution is presented in the accompanying data sets. As described in the companion article [1] ,

he fraction of significantly ‘thin’ and ‘thick’ patches was calculated in each patient by comparing
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Fig. 4. The statistical brain maps of patients with primary lateral sclerosis (PLS) depicting the percentage of subjects 

exhibiting cortical thinning/hypertrophy in each cortical region, at each timepoint. Cool colours indicate cortical atrophy, 

hot colours refer to thick patches with respect to controls. 

 

 

 

 

 

 

 

 

 

 

 

individual cortical thickness maps to an age- and sex-matched control group. The flowchart for

retrieving these metrics is presented in Fig. 2 which provides a step-by-step illustration of the

methodological framework ( Fig. 2 ). Our approach not only enabled the characterisation of dis-

ease burden in individual patients, but provided descriptive statistics for each patient group at

each timepoint. As illustrated in Figs. 3 –5 , the colour coding indicates the percentage of patients

in each group at each timepoint exhibiting statistically ‘thin’ or ‘thick’ patches in specific corti-

cal regions ( Figs. 3–5 ). Finally, the regional distribution of ‘thin’ and ‘thick’ patch load was also

evaluated in each cortical region; in the motor, parietal, frontal, and temporal cortices. Cortical

thin-patch burden in specific cerebral regions is presented as the radar charts ( Fig. 6 ) across the

three diagnostic groups ( Fig. 6 ). The raw data which was utilised to calculate this distribution is

available online at https://data.mendeley.com/datasets/3pnp4hkhnw/1 . In the companion article, 

we also present ‘standard’ cortical thickness analyses, where the cortical thickness profile of the

patient groups are contrasted to healthy controls, correcting for age and gender [1] . 

https://data.mendeley.com/datasets/3pnp4hkhnw/1
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Fig. 5. The statistical brain maps of poliomyelitis survivors depicting the percentage of subjects exhibiting cortical thin- 

ning/hypertrophy in each cortical region, at each timepoint. Cool colours indicate cortical atrophy, hot colours refer to 

thick patches with respect to controls. 
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Fig. 6. Radar charts illustrating the topographical distribution of cortical disease burden in the different patient groups 

at baseline comparisons. Thin (A) and thick (B) patch fractions are presented for the entire brain and the motor, parietal, 

frontal and temporal cortices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Experimental Design, Materials and Methods 

Motor neuron diseases encompass a range of clinically heterogeneous conditions, with con-

siderable differences in clinical [ 3 , 4 ], radiological [5–7] and biomarker profiles [8–10] . While the

radiological features of amyotrophic lateral sclerosis are well established [ 11 , 12 ], distinguishing

imaging patterns in upper motor neuron predominant MNDs [13–15] and lower motor neuron

predominant MNDs [16–18] are less well characterised. Machine-learning applications are in-

creasingly utilised to interpret single MRI scans in motor neuron diseases [19] , but the radi-

ological distinction between ALS and PLS remains challenging [20–22] without the evaluation

of spinal cord metrics [ 23 , 24 ]. Accordingly, in this study T1-weighted MRI data from 129 pa-

tients were included spanning the UMN-LMN spectrum of motor neuron diseases: 61 patients

with amyotrophic lateral sclerosis (ALS), 23 patients with primary lateral sclerosis (PLS) and 45

poliomyelitis survivors (PMS). Data from multiple timepoints were available for each patient, ac-

quired 4 months apart ( Fig. 1 ). The research has been carried out in accordance with The Code

of Ethics of the World Medical Association (Declaration of Helsinki) and all patients provided in-

formed consent in accordance with the ethics approval of the study (Medical Research Commit-

tee of Beaumont Hospital, Dublin, Ireland). ALS patients had ‘probable’ or ‘definite’ ALS accord-

ing to the El Escorial criteria [25] and PLS patients were diagnosed based on the Gordon criteria

[26] . A large, pooled control dataset ( n = 776) was utilised to interpret patient data. The total

number and fraction of significantly ‘thin’ and ‘thick’ patches were calculated as follows ( Fig. 2 ):

First, surface-based cortical thickness maps were obtained using FreeSurfer’s recon-all pipeline

on individual T1-weigthed MRI data, which were then converted into the Connectivity Infor-

matics Technology Initiative (CIFTI) file format using the CIFTIFY toolbox [27] for visualization.

Subsequently, the cortex was segmented into 10 0 0 equally-sized region, and cortical thickness

was averaged in a cortical ‘patch’. These maps were then converted into z -maps, with respect

to an age- and sex- matched control group, encompassing sex-matched healthy controls with

an age range of + /– 2 years of the individual patient. Finally, p -values were obtained from the

z -scores using a Monte-Carlo permutation procedure, which is describe in more details in the

companion article [1] . As both p -values representing the probability of higher and lower cortical

thickness were calculated (representing focal atrophy or hypertrophy) p -maps were thresholded

at a = 0.05/2 = 0.025. The number of whole-brain ‘thin’/’thick’ patches was then converted
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o fractions by dividing by the total number of patches. To characterise the regional profile of

henotype-associated atrophy, this procedure was repeated restricted to ‘patches’ within the (1)

otor, (2) parietal, (3) frontal and (4) temporal cortices using the Desikan-Kiliany atlas [28] to

efine these anatomical regions. 
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