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Abstract

In vision science, cascades of Linear+Nonlinear transforms are very successful in modeling

a number of perceptual experiences. However, the conventional literature is usually too

focused on only describing the forward input-output transform. Instead, in this work we pres-

ent the mathematics of such cascades beyond the forward transform, namely the Jacobian

matrices and the inverse. The fundamental reason for this analytical treatment is that it

offers useful analytical insight into the psychophysics, the physiology, and the function of

the visual system. For instance, we show how the trends of the sensitivity (volume of the

discrimination regions) and the adaptation of the receptive fields can be identified in the

expression of the Jacobian w.r.t. the stimulus. This matrix also tells us which regions of the

stimulus space are encoded more efficiently in multi-information terms. The Jacobian w.r.t.

the parameters shows which aspects of the model have bigger impact in the response, and

hence their relative relevance. The analytic inverse implies conditions for the response and

model parameters to ensure appropriate decoding. From the experimental and applied per-

spective, (a) the Jacobian w.r.t. the stimulus is necessary in new experimental methods

based on the synthesis of visual stimuli with interesting geometrical properties, (b) the Jaco-

bian matrices w.r.t. the parameters are convenient to learn the model from classical experi-

ments or alternative goal optimization, and (c) the inverse is a promising model-based

alternative to blind machine-learning methods for neural decoding that do not include mean-

ingful biological information. The theory is checked by building and testing a vision model

that actually follows a modular Linear+Nonlinear program. Our illustrative derivable and

invertible model consists of a cascade of modules that account for brightness, contrast,

energy masking, and wavelet masking. To stress the generality of this modular setting we

show examples where some of the canonical Divisive Normalization modules are substi-

tuted by equivalent modules such as the Wilson-Cowan interaction model (at the V1 cortex)

or a tone-mapping model (at the retina).
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1 Introduction

The mathematics of Linear+Nonlinear (L+NL) transforms is interesting in neuroscience

because cascades of such modules are key in explaining a number of perceptual experiences

[1]. For instance, in visual neuroscience, perceptions of color, motion and spatial texture are

tightly related to L+NL models of similar functional form [2–4]. The literature is usually

focused on describing the behavior, i.e. setting the parameters of the forward input-output

transform. However, understanding the transform computed by the sensory system, S, goes

beyond predicting the output from the input. The mathematical properties of the model

(namely the derivatives,rS, and the inverse, S−1), are also relevant. Here we show that the Jaco-

bian matrices and the inverse provide analytical insight into fundamental aspects of the psycho-
physics of the visual system, its physiology, and its function. Additionally, the Jacobian matrices

and the inverse enable new experimental designs, data analysis and applications in visual neu-
roscience. Finally, related applied disciplines like image processing that require computable and

interpretable models of visual perception may also benefit from this formulation.

Derivatives are relevant

The Jacobian,rS, represents a local linear approximation of the nonlinear system, S. From a

fundamental perspective, the analytical expressions of the Jacobian matrices have a variety of

interests in visual neurosicence. In physiology, the dot product definition of receptive field
introduced for linear systems [5, 6] can be extended to nonlinear systems using the Jacobian

matrix with regard to the stimulus. Therefore, this Jacobian is convenient to properly formu-

late concepts such as adaptive (stimulus dependent) receptive fields or adaptive features. On

the other hand, the Jacobian of the response w.r.t the parameters allows to assess the impact of

the different aspects of the model on the response, and hence the relative relevance of these

aspects. In psychophysics, the sensitivity of the system is characterized by its discrimination

abilities (inverse of the volume of the regions determined by the just noticeable differences
-JNDs- [7, 8]). Discrimination depends on models to compute perceptual differences from the

internal representation [9–11] or on models of noise at the internal representation [12–14]. In

any of these cases, the way the sensory system, S, deforms the stimulus space is critical to

understand how the discrimination regions in the internal representation transform back into

the image space. It does not matter that these internal JNDs are implied by internal noise or by

an assumed internal metric. The change of variable theorem [15, 16] implies that the Jacobian

w.r.t. the stimulus controls how the volume element is enlarged or compressed in the deforma-

tions suffered by the representation along the neural pathway. That is the key to describe how

the metric matrices change under nonlinear transforms in Riemannian geometry [16]. For the

same reason, this Jacobian wrt the stimulus is also the key to characterize the propagation of

noise throughout the system [17]. In analyzing the function of the sensory system in informa-

tion-theoretic terms the relation between the information and the volume of the signal mani-

fold is crucial [18, 19]. According to this, for the same geometrical reasons stated above [15,

16], the Jacobian wrt the stimulus plays an important role in determining the amount of infor-

mation lost (or neglected) along the neural pathway. More specifically [19], the Jacobian wrt

the stimulus determines the multi-information shared by the different sensors of the neural

representation.

From an experimental and applied perspective, the Jacobian matrices also have relevance in

visual neuroscience. Novel psychophysical techniques such as Maximum Differentiation [20–

23] synthesize stimuli for the experiments through the gradient of the perceptual distance, and

it depends on the Jacobian w.r.t. the input. On the other hand, characterizing the Jacobian w.r.

t. the parameters is also important. First, it is relevant in order to learn the L+NL cascade that

Derivatives and inverse of cascaded linear+nonlinear neural models

PLOS ONE | https://doi.org/10.1371/journal.pone.0201326 October 15, 2018 2 / 49

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0201326


better reproduces classical experiments (e.g. physiological responses or psychophysical judge-

ments), as opposed to approaches that rely on exhaustive search (as in [11, 24–26]). Second, an

explicit expression for this Jacobian is important to understand the optimization for alternative

goals such as optimal coding, as opposed to approaches that rely on implicit automatic differ-

entiation (as in [27]).

Finally, related disciplines such as image processing may benefit from analytically interpret-

able models. Reliable subjective image distances (and hence the Jacobian w.r.t. stimulus) have

paramount relevance in image processing applications judged by human viewers [28–30].

Examples include tone mapping and contrast enhancement [31], image coding [9, 10, 32],

motion estimation and video coding [24, 33, 34], denoising [35, 36], visual pattern recognition

[37], or search in image databases [38]. In all these cases, either the subjective distance between

the original and the processed image has to be minimized, or the distance used to find image

matches has to be perceptually meaningful.

Inverse is relevant

In neuroscience, visual brain decoding [39–41] may benefit from the analytic inverse, S−1,

because it may lead to improvements of the current techniques based on blind regression [42].

Interestingly, the benefits of the inverse may not only be limited to straightforward improve-

ments in decoding: the inverse may also give rise to more accurate methods to estimate the

model. For instance, the best parameters of S would be those that lead to better reconstructions

through the corresponding S−1. Note that another relevant point ofrS is its relation to S−1:

according to the theorem of the inverse function [15], the non-singularity of the Jacobian is

the necessary condition for the existence of the inverse.

In the image processing side, the relevance of the inverse is obvious in perceptual image/

video coding where the signal is transformed to the perceptual representation prior to quanti-

zation [10, 32–34]: decompression implies the inverse to reconstruct the image. Another

example is white balance based on human color constancy (or chromatic adaptation): in gen-

eral, adaptation may be understood as a transform to an invariant representation which is

insensitive to irrelevant changes (as for instance the nature of the illumination) [43–45]. Mod-

els of this class of invariant representations could be easily applied for color constancy if the

transform is invertible.

In this paper we derive three analytic results for neural models consisting on cascades of

canonical Linear+Nonlinear modules: (i) the Jacobian with regard to the stimulus, (ii) the

Jacobian with regard to the parameters, and (iii) the inverse.

We discuss the use of the above results in the context of illustrative derivable and invertible
vision models made of cascades of L+NL modules. This kind of models is used to illustrate

both (a) the fundamental insight that can be obtained from the analytical expressions as well as

(b) their usefulness in designing new experiments and applications in visual neuroscience.

Regarding the insight obtained from analytical expressions, in physiology, (a.1) we show

how the context-dependence of the receptive fields of the sensors can be explicitly seen in the

expression of the Jacobian w.r.t the stimulus. Likewise, (a.2) we show that the expression of the

Jacobian wrt the parameters reveals that the impact in the response of uncertainty at the filters

(or synaptic weights) may vary over the stimulus space, and this trend may depend on the sen-

sor. In psychophysics, (a.3) we show how the general trends of the sensitivity over the stimulus

space can be seen from the determinant of the metric based on the Jacobian wrt the stimulus.

Finally, in studying the function of the system in coding terms, (a.4) we show that the Jacobian

wrt the stimulus implies different efficiency (different multi-information reduction) in differ-

ent regions of the stimulus space.
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Regarding the experimental and applied interest of the expressions, we address three exam-

ples: (b.1) the Jacobian wrt the image is used for stimuli generation in geometry-based psycho-

physics as in [21]; (b.2) the Jacobian wrt the parameters is used to maximize the alignment

with subjective distortion measures, improving the brute-force approaches in [11, 24, 26]; and

finally, (b.3) we discuss how the analytic inverse may be a successful alternative to decoding

techniques based on blind linear regression [46] or nonlinear kernel-ridge regression [41].

To stress the generality of the modular L+NL cascade we show examples where some of the

canonical Divisive Normalization modules [1] are substituted by equivalent modules such as

the Wilson-Cowan interaction [47, 48] (at the V1 cortex) or a tone-mapping model [49] (at

the retina). Of course, these were selected just as illustrative nonlinearities in an active field in

which new alternatives are being explored [50–53].

Despite the relevance of these ubiquitous neural models, the above mathematical issues

have not been addressed in detail in the experimental literature. Interestingly, although the

machine learning literature deals with similar architectures [54], these details are also not

made explicit due to the growing popularity of automatic differentiation [55]. For instance, in

[14, 27, 53, 56, 57] biologically plausible L+NL architectures are optimized according to physi-

ological data, psychophysical data or to efficient coding principles. Unfortunately, the Jacobian

w.r.t. the parameters was hidden behind automatic differentiation.

On the contrary, here we show how the explicit expressions provide intuition on the role of

biologically relevant parameters.

2 Results

2.1 Notation and general considerations

Stimuli as vectors. An image in the retina, x0(p, λ), is a function describing the spectral

irradiance in each spatial location, p, and wavelength, λ. Here regular, bold, and capital letters

will represent scalars, vectors and matrices (or multivariate applications) respectively. Assum-

ing a dense enough sampling, the continuous input can be represented by a discrete spectral

array with no information loss, regardless of the specific sampling pattern [58]. Here we will

assume Cartesian sampling in space and wavelength. This implies that the spectral cube con-

sists of b matrices of size h × w, where the l-th matrix represents the discrete spatial distribu-

tion of the energy of l-th discrete wavelength (l = 1, . . ., b). In vision models the spatio-spectral

resolution of viewers should determine the sampling frequencies. Given the cut-off frequencies

of the contrast sensitivities [59, 60], and given the smoothness of the achromatic and opponent

spectral sensitivities [61, 62], the spatial dimensions may be sampled at about 80 samples/deg

(cpd) and the spectral dimension at about 0.1 samples/nm [63].

Using an appropriate rearrangement of the spectral array, the input image can be thought

as a vector in a d0-dimensional space,

x0ðp;lÞ ������!vect x0 ¼

x0
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i.e. the input stimuli, x0(p, λ), which are functions defined in a discrete 3-dimensional

domain, are rearranged as a d0-dimensional column vectors, x0 ¼ vectðx0ðp;lÞÞ 2 Rd0�1,

where d0 = h × w × b. Note that with the considered sampling frequencies, the dimension of

the input stimuli is huge even for moderate image sizes (small angular field in the visible

spectral range).

The particular scanning pattern in the rearrangement function, vect(�), has no major rele-

vance as long as it can be inverted back to the original spatio-spectral domain. Here we will

use the last-dimension-first convention used in the Matlab functions im2col.m and

col2im.m. The selected rearrangement pattern has no fundamental effect, but it has to be

taken into account to make sense of the structure of the matrices of the model acting on the

input vector.

This rearrangement function, vect(�), will be also a convenient choice when computing

derivatives with regard to the elements of the matrices involved in the model.

The visual pathway: Modular L+NL architecture

The visual system may be thought as an operator, S, transforming the input d0-dimensional

vectors (stimuli) into dn-dimensional output vectors (or sets of dn responses),

ð2Þ

where xn 2 Rdn�1 is the response vector, and Θ is the set of parameters of the model. Vectorial

output is equivalent to considering dn separate sensors (or mechanisms) acting on the stimu-

lus, x0, leading to the corresponding individual responses, xnk , where k = 1, 2, . . . dn. In this

view, the k-th sensor would be responsible for the k-th dimension of the response vector, xn.

The number of separate sensors analyzing the signal may not be the same as the input dimen-

sion, so in general dn 6¼ d0. The number of parameters of the model, dΘ, depends on the spe-

cific functional form of the considered transform.

As suggested in [1], the global response described above may be decomposed as a series of

feed-forward elementary operations, or a cascade of n modules (stages or layers), S(i), where

i = 1, 2, � � �, n,

ð3Þ

i.e. the global response is the composition of the elementary responses:

S ¼ SðnÞ � Sðn� 1Þ � � � � � Sð2Þ � Sð1Þ

The intermediate representations of the signal along this response path may have different

dimension, i.e. xi 2 Rdi�1, because the number of mechanisms in stage S(i) may be different

from the number of mechanisms in S(i−1). Each layer in the above deep network architecture

has its own parameters, xi+1 = S(i)(xi, Θi). Again, dΘi, depends on the specific functional form
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of the i-th layer. Each layer performs a linear+nonlinear (L+NL) operation:

ð4Þ

i.e. each layer is a composition of two operations: SðiÞ ¼ N ðiÞ
� LðiÞ. Let us briefly note that,

while in most models the linear operation is followed by the nonlinear one, which is why we

use this formulation here, in some instances an inverted scheme of a nonlinear+linear model

might be more suitable [64, 65]. That scenario can be handled by our framework as well, after

some trivial modification (e.g. choosing the linear operation in the first layer of the L+NL

model to be the identity, so that the first layer becomes in practice the nonlinear operation of

the first layer followed by the linear operation of the second layer, and the whole cascade gets

shifted into a NL+L form).

The linear operation, LðiÞ, is represented by a matrix Li 2 Rdi�di� 1 . The number of rows in

the matrix Li corresponds to the number of linear sensors in layer S(i). This number of mecha-

nisms determines the dimension of the linear output, yi 2 Rdi�1,

yi ¼ Li � xi� 1 ð5Þ

In the nonlinear operation, N ðiÞ
, each output of the previous linear operation undergoes a sat-

uration transform. Phenomena such as masking or lateral inhibition imply that the saturation

of yik should depend on the neighbors yik0 with k0 6¼ k. This saturation is usually formalized

using divisive normalization [1]. This adaptive saturation is a canonical neural operation and it

is at the core of models for color [2], motion [3], and spatial texture vision [4]. Nevertheless,

other alternative nonlinearities may be considered as discussed below. In general, this saturat-

ing interaction will depend on certain parameters θi,

xi ¼ N ðiÞ
ðyi; θi

Þ ð6Þ

Summarizing, in this cascaded setting, the parameters of the i-th layer are (1) the weights of

the bank of linear sensors represented in LðiÞ (the rows of the matrix Li), and (2) the parameters

of the nonlinear saturating interaction, N ðiÞ
, i.e.

Θi ¼ fLi; θi
g ð7Þ

Note that according to Eq 5, the rows of the Li play the same scalar-product role as standard

linear receptive fields [5, 6]). The only difference is that the rows of Li are defined in the space

of vectors xi−1 instead of being defined in the input image space (of vectors x0).

Canonical and alternative nonlinearities

Divisive normalization in matrix notation. The conventional expressions of the canoni-
cal divisive normalization saturation use an element-wise formulation [1],

xik ¼ N ðiÞ
ðyi; θi

Þk ¼ signðy
i
kÞ

jyikj
gi

bik þ
P

k0Hi
kk0 jyik0 j

gi
¼ signðyikÞ

jyikj
gi

DðiÞðjyiÞjÞk
¼ signðyikÞ

eik
DðiÞðeiÞk

ð8Þ

This expression, in which the energy of each linear response is eik ¼ jy
i
kj

gi
, combines conven-

tional matrix-on-vector operations (such as the product H � e in the denominator) with a num-

ber of element-wise operations: the division of each coefficient of the vector in the numerator
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by the corresponding coefficient of an inhibitory denominator vector, DðiÞ; the element-wise

absolute value (or rectification) to compute the energy; the element-wise exponentiation; the

element-wise computation of sign, and its preservation in the response through an element-

wise product. Therefore, the parameters of this divisive normalization are: the excitation and

inhibition exponent, γ; the semisaturation constants in the vector, b; and the interaction

matrix in the denominator, H,

θi
¼ fgi; bi

;Hig

The matrix-on-vector operation in the denominator is key in understanding masking and

adaptation. This is because the k-th row of Hi describes how the neighbor activities jyik0 j
gi satu-

rate (or mask) the response of the k-th nonlinear response. The effect of these parameters are

extensively analyzed elsewhere [1].

From a formal perspective, the combination of element-wise and matrix-on-vector opera-

tions in the conventional expression makes differentiation and inversion from Eq 8 extremely

cumbersome. This can be alleviated by a matrix-vector expression where the individual coeffi-

cients, k, are not explicitly present. Incidentally, this matrix expression will imply more effi-

cient code in matrix-oriented environments such as Matlab.

In order to get such matrix-vector form, it is convenient to recall the equivalence between

the element-wise (or Hadamard) product and the operation with diagonal matrices [66].

Given two vectors a and b, their Hadamard product is:

a� b ¼ Da � b ¼ Db � a ð9Þ

where Da is the diagonal matrix with vector a in the diagonal.

Using the matrix form of the Hadamard product and the definitions of energy, ei ¼ jyij
gi

and denominator vector, DðiÞðeiÞ ¼ bi
þHi � ei, the conventional Divisive Normalization, Eq 8,

can be re-written with diagonal matrices without referring to the individual components of

the vectors:

xi ¼ N ðiÞ
ðyi; θi

Þ ¼ DsignðyiÞ � D
� 1

ðbiþHi�eiÞ � e
i ¼ DsignðyiÞ � D

� 1

DðiÞðeiÞ � e
i ð10Þ

where the model parameters are θi = {γi, bi, Hi}. Similarly to Von-Kries adaptation [67], this

matrix form of Divisive Normalization is nonlinear because the diagonal of the matrix depends

on the signal. The derivation of the results (proofs given in the Supporting Information Files)

shows that the above matrix version of Divisive Normalization is extremely convenient to

avoid cumbersome individual element-wise partial derivatives and to compute the analytic

inverse.

Alternative nonlinearities: Wilson-Cowan equations and tone-mapping. Even though

all the elementary L+NL layers of the deep network in Eq 3 could be implemented by a com-

position of Eqs 5 and 10 (as suggested in [1]), here we also consider particular alternatives

for the nonlinearities that have been proposed to account for the response at specific stages

in the visual pathway. Namely, the Wilson-Cowan equations [47, 48], which could account

for the masking between local-oriented sensors [26]; and nonlinear models of brightness per-

ception such as the ones used in tone mapping [49, 68, 69]. The consideration of these alter-

natives for specific stages stresses the generality of the proposed framework since, as shown

in the examples of the Discussion, the network equations can be applied no matter the spe-

cific functional form of each stage (provided the elementary derivatives and inverses are

known).
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The Wilson-Cowan equations [47, 48] describe the temporal evolution of the mean activity

of a population of neurons at the V1 cortex. In what follows, we consider the following form of

the Wilson-Cowan equations

xi_ðtÞ ¼ � a xiðtÞ þ mW � f ðxiðtÞÞ þ lyi ð11Þ

where α, μ, λ are coupling coefficients, W = Wk,k0 is a kernel which decays with the difference

|k − k0|, f is a sigmoid function and t is time.

The steady-state equation of the evolution Eq (11) is

0 ¼ � a xi þ mW � f ðxiÞ þ lyi ð12Þ

Existence and uniqueness of the solution of the steady-state Eq (11) are not guaranteed in the

general case. We refer the reader to [70] for some conditions on the coefficients α, μ, λ and the

sigmoid f for which the existence and uniqueness of the solution is guaranteed.

From now on, we assume that we are in a case where we have existence and uniqueness

of the solution of the steady-state equation. Then, we define the Wilson-Cowan transform

N(i)(yi) of yi as the unique solution xi of the steady-state equation.

While the Wilson-Cowan equations are sensible for populations of cortical neurons, bright-

ness-from-luminance models may account for nonlinearities at earlier stages of the visual

pathway (e.g. in the retina). An illustrative example of these specific nonlinearities which is

connected to image enhancement applications through tone mapping is the two-gamma

model in [68]. In this model the nonlinear saturation is a simple exponential function with no

interaction between neighbor dimensions,

x ¼ signðyÞ � jyjgð jyj Þ ð13Þ

where all operations (sign, rectification, exponentiation) are dimension-wise. However, note

that the exponent is a function of the magnitude of the input tristimulus value. Specifically,

gðjyjÞ ¼ gH � ðgH � gLÞ �
mm

1

ðmm
1
þ jyjmÞ ð14Þ

The exponent has different values for low and high inputs, γL and γH respectively (hence the

two-gamma name). The transition of γ between γL and γH happens around the value |y| = μ1.

This transition is smooth, and its sharpness is controlled by the exponent m.

This expression for γ has statistical grounds since the resulting nonlinearity approximately

equalizes the probability density function (PDF) of luminance values in natural scenes [69, 71],

which is a sensible goal in the information maximization context [72]. This nonlinearity can

be applied both to linear luminance values [68, 73] as well as to linear opponent color channels

[43, 74]. Therefore, this specific nonlinearity could be applied after a linear stage where the

spectrum in each spatial location is transformed into opponent tristimulus values. Special

modification of the nonlinearity around zero is required to address the singularity of the deriv-

ative in zero. We will be more specific on this point when we address the Jacobian of this two-

gamma model below.

Jacobian matrices of L+NL cascades

In the modular setting outlined above, variation of the responses may come either from var-

iations of the stimulus, x0, or from variations of the parameters, Θ. On the one hand, for a

given set of fixed parameters, many properties of the sensory system depend on how the

output depends on the stimuli, i.e. many properties depend on the Jacobian of the transform

Derivatives and inverse of cascaded linear+nonlinear neural models
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with regard to the image,rx0S (where the subindex at the derivative operator indicates the

derivation variable). In particular, this Jacobian is critical to decode the neural representa-

tion (existence of inverse), and to describe perceptual distance between stimuli. As an exam-

ple, the Discussion shows how this Jacobian is key in the generation of stimuli fulfilling

certain geometric requirements involved in recent psychophysics. On the other hand,

when looking for the parameters that better explain certain experimental behavior, it is nec-

essary to know how the response depends on the parameters, i.e. the key is the Jacobian

with regard to the parameters,rΘS. As an example, the Discussion shows how this

Jacobian can be used to maximize the correlation with subjective opinion in visual distor-

tion psychophysics.

In these notation preliminaries we address the general properties of these Jacobian matrices

(bothrx0S andrΘS) in the context of the modular network outlined above. The interest of

these preliminaries is that we show that the problem of computingrx0S andrΘS reduces to

the computation of the Jacobian matrices of the elementary nonlinearities (ryiN
ðiÞ

andrθiN
ðiÞ

respectively). These elementary Jacobians,ryiN
ðiÞ

andrθiN
ðiÞ

, and the inverse, N ðiÞ� 1

(whose existence is related toryiN
ðiÞ

), are the three analytical results of the paper, and will

be addressed in the next subsections. Specifically, for the divisive normalization, in Eq 24

(result I), Eqs 29–36 (result II), and Eq 39 (result III).

Local-linear approximation. The response function, S, can be seen as a nonlinear change

of coordinates depending on the (independent) variables x0 and Θ. Therefore, around certain

ðx0
A;ΘAÞ, this function can be expanded in Taylor series and its properties depend on the

matrices of derivatives with regard to these variables [15, 16], in this case, the Jacobian matri-

cesrx0S andrΘS,

Dxn ¼ rx0S � Dx0 þrΘS � DΘ ð15Þ

This is the local-linear approximation of the nonlinear response for small perturbations

of the stimulus or the parameters. In Eq 15 the derivatives are computed at ðx0
A;ΘAÞ, the vec-

tor Dx0 2 Rd0�1 is the variation of the stimulus; and DY 2 RdY�1 is a vector with a perturba-

tion of the dΘ parameters in the model. Note that the column vector of model parameters

(of dimension dΘ) is obtained simply by concatenating the parameters of the different

layers.

The Jacobian with regard to the parameters necessarily has variables from different layers,

so it makes an extensive use of the chain rule. Therefore, lets start with the Jacobian with

regard to the stimulus and then, let’s introduce the chain rule for this simpler case.

Global Jacobian with regard to the stimulus. At certain point x0
A, one may make inde-

pendent variations in all the dimensions of the input. Note that statistical independence of the

dimensions of the stimuli is a different issue (different from formal mathematical indepen-

dence in the expression). Actually, in general, the dimensions of natural stimuli are not statisti-

cally independent [45, 75]. Omitting the (fixed) parameters, ΘA, for the sake of clarity, the

Jacobian with regard to the input is the following concatenation (independent variables imply

concatenation of derivatives [15, 16]),

rx0Sðx0
AÞ ¼

@Sðx0
AÞ

@x0
1

; � � � ;
@Sðx0

AÞ

@x0
j

; � � � ;
@Sðx0

AÞ

@x0
d0

" #
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where
@Sðx0

AÞ

@x0
j
2 Rdn�1 8j. Expanding these column vectors, we see thatrx0S 2 Rdn�d0 :

rx0Sðx0
AÞ ¼

@Sðx0
AÞ1

@x0
1

@Sðx0
AÞ1

@x0
j

@Sðx0
AÞ1

@x0
d0

..

. ..
. ..

.

@Sðx0
AÞk

@x0
1

� � �
@Sðx0

AÞk
@x0

j

� � �
@Sðx0

AÞk
@x0

d0

..

. ..
. ..

.

@Sðx0
AÞdn

@x0
1

@Sðx0
AÞdn

@x0
j

@Sðx0
AÞdn

@x0
d0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð16Þ

Note that this Jacobian may depend on the input, x0, because the slope of the response (the

behavior of the system) may be different in different points of the stimulus space.

Note also that, for fixed parameters, according to Eq 15, the global nonlinear behavior of

the system can be linearly approximated in a neighborhood of some stimulus, x0
A, using the

Jacobian with regard to the stimulus, i.e. variations of the response linearly depend on varia-

tions of the input for small distortions Δx0.

Chain rule: Global Jacobian in terms of the Jacobians of the layers. The Jacobian of

the composition of functions (e.g. the multi-layer architecture we have here), can be decom-

posed as the product of the individual Jacobian matrices. For example, given the composition,

f � g � h = f(g(h(x))), the application of the chain rule leads to:

rx f g h xð Þð Þð Þ ¼
@f
@x
¼
@f
@g
�
@g
@h
�
@h
@x
¼ rg f � rh g � rx h

Note that when inputs and outputs are multidimensional (matrix chain-rule) the order of the

product of Jacobians is important for obvious reasons. Following the above, the Jacobian of

the cascade can be expressed in terms of the Jacobian of each layer:

rx0S ¼ rxn� 1SðnÞ � rxn� 2Sðn� 1Þ � � � � � rxi� 1SðiÞ � � � � � rx1Sð2Þ � rx0Sð1Þ ¼
Y1

i¼n

rxi� 1SðiÞ ð17Þ

Similarly torx0S, in generalrxi−1S(i) depends on the input and is rectangular. Note that

rxi� 1SðiÞ 2 Rdi�di� 1 . Given the L+NL structure of each layer, SðiÞ ¼ N ðiÞ
� LðiÞ, we can also apply

the chain rule inside each layer,

rxi� 1SðiÞ ¼ ryiN
ðiÞ
� Li ð18Þ

where we used the trivial derivative of a linear function [76]:rxi� 1LðiÞ ¼ rxi� 1Li � xi� 1 ¼ Li.

Note that assuming we know the parameters of the system (the linear weights, Li, in each

layer, and the parameters of the nonlinearities, θi), after Eqs 17 and 18 the final piece to com-

pute the Jacobian of the system with regard to the stimulus is the Jacobian of the specific non-

linearities,ryiN
ðiÞ

. Solving this remaining unknown will be the first analytical result of the

paper (Result I), namely Eq 24.

Jacobian with regard to the parameters. For a given set of parameters, ΘA, one may

introduce independent perturbations in the parameters of each layer. Therefore, the Jacobian
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with regard to the parameters is the following concatenation,

rΘS ¼ ½rΘ1S rΘ2S � � � rΘnS� ð19Þ

where eachrYi S 2 Rdn�dYi is a rectangular matrix with dΘi being the dimension of Θi; and the

input (xA, ΘA) was omitted for the sake of clarity. Note that actual independence among the

different parameters is different from formal mathematical independence in the expression. In

fact, certain interaction between layers can be required to get certain computational goal.

Applying the chain rule for the Jacobian with regard to the parameters of the i-th layer,

rΘi S ¼
@xn

@xn� 1
�
@xn� 1

@xn� 2
� � � � �

@xiþ1

@xi
�
@xi

@Θi

¼
Yiþ1

l¼n

rxl� 1SðlÞ
" #

� rΘi SðiÞ
ð20Þ

Note how Eq 20 makes sense, both dimensionally and qualitatively. First, note that
Qiþ1

l¼nrxl� 1SðlÞ 2 Rdn�di andrΘi SðiÞ 2 Rdi�dYi . Second, it makes sense that the effect of changing

the parameters in the i-th layer has two terms: one describing how the change affects the

response of this layer (given byrΘiS(i)), and other describing the propagation of the perturba-

tion through the remaining layers of the network (given by the product of the other Jacobians

-with regard to the stimulus!-,
Qiþ1

l¼nrxl� 1SðlÞ).
Now, taking into account that in each layer the parameters come from the linear and the

nonlinear parts, and these could be varied independently, we obtain:

rΘi SðiÞ ¼ rLiSðiÞ rθi SðiÞ½ � ¼
@xi

@yi
�
@yi

@Li
rθiN

ðiÞ
� �

where we applied the chain rule in the Jacobian with regard to the matrix Li, and the fact that,

by definition,rθi SðiÞ ¼ rθiN
ðiÞ

.

Further development of the first term requires the use of the derivative of a linear function

with regard to the elements in the matrix Li. This technical issue is addressed in the S2 File.

Using the result derived there, namely Eq S2.4, the above equation reduces to:

rΘi SðiÞ ¼ ½ryiN
ðiÞ
� Bdi
ðxi� 1>Þ

rθiN
ðiÞ
� ð21Þ

where, as stated in Eq S2.4, Bdi
ðxi� 1>Þ

is just a block diagonal matrix made from di replications of

the (known) vector xi−1, and this expression assumes that the elements of the perturbations

ΔLi are vector-arranged row-wise, e.g. using vect(ΔLi>). Note that in Eq 21, the only unknown

terms are the Jacobian of the nonlinearity:ryiN
ðiÞ

, already referred to as the first analytical

result of this work (Eq 24), andrθiN
ðiÞ

, which will be the second analytical result of the work

(Result II), namely Eqs 29–36.

Jacobian and perceptual distance

In the input-output setting represented by S, perceptual decisions (e.g. discrimination between

stimuli) will be made on the basis of the information available in the response (output) space

and not in the input space. This role of the response space in stimulus discrimination is consis-

tent with (i) the psychophysical practice that assumes uniform just noticeable differences in

the response domain to derive the slope of the response from experimental thresholds [2, 4,
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43], and (ii) the formulation of subjective distortion metrics as Euclidean measures in the

response domain [9–11, 77].

Perceptual distance: General expression. The perceptual distance, dp, between two

images, x0
A and x0

B, can be defined as the Euclidean distance in the response domain:

ð22Þ

An Euclidean distance in the response domain implies a non-Euclidean measure in the

input image domain [9, 11, 14, 16, 78]. One may imagine that, for nontrivial S−1, the inverse of

the points in the sphere of radius |Δxn|2 around the point xn
A will no longer be a sphere (not

even a convex region!) in the input space. The size and orientation of these discrimination
regions determine the visibility of distortions Δx0 on top of certain background image, x0

A. Dif-

ferent Euclidean lengths in the image space (different |Δx0|2) will be required in different direc-

tions in order to lead to the same perceptual distance dp. The variety of orientations and sizes

of the well-known Brown-MacAdam color discrimination regions [79] is an intuitive (just

three-dimensional) example of the above concepts.

Perceptual distance: 2nd-order approximation. Assuming the local-linear approxima-

tion of the response around the reference image, Eq 15, we have Dxn ¼ rxSðx0
AÞ � Dx0. Under

this approximation, the perceptual distance from the reference image reduces to:

ð23Þ

with x0
B ¼ x0

A þ Dx0. Therefore, the matrix Mðx0
AÞ ¼ rxSðx0

AÞ
>
� rxSðx0

AÞ plays the role of a

non-Euclidean metric matrix induced by the sensory system. This is a 2nd-order approxima-

tion because in this way, perceived distortion only depends on the interaction between the

deviations in pairs of locations: Mðx0
AÞijDx

0
i Dx

0
j .

Note that a constant value for the distance in Eq 23 defines an ellipsoid oriented and scaled

according to the metric matrix Mðx0
AÞ. In this 2nd-order approximation, the discrimination

regions reduce to discrimination ellipsoids. The properties of these ellipsoids depend on the metric

and hence on the Jacobian of the response w.r.t. the stimulus (i.e. on Result I below). In particu-

lar, the orientation depends on the eigenvectors of M and the scaling depends on the eigenvalues.

The simplicity of Eq 23 depends on the assumption of quadratic norm in Eq 22 (as opposed

to other possible summation exponents in Minkowski metrics [15]). Note that using other

norms would prevent writing the distance in the response domain through the dot product of

Δxn. Therefore, the linear approximation would not be that easy. With non-quadratic summa-

tion the distance would still depend on the elements of the Jacobian (and hence on Result I),

but the expression would be more complicated, and the reasoning through Jacobian-related

eigenvectors would not be as intuitive.

2.2 Result I: Jacobian with regard to the stimulus

The problem of computing the Jacobian with regard to the stimulus in the cascade of L+NL

modules,rx0S, reduces, according to Eqs 17 and 18, to the computation of the Jacobian of the

nonlinearity with regard to the stimulus in every layer,ryiN
ðiÞ

. In this section we give the ana-

lytical result of the required Jacobian,ryiN
ðiÞ

, in the canonical divisive normalization case, and

for two alternative nonlinearities. Proofs of this first set of analytical results are given in the S3

File. The role of this analytical result in generating stimuli for novel psychophysics is illustrated

in the Discussion, Section 3.2.
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Jacobian of the canonical nonlinearity with regard to the stimulus. The matrix form of

the divisive normalization, Eq 10, based on the diagonal matrix notation for the Hadamard

products, is convenient to easily compute the Jacobian (see the explicit derivation in the S3

File, which leads to,

ryiN
ðiÞ
¼ DsignðyiÞ � D

� 1

DðiÞðeiÞ � I � D ei

DðiÞðeiÞ

� � � Hi

2

6
6
4

3

7
7
5 � Dðgi jyi jgi � 1Þ

� DsignðyiÞ ð24Þ

Eq 24 shows that the Jacobian,ryiN
ðiÞ

, depends on the subtraction of two matrices, where

the first one is diagonal and the second one depends on Hi, the matrix describing the interac-

tion between the intermediate linear responses. Note that the role of the interaction is subtrac-
tive, i.e. it reduces the slope (for positive Hi). In situations where there is no interaction

between the different coefficients of yi, Hi
kl ¼ 0 8k 6¼ l, the resultingryiN

ðiÞ
is point-depen-

dent, but diagonal.

Eq 24 also shows that the sign of the linear coefficients has to be considered twice (through

the multiplication by the diagonal matrices at the left and right). This detail in the sign (which

is crucial to set the direction in gradient descent), was not properly addressed in previous

reports of this Jacobian (e.g. in [10, 11, 80]) because this literature was focused on properties

which are independent of the sign (diagonal nature, effect on the metric, and determinant

respectively).

Jacobian of alternative nonlinearities with regard to the stimulus. The forward Wilson-

Cowan transform does not have an explicit expression since the solution evolves from a differ-

ential equation. As a result, there is no analytic solution of the Jacobian either. However its

inverse is analytical (as detailed in the next section, Eq 40). Therefore, given the relation

between the Jacobian matrices of inverse functions, namelyryiN
ðiÞ
¼ ðrxiN

ðiÞ� 1Þ
� 1

, we can

compute the Jacobian of the forward Wilson-Cowan transform from the Jacobian of its

inverse.

Specifically, derivation with regard to the response in the analytic inverse given in Eq 40 is

straightforward, and it leads to:

rxiN
ðiÞ� 1

ðxiÞ ¼
1

l
ðaI � mW � Df 0ðxiÞÞ ð25Þ

As a result, the Jacobian of the forward Wilson-Cowan nonlinearities at the point yi
A is,

ryiN
ðiÞ
ðyi

AÞ ¼ ðrxiN
ðiÞ� 1ðxi

AÞÞ
� 1

ð26Þ

assuming thatrxiN
ðiÞ� 1

is nonsingular at xi
A ¼ N ðiÞ

ðyi
AÞ. Note that, in general, this Jacobian

matrix will be nondiagonal because of the inhibitory interactions between sensors expressed in

the (nondiagonal) matrix W.

For the other example of alternative nonlinearity, the two-gamma saturation model, the

Jacobian with regard to the stimulus is a diagonal matrix since this special nonlinearity is a

point-wise operation. From Eq 13, according to the derivation given in the S3 File, the
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Jacobian of the two-gamma model is:

ryN ¼ D
jyjgðjyjÞ � D

ðgH � gLÞ�
m jyjðm� 1Þ

� mm
1

ðmm
1
þ jyjmÞ2

 ! � Dlogjyj þ D gðjyjÞ
jyj

� �

2

6
6
6
4

3

7
7
7
5

ð27Þ

Note that the logarithm and the division by |y| imply a singularity in zero. Then, in order to

guarantee the differentiability of the nonlinear transform, we propose a modification of

the nonlinearity in a small neighborhood of 0. By choosing an arbitrarily small, �, so that

0 < � < < 1, we modify Eq 13 for small inputs in this way,

x ¼
signðyÞ � jyjgð jyj Þ if jyj � �

signðyÞ � ða1jyj
2
þ a2jyjÞ if jyj � �

8
<

:
ð28Þ

where,

a1 ¼
�
@jyjgð yj Þ

@jyj ð�Þ � �
gð�Þ

�2
and a2 ¼

2�gð�Þ � �
@jyjgð jyj Þ

@jyj ð�Þ

�

With this modification around zero the two-gamma nonlinearity and its derivative are con-

tinuous and well defined everywhere: the Jacobian for |y| > � would be given by Eq 27, and for

smaller inputsryN ¼ 2a1jyj þ a2, which is well defined at zero.

2.3 Result II: Jacobian with regard to the parameters

The problem of computing the Jacobian with regard to the parameters in the cascade of

L+NL modules,rΘS, reduces, according to Eqs 19–21, to the computation of the Jacobian of

the nonlinearity with regard to the parameters in every layer,rθiN
ðiÞ

. In this section we give

the analytical result of the required Jacobian in the canonical divisive normalization case.

Proofs of this second analytical result are given in the S4 File. The role of this analytical result

in getting optimal models from classical psychophysics is illustrated in the Discussion, Sec-

tion 3.3.

Jacobian w.r.t. parameters: General equations. The parameters of the divisive normali-

zation of the i-th layer that may be independently modified are θi = {γi, bi, Hi}. Therefore,

rθiN
ðiÞ

is given by this concatenation:

rθiN
ðiÞ
¼ ½rgiN

ðiÞ
rbiN

ðiÞ
rHiN ðiÞ

� ð29Þ

where, according to the derivation given in the S4 File, we have,

rgiN
ðiÞ
¼ DsignðyiÞ �D

� 1

DðiÞðeiÞ �½Dlogjyij � D� 1

DðiÞðeiÞ �DðHi�Dei �logjy
i jÞ��ei ð30Þ

rbiN
ðiÞ
¼ � DsignðyiÞ � Dei � D

� 2

DðiÞðeiÞ ð31Þ

rHiN ðiÞ
¼ � DsignðyiÞ � Dei � D

� 2

DðiÞðeiÞ � B
di
ðei>Þ

ð32Þ

where Dv stands for a diagonal matrix with vector v in the diagonal as stated in Eq 9, and Bd
v
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stands for a block diagonal matrix built by d-times replication of the matrix (or vector) v as

stated in the S2 File (in Eq S2.4). Note also that, consistently with the derivative of a linear

function w.r.t. its parameters (in the S2 File), in order to apply the Jacobian in Eq 32 on small

perturbations of the matrix, Hi, the corresponding perturbation should undergo row-wise vec-

torization. For instance, imagine Hi is perturbed so that Hi
�
¼ Hi þ DH. Then, the perturba-

tion in the response should be computed as Dxi ¼ rHiN ðiÞ
� vectðDH>Þ.

Jacobian w.r.t. parameters: Specific equations for Gaussian kernels. The qualitative

meaning of Hi (interaction between neighboring neurons) naturally leads to propose specific

structures in the rows of these matrices. For instance, stronger interaction between closer

neurons naturally leads to the idea of Gaussian kernels [4]. This functional parametrization

implies a dramatic reduction in the number of unknowns because each row, Hi
k?, with dimen-

sion di, could be described by a Gaussian defined by with only two parameters: amplitude and

width. In the considered retina-V1 pathway the identity of the sensors is characterized by its

2D spatial location or by its 4D spatio-frequency location. In the most general case the index,

k, of the sensor has spatio-frequency meaning:

k denotes a wavelet-like index ) k � ðpk1; pk2; fk; �kÞ

where pk = (pk1, pk2) is the optimal 2D location, fk is the optimal spatial frequency, and ϕk is the

optimal orientation of the k-th sensor. In V1, the interaction between the linear response yik
and the neighbors yik0 decreases with the distance between k and k0 in space, frequency and ori-

entation [4]. Restricting ourselves to intra-subband interactions (which incidentally are the

most relevant [11, 80]) one has:

Hi
kk0 ¼

0 8 k0 =2 subband k

cik
dpk1dpk2

2p si
k

2
e
�

D
2

kk0

2 si
k

2

8 k0 2 subband k

8
>>>>><

>>>>>:

ð33Þ

where the relevant parameters are cik and si
k which respectively stand for the amplitude and

width of the Gaussian centered in the k-th sensor. D
2

kk0 ¼ ðpk � pk0 Þ
>
� ðpk � pk0 Þ is the squared

distance between the sensors, and dpk1dpk2 is just the spatial area of the discrete grid of sensors

that sample the visual space in this subband. This implies that the pool of all interactions is
P

k0H
i
kk0 ¼ cik.

In the case of different interactions per sensor (different Gaussian in each row, Hi
k?), deriva-

tives with regard to the independent widths are,

rsiN
ðiÞ
¼ ½rsi

1
N ðiÞ

rsi
2
N ðiÞ

� � � rsik
N ðiÞ

� � � rsidi
N ðiÞ
� ð34Þ

With this parametrization of H we can develop Eq 32 further: the dependence on individual

widths can be obtained by usingrsik
N ðiÞ
¼ rHiN ðiÞ

� rHi
k?
Hi � rsik

Hi
k?, and the final result
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(see the S4 File) is:

rσiN
ðiÞ
¼ � diag DsignðyiÞ � Dei � D

� 2

DðiÞðeiÞ �

ei>

ei>

..

.

ei>

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

� Fi

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ð35Þ

where,

Fi
kk0 ¼

0 8 k0 =2 subband k

cik
dpk1dpk2

2p si
k

5
D

2

kk0 � 2 si
k

2
� �

e
�

D
2

kk0

2 si
k

2

8 k0 2 subband k

8
>>>>><

>>>>>:

A diagonal matrix forrσiN
ðiÞ

makes sense because the modification of the interaction

width of a sensor only affects the nonlinear response of this sensor (similarly to the diagonal

nature ofrbiN
ðiÞ

in Eq 31).

The derivative with regard to the vector of amplitudes of the Gaussian interactions,rciN
ðiÞ

,

is a concatenation of columns (similarly to Eq 34). It can also be computed from the chain rule

and from the derivative w.r.t the corresponding variables. The result is:

rciN
ðiÞ
¼ � diag DsignðyiÞ � Dei � D

� 2

DðiÞðeiÞ �

ei>

ei>

..

.

ei>

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

� Gi

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ð36Þ

where,

Gi
kk0 ¼

0 8 k0 =2 subband k

dpk1dpk2

2p si
k

2
e
�

D
2

kk0

2 si
k

2

8 k0 2 subband k

8
>>>>><

>>>>>:

The number of free parameters can be further reduced if one assumes that the values of the

semisaturation, bik, or the parameters of the Gaussians, cik and si
k, have certain structure (e.g.

constant along the visual space in each subband). One may impose this structure in Eqs 31, 35

and 36 by right-multiplication of the jacobian by a binary matrix that describes the structure

of the considered vector. For instance, assuming the same width all over each scale in a two-

scales image representation, one only has two independent parameters. In that case:

rσistruct
N ðiÞ
¼ rσiN

ðiÞ
�Mstruct
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where, the structure matrix selects which coefficients belong to each scale:

Mstruct ¼

1 0

1 0

..

. ..
.

1 0

0 1

0 1
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0 1
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2.4 Result III: Analytic inverse

The inverse of the global transform can be obtained inverting each individual L+NL layer in

turn,

S� 1 ¼ Sð1Þ� 1
� Sð2Þ� 1

� � � � � Sðn� 1Þ� 1
� SðnÞ� 1

ð37Þ

where,

xi� 1 ¼ SðiÞ� 1
ðxiÞ ¼ Liy �N ðiÞ� 1

ðxiÞ ð38Þ

Here we will focus on the N ðiÞ� 1

part because the linear part can be addressed by standard

matrix inversion.

Here we present the analytical inverse of the canonical divisive normalization and of the

Wilson-Cowan alternative. The inverse of the two-gamma nonlinearity is not addressed here

but in the S1 File because, given the coupling between the input and the exponent, it has no

analytical inverse. Nevertheless, a simple and efficient iterative method is proposed there to

compute the inverse. The role of the analytical inverse in improving conventional decoding of

visual signals is illustrated in the Discussion, Section 3.4.

A note on the linear part: the eventual rectangular nature of Li (different number of outputs

than inputs in the i-th layer) requires standard pseudoinverse, (�)†, instead of the regular

square-matrix inversion, (�)−1; and it may be regularized through standard methods [81, 82] in

case Li is ill-conditioned. Information loss in the pseudoinverse due to strong dimensionality

reduction in Li is not serious in the central region of the visual field due to mild undersampling

of the fovea throughout the neural pathway [83]. The only aspect of the input that definitely

cannot be recovered from the responses is the spectral distribution in each location. In color

perception models the first stage is linear spectral integration to give opponent tristimulus val-

ues in each spatial location [62]. This very first linear stage is represented by a extremely fat

rectangular matrix, L1 2 R3�300, in each location (300 wavelengths in the spectral visible region

reduce to 3 tristimulus values), which definitely is not invertible though standard regularized

pseudoinversion. Therefore, the inversion of a standard retina-V1 model such as the one used

in the Discussion may recover the tristimulus images but not the whole hyperspectral array.

The metamerism concept (the many-to-one transform) can be generalized beyond the spec-

tral integration. In higher levels of processing, it has been suggested that stimuli may be not be
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represented by the specific responses of a population of neurons, but by their statistical proper-

ties [84]. These statistical summaries could be thought as a stronger nonlinear dimensionality

reduction which cannot be decoded through regular pseudoinversion. Therefore, the proposed

inverse is applicable only to the (early) stages in which the information is still encoded in the

responses of the population and not in summarized descriptions of these responses.

Analytic inverse of the divisive normalization. Analytic inversion of standard divisive

normalization, Eq 8, is not obvious. However, using the diagonal matrix notation for the

Hadamard product, the inverse is (see the S5 File),

yi ¼ N ðiÞ� 1

ðxiÞ ¼ DsignðxiÞ � ðI � Djxij � HiÞ
� 1
� Dbi � jxij

h i 1

gi ð39Þ

where ½v�
1

gi is element-wise exponentiation of elements of the vector v.

Consistently with generic inverse-through-integration approaches based onrxS−1 [85],

here Eq 39 shows more specifically that in this linear-nonlinear architecture, inversion
reduces to matrix inversion. While the linear filtering operations, Li, may be inverted without

the need of an explicit matrix inversion through surrogate signal representations (deconvo-

lution in the Fourier or Wavelet domains), there is no way to avoid the inverse (I − ε)−1 in

Eq 39. This may pose severe computational problems in high-dimensional situations (e.g. in

redundant wavelet representations). A series expansion alternative for that matrix inversion

was proposed in [10], where it is substituted by a (more affordable) series of matrix-on-vec-

tor operations.

Inverse of the Wilson-Cowan equations. The expression of the inverse of the Wilson-

Cowan transform is straightforward: by reordering the terms in the steady-state equation, Eq

12, it follows,

yi ¼ NðiÞ� 1
ðxiÞ ¼

1

l
ðaxi � mW � f ðxiÞÞ ð40Þ

Note that this inverse function is easily derivable w.r.t xi, which is required to obtain the corre-

sponding Jacobian of the forward transform Eq 26.

Relation between Result I and Result III. Result III (inverse) is obviously related to

Result I (Jacobian with regard to the stimulus) because a sufficient condition for invertibility is

that the Jacobian with regard to the stimulus is nonsingular for every image. Note that if the

Jacobian is non singular, the inverse of the Jacobian can be integrated and hence, the global

inverse can be obtained from the local-linear approximations as in other local-to-global meth-

ods, e.g. [43, 45, 85, 86].

This general statement is perfectly illustrated by the similarity between Eqs 39 and 24.

According to Eq 39, inverting the divisive normalization reduces to inverting (I � Djxi j � Hi).

Similarly, according to Eq 24, the singularity of the Jacobian depends on the very same matrix.

As a result, specific interest on invertible models would imply restrictions to the response and
the parameters of H: the eigenvalues of Djxij � Hi have to be smaller than 1 [10].

3 Discussion

In this section we consider illustrative vision models based on cascades of L+NL stages to

point out (a) the fundamental insight into the system behavior that can be obtained from the

analytic expressions, and (b) the usefulness of the expressions to develop new experiments

and methods in visual neuroscience. The first consist on using the analytical expressions to

identify basic trends in physiology, in psychophysics and in the function of the sensory sys-

tem. Specifically, (a.1) we show how the context-dependence of the receptive fields of the
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sensors can be explicitly seen in the expression of the Jacobian w.r.t. the stimulus. (a.2) We

show that the expression of the Jacobian w.r.t. the parameters reveals that the impact in the

response of uncertainty at the filters, or synaptic weights, varies over the stimulus space, and

this trend is different for different sensors. (a.3) We show how the general trends of the sensi-

tivity over the stimulus space can be seen from the determinant of the metric based on the

Jacobian w.r.t. the stimulus. (a.4) We show that this Jacobian also implies different efficiency

(different multi-information reduction) in different regions of the stimulus space. The sec-

ond includes (b.1) stimulus design in novel psychophysics, (b.2) more accurate model fitting

in classical physiology and psychophysics, and (b.3) new proposals for decoding of visual

signals.

Let’s briefly describe the kind of vision model used as example throughout the discussion.

The case-study model follows the program suggested in [1]: a cascade of four isomorphic cano-

nica L+NL modules addressing brightness, contrast, frequency filtered contrast masked in the

spatial domain, and orientation/scale masking. The general architecture is certainly not new,

but the proposed expressions were very helpful to tune psychophysically these specific modules

to work together for the first time. The response of the model on an image is illustrated in

Fig 1.

Before going into the many details of the full 4-layer model (given in the S1 File, and in the

code available in http://isp.uv.es/docs/BioMultiLayer_L_NL.zip), let’s look at a cartoon version

for a better interpretation of the analytical expressions.

Consider a system with only three sensors acting on three-pixel images. Consider it is a cas-

cade of just two L+NL layers, one for brightness and the next for spatial frequency analysis:

• Layer 1: brightness from radiance,

y1 ¼ Vl � x0

x1 ¼ ðy1Þ
g1

• Layer 2: spatial frequency analyzers and contrast response,

y2 ¼ G � F � x1 ¼

0:8 0 0
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0
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x2 ¼ signðy2Þ �
jy2j

bþ jy2j

The biological basis of this simplified model is straightforward: integration over wave-

lengths is done using the standard spectral sensitivity function, Vλ [61], and we assume a sim-

ple, point-wise and fixed, exponential relation between luminance and brightness [61, 62].

Regarding spatial pattern detection, we assume frequency-selective linear analyzers [7] in the

rows of F. The first sensor (first row) is tuned to the DC component of brightness, the second

sensor (second row) to the low frequency component, and the last sensor (third row) to the

high frequency. Each of these linear sensors has different (frequency dependent) gain in the

diagonal matrix G. This gain is band-pass, i.e. similar to the Contrast Sensitivity Function, CSF

[59]. Finally, the contrast response undergoes a compressive transform where the interactions

between coefficients are neglected as in [89, 90], by using an identity matrix as interaction ker-

nel H.
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Fig 1. A cascade of isomorphic L+NL modules based on canonical Divisive Normalization. The input is the spatial

distribution of the spectral irradiance at the retina. For this illustration we generated a spectral image from the publicly available

reflectance samples in ColorLab [87] and a regular color image from the public USC-SIPI Database [88] to get a scene with

reduced contrast at the left. (1) The linear part of the first layer consist of three positive LMS spectral sensitivities and a linear

recombination of the LMS values with positive/negative weights. This leads to three tristimulus values in each spatial location:
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As a result, the responses at the k-th photo-receptor of the first L+NL layer represent the

luminance, y1
k , and the brightness, x1

k , at the k-th spatial location. Given the frequency analysis

meaning of F, the responses y2
1

and x2
1

are related to the average brightness of the image, while

y2
k and x2

k , with k> 1, are related to the amplitude or contrast of the low- and high-frequency

AC components. With this in mind we will be able to identify the trends of biologically mean-

ingful magnitudes from the proposed expressions in terms of the luminance and contrast of

the images in the stimulus space.

The first part of the discussion is focused on examples of the insight into the system that

can be obtained from the presented analytical results. Then, we show that Result I is conve-

nient in new psychophysics such as MAximum Differentiation (MAD) [20]; and Result II is

convenient for parameter estimation in classical experiments. In fact, MAD and Result I were

used to determine the 2nd and 3rd layers of the illustrative L+NL cascade, and Result II was

used as alternative to brute-force optimization to maximize correlation with subjective opinion

in 1st and 4th layers. The good visual examples of MAD and the goal-optimization curves are

practical demonstrations of the correctness of the analytical results. Finally, the analytical

inversion, Result III, is compared here with conventional blind decoding techniques [39–41]

used for visual brain decoding.

3.1 Physiological, psychophysical and functional trends from the

expressions

Physiology. The receptive field of a neuron is the function that describes how the ampli-

tude of the stimulus at different locations affects its response. In the simplest (linear) setting,

the receptive field of the k-th neuron of the n-th layer is a vector of weights, wn
k , and the varia-

tion of the response is given by the dot product of this vector times the variation of the stimu-

lus, Dxnk ¼ wn
k> � Dx0 [5, 6]. In a nonlinear system, S, the variation of the response(s) due to

the variation of the input is described by the first term of the linear approximation in Eq 15,

Δxn =rx0S � Δx0. Therefore, the receptive fields of the sensors at the n-th layer can be thought

as the rows of the corresponding Jacobian w.r.t. the stimulus.

Using the above receptive field definition based on the Jacobian, a number of interesting

qualitative consequences can be extracted from the analytical Result I (Eq 24) and the associ-

ated chain rule expressions, Eqs 17 and 18.

First, the shape of the receptive fields at the i-th layer is mediated by the functions in

the rows of the matrices Li, but it is going to be a signal-dependent combination of these

functions. Note that if the Jacobian is not diagonal, the receptive fields are spatially non-trivial,

i.e. not simple delta functions. In the cartoon example this non-diagonal nature comes from

the matrix with frequency analyzers, F. In the same way, in the cortical layer of our full model

(4-th layer), this spatially meaningful part is mediated by a filterbank of wavelet-like linear sen-

sors (in the matrix L4). According to the chain rule, Eq 18, these wavelet-like receptive fields

one is proportional to the luminance, and the other two have opponent meaning (red-green and yellow-blue). These linear

responses undergo adaptive saturation transforms. Perception of brightness is mediated by an adaptive Weber-like nonlinearity

applied to the luminance at each location. This nonlinearity enhances the response in the low-luminance regions. (2) The linear

part of the second layer computes the deviation of the brightness at each location from the local brightness. Then, this deviation

is normalized by the local brightness to give the local nonlinear contrast. (3) Local contrast is convolved by center surround

receptive fields (or filtered by the Contrast Sensitivity Function). Then the linearly filtered contrast is normalized by the local

contrast. Again normalization increases the response in the regions with small input (low contrast). (4) After linear wavelet

transform, each response is normalized by the activity of the surrounding neurons. Again, the activity relatively increases in the

regions with low input. The common effect of all the nonlinear modules throughout the network is response equalization. The

S8 File shows the PDFs of the responses along the network which are consistent with previous reports of the predictive effect of

Divisive Normalization.

https://doi.org/10.1371/journal.pone.0201326.g001

Derivatives and inverse of cascaded linear+nonlinear neural models

PLOS ONE | https://doi.org/10.1371/journal.pone.0201326 October 15, 2018 21 / 49

https://doi.org/10.1371/journal.pone.0201326.g001
https://doi.org/10.1371/journal.pone.0201326


will be modified byry4N ð4Þ
. This is relevant because, if the Jacobian of the nonlinear part is

signal-dependent and nondiagonal, the corresponding linear filters will be recombined in

interesting ways leading to variations of the receptive fields. Result I tells us that, in general,

this is going to be the case because the diagonal matrices in Eq 24 depend on the signal, and

the interaction matrix H is, in principle, non-diagonal. This anticipates that receptive fields at

this cortical layer are going to be signal-dependent combinations of wavelet functions. A closer

look at Eq 24 allows to make more specific statements about this adaptive behavior of the

receptive fields.

Second, the fundamental effect of the background signal is reducing the amplitude of

the receptive fields (or reducing the global gain of the sensors). Note that in Eq 24 this is

done in two different ways: a global divisive effect through D� 1

DðeÞ, and a subtractive effect

through � Djxj � H. In both cases, the bigger the input or output activity (the bigger e and |x|,

i.e. the contrast), the stronger the attenuation and subtraction. Moreover, this reduction is sen-

sor-specific. Note that left-multiplication by diagonal matrices implies a different factor per
row (see Eq S9.3 in the S9 File), therefore activity in the k-th sensor is going to reduce the

amplitude of the k-th row and it is going to increase the subtraction of the linear combination

described by the k-th row of H (but not of other rows!). The terms in D� 1

DðeÞ � ðI � Djxj � HÞ
mean that H would determine a fixed combination of the wavelet filters that would be sub-

tracted from the original filters to a bigger or lower extent depending on the contrast of each

wavelet component of the signal. However, there is an extra signal-dependent matrix in the

Jacobian: Dðgjyjg� 1Þ.

Third, the way the linear filters are recombined depends on H, but this recombination

is not fixed: it may be signal dependent. However, if γ = 1 this dependence vanishes. This

effect comes from the extra matrix we mentioned above. This matrix is right-multiplying the

interaction kernel H, and hence its effect is substantially different: it applies a different factor

per column (see Eq S9.4 in the S9 File). As a result, the neighbor filters will be combined differ-

ently if γ 6¼ 1. Otherwise this matrix becomes diagonal and the combination of neighbors is

totally determined by H, leading to a contrast dependent attenuation but not a strong change

in shape.

In summary, in Result I, Eq 24, one can identify specific signal-dependent changes in the

receptive fields that involve (i) attenuation for sensors stimulated with their preferred signal

and (ii) stronger effects on the shape of the receptive field depending on the excitation-inhibi-

tion exponent γ. All these effects can be seen in the simulation of Fig 2, where we compare the

receptive fields at the 4-th layer tuned to different frequencies at different locations of illustra-

tive signals of different contrast. We compare the receptive fields using γ = 0.65 (found in the

experiments described in the next sections) with those obtained using γ = 1.

Result II is also useful to address physiologically interesting questions. For instance, how
uncertainty in the synaptic weights affects the response of the sensors?. Such question is interest-

ing because the assumptions done to set these filters may be poor, e.g. selection of a wavelet fil-

terbank in the cortical layer which is not biologically plausible. Similarly, parameters coming

from experimental measurements are noisy. How critical is the experimental error in terms

of the final impact in the response?. In such situations, the Jacobian w.r.t. the parameters

(Result II) that describes the impact of variations of the parameters in the response has obvious

interest.

Here we show an example of this use of Result II in the simplified three-sensors model out-

lined above. In particular, we address how uncertainty in the frequency analyzers (rows of F)

has an impact on the response of the different sensors, x2
k , across the stimulus space. In absence

of Result II, we could add random noise to the filters and empirically check the variation for
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natural images of different luminance and contrast (see Fig 3). However, Result II allows us to

anticipate the outcome of such experiment. In this case, using the part of Eq 21 that corre-

sponds to the derivative w.r.t. the filters in the matrix L2 = G � F, the impact of a variation of

the k-th filter in F, the row vector ΔFk, is:

Dx2
k ¼

1 � jx2
k j

bk þ jy2
k j

Gkk DFk � x
1 ð41Þ

In this equation we can see that different filters have different behavior over the image space.

On the one hand, the impact in the response of AC sensors (k> 1) will increase with the lumi-

nance of the input due to the direct dependence with x1, which is related to brightness. How-

ever, when increasing the contrast of the images the responses y2
k and x2

k also increase and

then, the subtractive and divisive effects in the fraction of Eq 41 reduce the impact. Of course,

Fig 2. Insight into physiology I: Context dependence of receptive fields (fromrxS). Comparison of cortical receptive fields tuned to different frequencies,

orientations, and locations while adapted to illustrative stimuli of different contrast. The stimuli are shown at the left column. Each row corresponds to the receptive

fields induced by the corresponding stimulus. The panel at the center shows the receptive fields assuming γ 6¼ 1 (as obtained from the experiments). On the contrary,

the panel at the right displays the receptive fields setting γ = 1 at every layer on purpose. Note that signal-dependent changes in the receptive fields involve (i)

attenuation for sensors stimulated with their preferred signal and (ii) stronger effects on the shape of the receptive field in the left panel when γ 6¼ 1, as predicted by

the theory.

https://doi.org/10.1371/journal.pone.0201326.g002
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increasing the semisaturation or the gain implies the corresponding decrease and increase in

the impact of the AC filters. On the contrary, the impact of the DC filter behaves quite differ-

ently: it increases (a little bit) with the contrast, through the energy that may be captured by

the random variation in ΔFk. But, more importantly, it strongly decreases with luminance

because of the subtractive and divisive effects caused by increased values in jx2
1
j and jy2

1
j, which

are increasing functions of brightness. Fig 3 confirms all these trends.

Psychophysics. The sensitivity of the system is characterized by its discrimination ability:

the sensitivity is bigger where the discrimination regions determined by the JNDs are smaller

[7, 8]. The trends of the sensitivity of the system in the image space for a range of luminance

and contrast can be identified from Result I, Eq 24, and the associated expression for the met-

ric, Eq 23. This is because the volume of the discrimination region at each point of the stimulus

space is inversely proportional to the determinant of the metric. In our simplified model the

frequency analysis transform is orthonormal, i.e. |F| = 1, as a result, the sensitivity in the space

Fig 3. Insight into physiology II: Impact on the response of uncertainty in different filters (fromrθS). Top: distortions in the zero frequency filter, Middle:

distortion in the low-frequency filter, and Bottom: distortion in the high-frequency filter. Variation in the response of the zero, low-, and high-frequency sensors is

represented in red, green, and blue respectively. The different columns were computed using variations in the parameters of the simplified model (baseline) to point

out the trends seen in Eq 41. Specifically: (i) Impacts in the responses of AC sensors increases with input luminance and gain, and decreases when contrast or

semisaturation increase; (ii) Impact of DC filters increases with contrast and strongly decreases with luminance.

https://doi.org/10.1371/journal.pone.0201326.g003
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of luminance images depends on these three factors in brackets:

sensitivity ¼ jry1Sj2 ¼ g2d
1

Yd

k¼1

ðy1

kÞ
2ðg1 � 1Þ

 !

ðb1 þ y2
1
Þ
� 2
ð1 � x2

1
Þ

2

" #
Yd

k¼2

ðbk þ y2

kÞ
� 2
Yd

k¼2

ð1 � x2

kÞ
2

" #
Yd

k¼1

G2

kk

" #

ð42Þ

The first factor clearly decreases with luminance because its three terms decrease with lumi-

nance, brightness and the nonlinear response to brightness (either by division or by subtrac-

tion). Note that the first term in this factor is divisive because γ1 < 1 (saturating transform),

and hence 2(γ1 − 1)< 0. Setting γ1 = 1 would reduce the dependence with luminance because

the first term in this factor would be 1 for every image. The second factor decreases with con-
trast because the responses of the AC sensors of the second layer increase with contrast and

hence, the two terms of the second factor decrease with contrast (by division and subtraction

respectively). Note that increasing the semisaturation factor will reduce the dependence with

contrast and luminance. Finally, the third factor increases with the area under the CSF-like gain
in the diagonal of the matrix G. In Fig 4 we compute the inverse of the volumes of the discrimi-

nation regions for 3-pixel natural images covering the luminance and contrast range and the

above trends are confirmed.

Function. It has been argued that one of the basic functions of the retina-cortex neural

pathway is maximizing the information about the stimuli transmitted to subsequent areas of

the brain [5, 75, 91]. Under certain conditions [92], the transmitted information is maximized

by reducing the redundancy between the coefficients of the neural representation of the stimu-

lus. Therefore, measuring how redundancy is reduced when facing different kinds of stimuli

tells us how efficient is the system in transmitting the information about them. A very general

measure of redundancy in a set of variables is multi-information, MI, which measures the

amount of bits shared by them [19]. Therefore, an appropriate way to assess the efficiency of a

system in transmitting the information about certain stimuli is measuring how the multi-

information in the internal representation, MI(xn), is reduced with regard to the multi-infor-

mation in the input space, MI(x0). Interestingly, this difference depends on the Jacobian of the

transform from x0 to xn [19], and hence our Result I is helpful here. According to [19], the

Fig 4. Insight into physchophysics: Sensitivities from the volume of the JND regions (related torxS). From left to right: (a) Baseline situation (shows the expected

luminance/contrast dependence), (b) Linear luminance-to-brightness response is set to linear (γ1 = 1), (c) contrast sensitivity is increased, (d) semisaturation is

increased.

https://doi.org/10.1371/journal.pone.0201326.g004
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multi-information reduction under a transform, S, is:

DMI ¼ MIðx0Þ � MIðxnÞ ¼
Xd0

k¼1

hðx0

kÞ �
Xdn

k¼1

hðxnkÞ þ E½log2jrx0Sj� ð43Þ

where h(�) represents the entropy of the considered scalar variable, which is easy to

compute from the corresponding univariate probability density function of the stimuli,

and E½log2jrx0Sj� is the expected value of the log2 of the determinant of the Jacobian over the

considered kind of stimuli. In the case of natural images and vision models with reasonable

parameters, the effect of the nonlinearities is performing a sort of PDF equalization [80, 93],

therefore, the first term, Δh, should be fairly independent of the average contrast and lumi-

nance, and one would expect that the main dependence of ΔMI is given by the term that

depends on the Jacobian. In our simplified model, the determinant of the Jacobian is the

square root of the sensitivity given in Eq 42. As a result, one would expect that the efficiency

shows the same trends as the sensitivity.

In the illustration shown in Fig 5 we took 105 natural images of 3-pixels and adjusted their

average luminance and contrast to get different sets of stimuli over the whole range. For each

set of 105 samples we computed the ΔMI according to Eq 43. Fig 5 shows that Δh is fairly con-

stant and that the redundancy reduction follows the trends expected from Eq 42. Additionally,

sensitivity and efficiency do follow similar trends: they are bigger in the low-luminance, low-

contrast regions of the input space. Interestingly, these are the regions more populated by nat-

ural images [71, 94, 95]

3.2 Jacobian with regard to the image in stimulus synthesis

Many times, stimuli design implies that the desired image should fulfill certain properties in

the response domain. Examples include (i) artistic style transfer [96], in which the response to

the synthesized image should be close to the response to the image from which the content is

inherited, and should have a covariance structure close to the one in the response to the image

from which style is inherited; and (ii) Maximum Differentiation [20, 21, 23], in which the syn-

thesized images should have maximum/minimum perceptual distance with regard to a certain

reference image with a constraint in the energy of the distortion. In both cases, fulfilling the

requirements implies modifying the image so that the response is modified in certain direc-

tion. In such situations the Jacobian of the response with regard to the image (Result I) is

critical.

Here we discuss in detail the case of MAximum Differentiation (MAD). This technique is

used to rank competing vision models by using them to solve a simple geometric question and

visually assessing which one gave the better solution. While in conventional psychophysics the

decision between two models relies on how well they fit thousands of individual measurements

(either contrast incremental thresholds or subjective ratings of distortions), in MAD the deci-

sion between two models reduces to a single visual experiment.

The geometric question for the perception model in MAD is the following [20]: given a cer-

tain reference image, x0
A, and the set of distorted images departing a certain amount of energy

from the reference image, the sphere with center in x0
A and certain fixed radius (or certain

Mean Squared Error); the problem is looking for the images with maximum and minimum

perceptual distance on the sphere, lets call them x0
min and x0

max. If the vision model is meaning-

ful, x0
min and x0

max should have a very different visual appearance. The more accurate vision

model will be the one leading to the pair of images which are maximally different. The discrim-

inative power of this visual experiment comes from the fact that the synthesis of these stimuli
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involves comparing the performance of the models under consideration in every possible

direction of the space of images.

Fig 6(a) illustrates the geometric problem in MAD. The following paragraphs show how the

different solutions to this geometric problem reduce to the use of Result I.

General, but numeric, solution to MAD. In general there is no analytical solution for

such problem and hence one has to start from a guess image and modify it according to the

direction of the gradient of the perceptual distance,rx0 dp, to maximize or minimize this

Fig 5. Insight into function: Reduction in multi-information from the difference in marginal entropies and the Jacobian of the transform. Top: differences in

marginal entropies. Middle: Term depending on the Jacobian. Bottom: final multi-information reduction. From left to right: (a) Baseline situation (shows the expected

luminance/contrast dependence), (b) Linear luminance-to-brightness response, (c) increased contrast sensitivity, (d) increased semisaturation. We can see how Δh is

fairly constant and the final efficiency follows the trends of the Jacobian: it is large in low-luminance, low-contrast regions of input space. Interestingly, these are the

regions more populated by natural images.

https://doi.org/10.1371/journal.pone.0201326.g005
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distance. Of course, the problem, illustrated in Fig 6(b), is that, a naive modification of the m-

th guess, x0
½m�, in the direction of this gradient puts the solution out of the sphere: note the loca-

tion of x0
naive in pink, in Fig 6(b). As proposed in [20], this departure from the sphere is solved

by (i) subtracting the component parallel to the gradient of the Euclidean distance,rx0 d1 (see

the point x0
naive0 in red), and (ii) projecting this displaced point back into the sphere (see the

point x0
½mþ1�

in orange). In summary, the complete iteration for the stimulus that maximizes/

minimizes the distance is as follows [20]:

ð44Þ

where, λ is the constant that controls the convergence of the gradient descent, and ν can be

computed analytically since the Euclidean distance of the point projected onto the sphere

should be , where, given the gradients, the only unknown is

ν. Note that the gradients of the distances are row vectors since they should be applied on the

column vectors describing the increments in the images: (row vector

times column vector). That is why we need to transpose the gradients before adding the

modifications to x0
½m�, and the reason for the transposes in the scalar products of gradients

(as in the projection , row vector times column vector). Note also that the

gradients without prime are computed at x0
½m�, and the gradient with prime is computed at

.

Fig 6. Stimulus generation in MAximum Differentiation (MAD). (a) The MAD concept: given an original image, e.g. the point x0
A in light blue, a perceptual distance

measure, dp, coming from a vision model (leading to the discrimination region in green), and certain fixed Euclidean distance, d1, (sphere in black); the problem is

looking for the best and worst images on the sphere according to the perceptual distance dp. The solution is given by the images that are in the directions (or paths)

leading to the biggest or the lowest perceptual distortions (x0
MAX and x0

MIN, in dark blue and orange respectively). In the example, the path leading to the biggest

perceptual difference (for the same Euclidean length) is the curve in orange because it represents the shortest path from the original image to the discrimination

boundary in green. Equivalently, the path leading to the lowest perceptual difference (for the same Euclidean length) is the curve in blue because it represents the

longest path to the discrimination boundary in green. (b) The MAD algorithm: start from a random point at the sphere and modify it to increase (or alternatively

decrease) the perceptual distance followingrdp. Note that the naive application of the gradient implies a solution out of the sphere. This has to be projected on the

sphere through the appropriate correction: first remove the component parallel tord1, and then project in the direction ofrd01. (c) Second order approximation:

approximate the perceptual discrimination regions by ellipsoids (local linear approximation of the vision model). In this way the MAD images are given by the

directions of the maximum and minimum eigenvalue of the 2nd order metric matrix.

https://doi.org/10.1371/journal.pone.0201326.g006
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Now, lets address the gradients. The Euclidean distance with regard to the reference image

evaluated at certain x0
B is . Therefore, the gradient

of the Euclidean distance with regard to x0
B is:

More interestingly (since this was not addressed in [20]), the gradient of the perceptual dis-

tance in the cascaded setting considered here, which is defined at the response domain, Eq 22,

is,

ð45Þ

which depends on the responses for the considered images, xn = S(x0), and on the Jacobian of

the response with regard to the inputrx0Sðx0
BÞ.

Eq 45 together with the auxiliary results onrx0S (Eqs 17 and 18) imply that the application

of MAD in the cascaded setting considered here, reduces to the use of Result I, i.e. Eq 24 for

the canonical nonlinearity, or the equivalent equations for the alternative nonlinearities con-

sidered (i.e. Eqs 26 and 27).

Analytic, but approximated, solution to MAD. As stated in Section 2.1 when talking

about the distance, Eq 23, in the local-linear approximation the general discrimination regions

are approximated by ellipsoids. In the illustration of Fig 6, the (general) curved region in dark

green in Fig 6.a and 6.b is approximated by the ellipsoid in Fig 6.c.

Under this approximation, the minimization/maximization of the perceptual distance on

the Euclidean sphere has a clear analytic solution: the images with maximum and minimum

perceptual distance will be those in the directions of the eigenvectors with minimum and max-

imum eigenvalues of the metric matrix Mðx0
AÞ. These, again, depend on the Jacobian of the

response with regard to the stimulus, and hence on Result I.

The view of the MAD problem in terms of a metric matrix is also useful when breaking

large images into smaller patches for computational convenience. In these patch-wise scenar-

ios the global metric matrix actually has block-diagonal structure (see the S6 File). Therefore,

given the properties of block-diagonal matrices [82], the global eigenvectors (and hence the

solution to MAD) actually reduce to the computation of the eigenvectors of the smaller metric

matrices for each patch.

Illustration of the general and the analytic solutions. Here we take a reference image

and we launch a gradient descent/ascent search in the sphere of constant Root Mean Square

Error (RMSE) to look for the best/worst version of this image.

For the same image we compute the Jacobian with regard to the stimulus and we compute

the eigenvectors of bigger and lower eigenvalue, i.e. the directions that lead to most/least visi-

ble distortions in the 2nd order approximation of the distance (approximated analytic MAD

solution). For computational convenience we take a patch-wise approach considering dis-

tinct regions subtending 0.65 deg. This region-oriented approach certainly generates

some artifacts in the block boundaries. However, the moderate visual impact of these edge

effects suggests that for regions of this size (and above) it is fair to assume the block-wise
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independence of distortion See additional comments on this computationally convenient

assumption in the S6 File.

Fig 7 shows the evolution of the general MAD distances and the solutions from the initial

guess on the sphere (image corrupted with white-noise). Monotonic increase and decrease in

the red and blue distance curves and progressive degradation or improvement in the images

indicate both (a) the correctness of Result I, and (b) the accuracy of the parameters of the

model used in this illustration. Figs 8 and 9 show the results of the general MAD search and its

analytic approximation respectively.

The main trend is this: the numerical procedure leads to noises of similar visual nature than

the analytic procedure. This means that the iterative search is certainly attracted to the sub-

spaces with low and high eigenvalues of the 2nd order metric. More specifically, in both cases

(a) the algorithms tend to allocate high-contrast low-frequency artifacts in low-contrast and

low-luminance regions (e.g background) to increase the visibility of the noise, and (b) the algo-

rithms tend to allocate high-frequency noise in high-contrast regions (e.g. face) to minimize

its visibility. These distortions are completely consistent with the trends identified above in the

analytical sensitivity and efficiency of the system, Eqs 42 and 43 and Figs 4 and 5: focus on the

low-contrast region and the role played by the CSF-like gain.

There are differences between the general and the analytic solutions. In this example the

visual difference between the pairs of the analytic (approximated) solution seems bigger than

the visual difference between the general (numeric) solution. In principle, the numeric solu-

tion follows more closely the actual geometry induced by perception (amorphous discrimi-

nation region versus approximated ellipsoid). However, the finite length of the gradient

descent search and the eventual trapping in local minima may prevent the practical use of

the general technique (not to speak about the substantially higher computational cost of the

search!).

Fig 7. Gradient-descent/ascent MAD. Left panel: evolution of the perceptual distance maximized (red curve) or minimized (blue curve) from an initial white-noise

distorted image. Right panel (from left-to-right): evolution of the intermediate MAD images on the sphere of constant RMSE. The two rows at the top show the

evolution of progressively-worse images while maximizing the perceptual distance. The two rows at the bottom show the equivalent evolution of the progressively-

better images while minimizing the perceptual distance. In each case (top and bottom) we show the image+distortions and the isolated distortions. In each case (top

and bottom), the first image at the left is the initial randomly selected image in the sphere of constant RMSE. This image gets progressively worse/better. The reference

original image is shown in Fig 8.

https://doi.org/10.1371/journal.pone.0201326.g007
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Fig 8. General numeric solution. Top: original image x0
A (picture of the corresponding author taken by Virginia Amblar). Central row: extreme images (MAD best

and worst -left and right-) with the same RMSE than the white-noise corrupted image at the center. The central image is the initial random selection in the sphere of

constant RMSE. Extreme images were computed using the gradient descent/ascent described in Eq 44 (i.e. require Result I). The fact that these extreme images are

visually better and worse than the central image indicates that the theory works. Bottom row: isolated distortions of the same energy: Dx0 ¼ x0
A � x0

MAD versus the

initial white noise.

https://doi.org/10.1371/journal.pone.0201326.g008
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Fig 9. Analytic, but approximated, solution. Top: original image x0
A. Central row: extreme images (MAD best and worst -left and right-) with the same RMSE than the

white-noise corrupted image at the center. Extreme images are built from the eigenvectors of the metric matrix, Mðx0
AÞ ¼ rxSðx0

AÞ
>
� rxSðx0

AÞ (hence requiring Result

I). In this case no search is carried out: the image corrupted with white noise in the center of 2nd row is there only for comparison purposes. The fact that the extreme

images are visually better and worse than the central image indicates that the theory works. Bottom row: isolated distortions of the same energy: Dx0 ¼ x0
A � x0

MAD
versus white noise.

https://doi.org/10.1371/journal.pone.0201326.g009
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Nevertheless, the qualitative similarities of the solutions (the nature of the distortions and

its spatial location) is more relevant than the small quantitative differences. In the model

considered throughout this Discussion (Fig 1), the 2nd and 3rd layers (contrast, and energy

masking) were determined using analytic MAD as in [21]. The experimental determination

consisted of deciding between different distorted pairs corresponding to eigenvectors com-

ing from models from different parameters. The final values found are those referred in the

associated code (see the S1 and S8 Files). Interestingly, MAD images in this paper (Figs 7–9,

and Fig S8.3 in the demo of the Toolbox in the S8 File). were computed using two extra layers

in the model (1st and 4th, accounting for brightness and wavelet masking respectively). The

important point is that, either numeric or analytic MAD images, they give rise to distinct

pairs by putting wavelet-like localized distortions of the right frequency in the regions with

the right contrast or luminance, as expected from the sensitivity and efficiency discussed

above.

Recently proposed visualization techniques to assess the biological plausibility of deep-net-

work architectures [14] reduce to our analytic-MAD result originally proposed in [21]. The

relevance of Result I is that it makes explicit the Jacobian expressions which are hidden in

automatic differentiation techniques used in [14]. With the expressions proposed here one

may anticipate what kind of patterns and where they should be located to lead to highly (or

hardly) visible distortions.

MAD may have two different problems (a) problems in identifying the best/worst distor-

tions for a given image (due to local minima in the distance or noise in the eigenvectors), and

(b) substantial change of the directions of the distortions accross the image space. In our expe-

rience we found that, given a reference image, the directions are fairly independent of the ini-

tial guess and consistent with the eigenvectors. Therefore, the second problem is more severe

than the first because if the dependence is big, multiple experiments would be needed to decide

between models [23]. Note that even in this undesirable situation the analytical Jacobian is also

useful to assess how poor MAD can be. This assessment could be done by measuring the vari-

ability of the directions defined by the Jacobian.

3.3 Jacobian with regard to the parameters in model optimization

The standard methodology to set the free parameters of a model is looking for the values that

better reproduce experimental results (either direct physiological recordings or indirect psy-

chophysical results). Sometimes brute-force exhaustive search (as done in [11, 24–26]) is good

enough given the low dimensionality of the parameter space. However, when considering

thousands of parameters (as may happen in the considered model), brute-force approaches are

definitely unfeasible. In this high-dimensional scenario the Jacobian with regard to the model

parameters (i.e. Result II) may be very convenient to look for the optimal solution, as for

instance using gradient descent.

Interestingly, model fitting procedures based on alternative goals (as for instance optimal

encoding/decoding performance, as in [27]) also depend on gradient descent and this Jaco-

bian w.r.t. parameters. Unfortunately, the use of this Jacobian in similar biological models

for optimal encoding/decoding (in [27]) or to reproduce psychophysical data (in [14]), was

hidden behind automatic differentiation. On the contrary, here we gave the explicit equa-

tions (Result II) and show their practical performance and correctness in analyzing psycho-

physical data.

In this section we discuss how to use the presented Result II (generic Eqs 19–21 and specific

equations for the Divisive Normalization, Eqs 29–36), to obtain the model parameters from

classical subjective image quality ratings.
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Reproducing direct input-output data. In a controlled input-output situation (as in

[25]), it is usual to have a set of experimental physiological responses, xn
exp, for a given set of

known inputs, x0
exp, and the goal is finding the model that behaves like the recorded data.

A popular cost function depending on the parameters is the quadratic norm of the devia-

tion between the theoretical and the experimental responses εðΘÞ ¼ jxn
exp � Sðx0

exp;YÞj
2

2
. Mini-

mization of this deviation, requires the derivative of the cost with regard to the parameters,

@εðΘÞ
@Θ

¼ 2ðxn
exp � Sðx0

exp;ΘÞÞ
>
� r ΘSðx

0

exp;ΘÞ ð46Þ

which of course depends on the Jacobian w.r.t the parameters (and hence on Result II).

The analytical inverse, Result III, has an interesting consequence in terms of the determina-

tion of Θ in a controlled input-output situation. In general estimation problems the solution is

necessarily more accurate if one combines multiple constraints to restrict the range of possible

outcomes. In our particular case, an alternative constraint to the one considered above is the

minimization of the distance between the actual input and the theoretical input that would be

obtained from the inverse applied to the actual output. Assuming that the decoding transform

is the inverse of the encoding transform, this implies minimizing ε0ðΘÞ ¼ jx0
exp � S� 1ðxn

exp;ΘÞj
2

2
.

This extra constraint would lead to a gradient similar to Eq 46, but involving the inverse func-

tion. That is using Result III, and the Jacobian of the inverse wrt the parameters. Interestingly, it

holdsrΘS−1 = −(rx0S)−1 � rΘS. Therefore, this additional constraint reduces to the combined

use of Result III, Result I, and Result II.

Reproducing indirect data. By indirect data we refer to certain behavior that is mediated

by the responses of the underlying L+NL mechanisms, but it is different from the actual

responses themselves. This is the conventional situation in psychophysics. An illustrative

example is the subjective assessment of perceived differences in image quality databases.

In this particular image quality situation instead of having a set of physiological responses

for a given input, we have a Mean Opinion Score (MOS) of a set of distorted images (which is

the usual ground truth in the image quality literature [97]), and we want to adjust our model

to reproduce this opinion.

In this case, the goal function is the correlation between the experimental subjective dis-

tance and the perceptual distance computed using the model explained above. More specifi-

cally, consider a set of N corrupted images, z0
½c� ¼ x0

½c� þ Dx0
½c�, with c = 1. . .N. For this set, we

assume we know the N mean opinion scores, M = (m[1], . . ., m[N])>, and we can compute the

N perceptual distortions, , using the model (e.g. using Eq 22).

Therefore, the optimal parameters will be those maximizing the alignment between the

ground truth, M and the model predictions D. Using the Pearson correlation, %, as alignment

measure, we have,

Y
?
¼ max

Y
%ðYÞ ¼ max

Y

Ms
T � DsðYÞ

jMsjjDsðYÞj
ð47Þ

where subindex s stands for subtraction of the mean of the vectors.

The maximization of the correlation, %, requires its derivative with regard to the parameters

of the model. Interestingly (see the S7 File), it turns out that the derivative of this goal function
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also depends onrΘS (i.e. it depends on Result II):

@%

@Y
¼

Ms
T

jMsj � jDsj
�

Ms
TDs

jMsj � jDsj
3
� Ds

T

 !

� I �
1

N
� 1

� �

�

Dxn
½1�
>

jDxn
½1�j
� rYSðz

0

½1�
Þ � rYSðx

0

½1�
Þ

h i

Dxn
½2�
>

jDxn
½2�j
� rYSðz

0
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Þ
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..

.

Dxn
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>
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ð48Þ

Cascaded L+NL model in image quality. The reproduction of image quality ratings is a

good way to check the performance of vision models in a variety of observation conditions

(variety of natural backgrounds and variety of suprathreshold tests).

The image quality results discussed in this section illustrate three interesting issues:

• They are a complementary evidence of the quality of the modular model (different from

MAD results of the previous section).

• They point out the benefits of the modular nature of the model since inclusion of extra layers

leads to consistent improvements of the performance (either by using canonical L+NL layers

or by using alternative formulations such as the two-gamma tone mapping model or the

Wilson-Cowan nonlinearity after a linear wavelet stage).

• They reveal the relevance of Result II in finding the model parameters in high-dimensional

scenarios and the correctness of the presented expressions.

Fig 10 shows the performance of the kind of cascaded L+NL models we are considering

here in the reproduction of mean opinion scores. We include two reference models (in red)

for convenient comparison. The first reference is just the Euclidean distance between inputs

(RMSE). The second reference is the most popular perceptual quality predictor in the image

processing community (the Structural SIMilarity index, SSIM [99]). Our baseline model is the

2-stage L+NL model whose parameters were tuned using MAximum Differentiation [21].

Results reported here are better than those reported in [21] (using the same parameters) prob-

ably because of two reasons: (1) here we are using bigger patches and hence the patch-indepen-

dence assumption holds better, and (2) we are now applying luminance calibration to digital

values of the TID database. This baseline model corresponds to the 2nd and 3rd canonical

stages of the global model we are considering throughout the discussion section (see model

details in the S1 File).

Substantial jumps in correlation from the RMSE result indicate the well-known limitation

of naive Euclidean distance [30] but also the potential of MAD to set the parameters of this

2-stage model [21]. Note that, assuming the Contrast Sensitivity Function (CSF) of the Stan-

dard Spatial Observer [24], this 2-stage model only has 5 free parameters (something afford-

able using MAD): the widths of the kernels and the semisaturation for contrast computation,

and the width of the kernel, the semisaturation, and the excitation exponent in the masking

nonlinearity.

Modularity and interpretability of the model is nice because it allows to propose straightfor-

ward improvements of the baseline model: just introduce extra layers according to the pro-

gram suggested in [1]. Accordingly, we included a brightness perception layer before the

contrast computation, and a wavelet interaction model after the CSF+spatial masking layer.
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To stress the generality of the proposed modular approach our first brightness model was the

two-gamma tone mapping operator cited in Section 2.1, and our first wavelet masking scheme

was the Wilson-Cowan model cited in Section 2.1 applied to each subband of a steerable pyra-

mid. Following [26] the 5 extra parameters of these extra layers were obtained through brute-

force search using 50% of the database. Exhaustive search in 5 dimensions is hard but still

feasible. The resulting model not only improves the Pearson correlation in image quality (as

expected by construction), but it also has sensible behavior in reproducing contrast masking

[26].

Finally, we explicitly explored the maximization of the correlation using different versions

of the brightness and the wavelet+masking stages. In this final case we used canonical Divisive

Normalization layers. Note that the joint optimization of the 1st and 4th layers is an interesting

way to check Results I and II at once. First, relation to the Jacobian w.r.t the parameters in

Result II is obvious from Eq 48. But, more interestingly, note that the chain rule, Eq 20, implies

that distortions due to variations in the parameters propagate throughout the network. Then,

Fig 10. Prediction of subjective distortion. Correlation between predicted subjective distortion (in abscisas) and actual opinion (in ordinates) is a good performance

measure of models in a variety of observation conditions. These results show the Pearson, Spearman and Kendall correlations of different models in reproducing the

subjective opinion in the TID database [98]. Scatter plots in red correspond to two simpler models for convenient reference: the Euclidean distance, RMSE; and a

widely used model of perceptual distortion, SSIM [99]. Scatter plots in blue correspond to progressive improvements of the baseline 2-layer (L+NL + L+NL) model at

the left. Labels in the abscisas indicate (a) the perceptual phenomena taken into account by the layers of the models, and (b) the structure of the layers and how they

were estimated. MAD-DN stands for Divisive Normalization layer with parameters estimated using MAD experiments. Brute-force TM and Brute-force WC stand for

Tone-Mapping and Wilson-Cowan layers estimated through the maximization of the Pearson correlation using exhaustive search in a grid. Finally, opt-DN stands for

Divisive Normalization layers estimated through gradient optimization of Pearson correlation (using Result II).

https://doi.org/10.1371/journal.pone.0201326.g010
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the Jacobian w.r.t the stimulus (i.e. Result I of all the layers following the one under optimiza-

tion) is also required in the joint optimization of 1st and 4th layers.

As a result of the chain rule, this optimization has a great experimental value but also a

great computational cost. That is why we split the optimization of this illustration in two sepa-

rate phases.

In the optimization phase one we addressed the (highly illustrative but extremely demand-

ing) joint optimization of the 1st and 4th stages. In this phase one we used a reduced training

set to avoid the computational burden, and we used structured versions of the parameters as

discussed after Eq 36 to address a relatively low-dimensional problem (but still not affordable

through brute force). Then, in phase two, we took the results of phase one (which are only a

first approximation to the right solution because of the small size of the training set) and

focused on the optimization of a single parameter which is fast to compute but extremely

high-dimensional to point out even more clearly the necessity of using Result II. Positive

results of these first and second learning phases are illustrated in Fig 11.

Computational cost of joint optimization (phase one) implies that not that many training

points can be used in the gradient ascent. This implies that in order to generalize the training

set has to be stochastically updated. We show the result of such stochastic maximization of

the correlation using only 48 samples of the TID database at a time. The gradient ascent

search in phase one (blue curve at the left) certainly increases the correlation for the consid-

ered small training set. Note that oscillations come from the random modification of the

training set in each iteration. The consistent increase of correlation in the stochastic phase
one points out the correctness of Results I and II. However, in the explored iterations in

phase one, the correlation in the whole dataset only increased up to 0.84. This generalization

problem means that the training set is too small to avoid overfitting or equivalently, that

extra iterations would be necessary so that this small set could visit the whole variability in

the dataset.

Once Result II (and also Result I) have been checked in the most demanding situation

(joint optimization of two layers in phase one), we switch to phase two. In the phase two only

the semisaturation of the 4th stage (only the vector b4) was optimized. Note that in this

restricted case we do not need the Result I of the intermediate stages anymore. In fact, the

computation of the Jacobian w.r.t. this single parameter is so fast that we allowed the search in

the full dimensionality of this vector and using deterministic gradient ascent (using a substan-

tial part of the available database). In particular in this phase two we trained with 800 randomly

chosen points of the database (about 50%), as opposed to the reduced number of random

regions taken from 48 points used in phase one. In this high-dimensional case (note the huge

dimension of b4) brute-force is certainly not possible, and hence the gradient ascent (i.e. Result

II) is the most sensible way. In this phase two, the correlation on the whole database (in red)

consistently increases at the beginning of the search indicating both the correctness of Result

II (for this parameter) and the representativeness of the training set. Finally, as expected in any

learning problem using a limited training set, overfitting occurs and the correlation for the test

set starts to oscillate. The values found at the (trustable) highlighted point are those used in the

final scatter plot of Fig 10.

Only the brute-force and the result of the phase two optimization are compared in Fig 10.

These methods used the same amount of training samples but note that the complexity of the

models is much bigger in the wavelet-DN case (where brute-force is definitely not possible).

Figs 10 and 11 (right) report the results for the whole database: of course, as in any learning

problem, correlation values in the separated train and test sets are slightly higher and lower

respectively.
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3.4 Analytic inverse in visual brain decoding

Visual brain decoding refers to the reconstruction of the input stimulus from physiological

recordings of the neural activity (for instance fMRI) [39]. Conventional decoding techniques

are based on learning-through-examples the response-stimulus relation. First approaches to

decoding used plain linear regression [46], but now the current practice is using non-linear

regression as for instance based on kernel methods (as in [41, 100]). However, given the fact

that models of the BOLD signal also have this cascaded L+NL structure [25], the analytic

inverse of the transform proposed here (Result III) may have obvious application in decoding

the input from the recorded output.

In order to illustrate the eventual benefits of the analytic inverse in the visual decoding

problem, in this discussion we consider a simulation where conventional blind machine-

learning techniques (linear regression and nonlinear kernel-ridge regression as in [41]) are

Fig 11. Maximization of correlation with subjective opinion (phase one and phase two). Phase one (left) involved the joint optimization of the following parameters:

β, γ of the 1st stage and b, σ, γ, c of the 4th stage. In this case b1; g1; g4 2 R1 and b4; s4; c4 2 R14 one parameter per orientation (with 4 orientation) and scale (with 4

scales) plus both residuals. Note that even though the relatively small number of parameters, the dimensionality is still huge to allow a brute force approach. Given the

computational cost of phase one we used stochastic gradient descent on a extremely small training set. Results shown in the curve correspond to the randomly varying

training set. In phase one the correlation for the whole database only arrives up to 0.84 because more iteration would be required. Phase two (right) only involved the

optimization of b4. This is fast enough to use deterministic gradient ascent training with half the database. However, note that if no structure is imposed in b4, it has

thousands of elements thus brute-force is not possible. In this case, correlation results shown correspond to the whole database (indicating proper generalization). The

parameters leading to the maximum correlation in the test set (peak of the red curve) are those used for the scatter plot of Fig 10.

https://doi.org/10.1371/journal.pone.0201326.g011
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compared to the analytic inversion. Here we simulate the recorded neural signal by applying

the forward model to noisy inputs and distorting the output. This controlled scenario allows

us to generate as many corresponding input-output pairs as necessary to train the machine-

learning techniques, as done in the experimental acquisition phase in the brain decoding

literature.

In fact, regression techniques depend both on the nature of the input-output pairs and on

the nature of the distortions. In our simulation we controlled both:

• We controlled the nature of the signals by augmenting a calibrated set of natural images

(Van Hateren database [101]) using controlled modifications of the illumination conditions.

Specifically, we linearly modified the images to have different average luminance and con-

trast. We considered 7×9 combinations of luminance and contrast covering the range avail-

able in a conventional computer display (see Fig 12).

• Distortion in the signals comes from random variations in the input (e.g. photon-noise at

the retina), random variations of the output (e.g. noise in the cortical response), and distor-

tions due to the measurement (e.g. blurring and noise in the BOLD signal). There is a debate

on the psychophysical relevance of the noise at the input versus the neural noise [17, 102,

103] that we don’t want to address here. Just for the sake of the illustration, we controlled

these distortions by using uncorrelated noise at the input and blur+noise in the acquisition

of the neural signal given by the model. The outputs of the model were blurred using a

Gaussian kernel with width of 0.05 degrees (in visual angle units, in the spatial domain corre-

sponding to each subband). We considered two distortion regimes: low-distortion and high

distortion. The low-distortion regime involved Gaussian noise at the input with σ = 3cd/m2,

and Poisson noise at the responses with Fano factor 0.02. The high-distortion regime

Fig 12. Range of illumination conditions. Average luminance increases from top to bottom and contrast increases

from left to right. Luminance is in the range [0, 160] cd/m2. Average luminances are in the range [25, 80] cd/m2, and

average contrasts are in the range [0.1, 0.9]. The learning-based decoders were trained with natural images from the

central luminance/contrast condition, under two levels of distortion. The undistorted image comes from the publicly

available Van Hateren database [101] and is reproduced here with permission from Hans Van Hateren.

https://doi.org/10.1371/journal.pone.0201326.g012
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involved the same sources of noise with input deviation σ = 30cd/m2, and internal Fano fac-

tor 0.05.

We trained the machine learning algorithms with images from the central luminance/con-

trast condition and responses under the low and high distortion regimes. We considered 5000

input-output examples in the training. We tested on an image not considered in the training

set. In the test we considered the different illumination conditions (the one used in the training

and the other conditions considered in Fig 12), and we applied the two distortion regimes.

In each test example, in which illumination may or may not correspond to the training, we

decoded the response with 5 decoders: (1) linear decoder trained for the considered distortion,

(2) linear decoder trained with noise of different nature, (3) non-linear decoder trained for the

considered distortion, (4) non-linear decoder trained with noise of different nature, (5) analyt-

ical decoder.

Distortion in the decoded signals is shown in Fig 13. Here we use the Mean Absolute Error

in the input domain (in cd/m2 units) as distortion measure, just because it has direct physical

interpretation (subjective accuracy will be apparent in the visual examples below). Results

show that the error of the analytic decoder is lower and substantially more independent from

the illumination conditions than the error of the machine learning models that depend on

the training. The error surfaces of the data-dependent decoders are curved because they are

trained for the central condition in the range. Therefore they have generalization problems in

other regions. For bigger distortions all methods have lower performance (the analytic decod-

ing is affected too), but note that in this case, appropriate training becomes more critical

because using decoders trained in other distortion conditions increase the error (see how the

green surface goes up in the plot of the right).

Beyond Mean Absolute Error or alternative arbitrary measures of reconstruction accuracy

(all of them perceptually arguable), it is worth taking an explicit look at the reconstructed

images. Representative examples of the decoded signals are shown in Figs 14 and 15.

Fig 13. Decoding error. Left panels show the Mean Absolute Error (MAE) in the low-distortion regime and panels of the right show the MAE in the high-distortion

regime. Image luminance is in the range [0, 160] cd/m2. In each case surfaces red, green and blue represent the error of the linear regression, non-linear regression and

analytic decoders. In each distortion regime, the panel at the left shows the results of the decoders trained for that regime. The panel of the right represents the case

where the signal is reconstructed by decoders trained in a different distortion regime. The highlighted points correspond to the error of the decoded images shown in

Figs 14 and 15. Note that the points at the center correspond to the optimum for the learning-based decoders: the training illumination and distortion. Axis label, L

means Luminance, and C means Contrast.

https://doi.org/10.1371/journal.pone.0201326.g013
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Note that the set of visual examples include the best case scenario for the learning-based

decoders: training in the same illumination conditions and with distortion of the same nature

(top row of Figs 14 and 15). Even in this best case scenario, the analytic decoder better repro-

duces the visual structures even in the high distortion condition. These visual examples illus-

trate the advantages of considering the analytic decoding (generalization ability) with regard

to the conventional linear and nonlinear regression.

4 Concluding remarks

This paper addressed relevant mathematical details of biologically plausible feed-forward cas-

cades of linear+nonlinear neural models. These details, namely the Jacobians of the transform

(w.r.t. the stimulus and w.r.t. the parameters) and the decoding transform, are usually disre-

garded in the conventional experimental literature (e.g. [1] and cites therein), because it is

focused on obtaining the encoding transform in specific experimental settings.

The analytical results presented here show that for the considered L+NL cascades the Jaco-

bian with regard to the stimulus,rx0S, the Jacobian with regard to the parameters,rΘS, and

the inverse, S−1, reduce to knowing the corresponding Jacobian and inverse of the nonlinear

Fig 14. Reconstructions in the low-distortion regime. These six reconstructions correspond to the highlighted dots in the surfaces at the left plot of Fig 13. The

analytic decoding clearly overperforms the learning algorithms even in the case that the image has the illumination conditions used in the training (medium

luminance/contrast) and the decoders are those trained for the considered distortion.

https://doi.org/10.1371/journal.pone.0201326.g014
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part of each layer of the cascade, namelyryiN
ðiÞ

,rθiN
ðiÞ

, and N ðiÞ� 1

. These necessary ele-

ments are explicitly given here: the analytical expressions ofryiN
ðiÞ

,rθiN
ðiÞ

, and N ðiÞ� 1

for

the case canonical Divisive Normalization. Equivalent results for alternative nonlinearities

such as the Wilson-Cowan model [47, 48] and models of brightness perception [49] are also

given.

The fundamental reason for this analytical treatment is the analytical insight into the physi-
ology, the psychophysics and the function of the visual system. We explicitly saw that the con-

text-dependent changes in the receptive fields, the impact in the response of uncertainty in the

filters (or synaptic weights), the trends of the sensitivity and JNDs, and the efficiency of the sys-

tem in multi-information terms can be identified in the analytical expressions of the Jacobians

rx0S andrΘS.

It is true that the artificial neural networks literature addresses similar cascaded architec-

tures [54], and this community has been recently attracted by the applications of their deriva-

tives and inverse (e.g. in image synthesis [96], or new visualization methods to assess deep

networks using derivatives [14] and the inverse [104]). However, this literature doesn’t address

Fig 15. Reconstructions in the high-distortion regime. These six reconstructions correspond to the highlighted dots in the surfaces at the right plot of Fig 13. In this

example, with decoders properly trained in the high-distortion regime, the analytic decoding does not have the best MAE values (MAE is not a visually meaningful

measure anyway), but it is certainly better in preserving the visual structures in the scene.

https://doi.org/10.1371/journal.pone.0201326.g015
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all the analytic results reported here for biologically plausible nonlinearities such as the Divi-

sive Normalization or the Wilson-Cowan model. One reason is because the most popular arti-

ficial networks use simplified nonlinearities and biological plausibility is not one of the goals

when training the artificial models [54]. But more importantly, given the growing popularity

of automatic differentiation methods [55], derivatives may be extensively used, but explicit

expressions are not given.

It is important to stress that even in the case of training biologically plausible models, while

the use of automatic (implicit) differentiation certainly leads to successful working models, it

makes the models more difficult to understand: one should check their behavior empirically

because it is not summarized in equations. On the contrary, as shown in the examples pre-

sented in the first part of the discussion, the explicit expressions allow to identify the basic

properties of the system. In this way one may anticipate the kind of results that will emerge

from the model (e.g. the nature and location of the distortions computed in MAD) and their

relation with the sensitivity or the efficiency of the system because this can be seen in the

equations.

Additional examples of the advantages of the analytical treatment include the following. On

the one hand, the analytical expressions may suggest simplifications that enable links between

models of different nature. For instance, the truncation of the expansion of the analytical

inverse of the Divisive Normalization is convenient to establish the equivalence between the

Divisive Normalization and the Wilson-Cowan model [105]. On the other hand, the analytical

expressions allow sensible comparisons between normal and anomalous versions of a model.

For instance, the corresponding pair procedure to simulate the perception of anomalous

observers [106] could be used in more general models if the analytical inverse is available and

it depends on the parameter that describes the anomaly.

From the experimental and applied perspective, we discussed howrx0S can be used in the

design of stimuli for novel psychophysics (MAD); howrΘS can be used to get the parameters

of the model using classical psychophysics in image quality ratings; and how visual representa-

tion decoding may be benefited from the use of S−1. These illustrations are a practical demon-

stration of the correctness of the presented expressions and suggest that (i) the proposed

modular model can be easily extended including extra layers that can be fitted without relying

in brute-force techniques (hence improving the results in [11, 24, 26]), and (ii) the analytic

inverse seems an interesting alternative to blind regression techniques [41, 46] previously used

in visual decoding.

Finally, it is important to acknowledge that relevant aspects of the sensory system were not

explicitly considered in the examples shown here, as for instance its dynamics or the eventual

presence of feedback.

Regarding time-varying stimuli, the L+NL cascaded architecture considered here has also

been successfully used to model motion sensitive areas such as V1 and MT [3]. Therefore, the

spatio-temporal extension of the presented formulation is completely straightforward. Focus

on the stationary solution of the system, as done in our consideration of the Wilson-Cowan

model, implies ignoring transients. Nevertheless, networks with divisive feedback lead to regu-

lar divisive normalization-like steady states and the semisaturation depends on the signal

[107]. Similarly, when divisive normalization is considered to be equivalent to the steady state

of the Wilson-Cowan model, signal dependence appears in the kernel H [105]. Therefore,

some of the parameters that we assumed to be constant should actually vary with the environ-

ment with specific time constants.

In relation with the limitations due to ignoring feedback in the considered models

we would like to stress that we are not advocating for feedforward L+NL cascades as the

perfect approach in all situations, but rather introducing the maths for better using a very
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popular framework, which will in turn help advance our understanding of how biological

vision works.

In the same vein, a number of alternative models also assume multiple L+NL stages and adap-

tive non-linearities [14, 50–53, 57]. And they all are successfully fitted via gradient based methods

to data. While some of them provide a detailed account on how the parameters are fitted [50–

52], others rely on automatic differentiation [14, 53, 57]. An interesting example related with the

approach proposed here is the model considered in [108], where they explicitly provide not only

the Jacobian wrt the parameters to fit the model, but also the Jacobian wrt the input to synthesize

MAD stimuli. Unfortunately, as the other cases, they do not address the inverse either.

In summary, given the insight that can be obtained from the explicit expressions, future

modeling efforts should not be restricted to the forward transform, but they should also address

the derivatives and the inverse if the level of abstraction is low enough to invert the model.
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