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Plasmodium falciparum is one of the plasmodium species responsible for the majority of
life-threatening malaria cases. The current antimalarial therapies are becoming less
effective due to growing drug resistance, leading to the urgent requirement for
alternative and more effective antimalarial drugs or vaccines. To facilitate the novel
drug discovery or vaccine development efforts, recent advances in sequencing
technologies provide valuable information about the whole genome of the parasite, yet
a lot more needs to be deciphered due to its incomplete proteome annotation.
Surprisingly, out of the 5,389 proteins currently annotated in the Plasmodium
falciparum 3D7 strain, 1,626 proteins (~30% data) are annotated as hypothetical
proteins. In parasite genomic studies, the challenge to annotate hypothetical proteins
is often ignored, which may obscure the crucial information related to the pathogenicity of
the parasite. In this study, we attempt to characterize hypothetical proteins of the parasite
to identify novel drug targets using a computational pipeline. The study reveals that out of
the overall pool of the hypothetical proteins, 266 proteins have conserved functional
signatures. Furthermore, the pathway analysis of these proteins revealed that 23 proteins
have an essential role in various biochemical, signalling and metabolic pathways.
Additionally, all the proteins (266) were subjected to computational structure analysis.
We could successfully model 11 proteins. We validated and checked the structural stability
of the models by performing molecular dynamics simulation. Interestingly, eight proteins
show stable conformations, and seven proteins are specific for Plasmodium falciparum,
based on homology analysis. Lastly, mapping the seven shortlisted hypothetical proteins
on the Plasmodium falciparum protein-protein interaction network revealed 3,299 nodes
and 2,750,692 edges. Our study revealed interesting functional details of seven
hypothetical proteins of the parasite, which help learn more about the less-studied
molecules and their interactions, providing valuable clues to unravel the role of these
proteins via future experimental validation.
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INTRODUCTION

Human malaria infection, caused by the protozoa of the genus
“Plasmodium”, is still a major public health issue, even though
extensive efforts to eradicate it are in process (Uwimana et al.,
2020; Hema et al., 2021). Based on a report published by the world
health organization (WHO), it was estimated that 229 million
cases and 409,000 deaths were reported in 2020 due to
Plasmodium falciparum parasite alone (www.who.int/
publications). Despite the best efforts and global programs
regarding eliminating malaria, infection is increasing day by
day due to the rapid transmission rate (Sumner et al., 2021).
Although antimalarial therapies and drugs were considered
helpful, growing drug resistance reduced the efficacy of drugs,
which led to employing alternative methods for more effective
drugs (Ramasamy et al., 2007). With the emerging sequencing
technologies, various efforts were facilitated by annotating the
Plasmodium genome (Kissinger et al., 2002; Bahl et al., 2003).
Multiple studies based on proteome and genome were conducted
to develop novel technologies to understand disease-resistance
mechanisms in Plasmodium (Sardar et al., 2021; Sourabh et al.,
2021). While the advancement of sequencing technologies are
highly beneficial to understand specific pathways and mechanism
related to the disease, the most undesirable aspect for any newly
sequenced genome is when almost half of the annotated proteins
or genes are in the uncharacterized category and annotated as
“Hypothetical proteins (HPs)” (Galperin and Koonin, 2004;
Singh et al., 2019). These uncharacterized proteins with
predicted ORF regions without validated translation evidence
can be categorized as “Hypothetical proteins” (Ijaq et al., 2015).
Hypothetical proteins are conserved proteins and found across
diverse phylogenetic lineages, thus the absence of functional
annotations of the proteins is a serious concern. These
proteins may be performing crucial functions, which can
unravel more details of the molecular basis of the disease
infection and pathogenesis (Singh and Singh, 2018).

In the Plasmodium falciparum 3D7 proteome, a total of 5,389
proteins are identified, out of which 1,626 proteins (~30%) are
hypothetical proteins (www.plasmodb.org, Bahl et al., 2003). The
hypothetical proteins are often ignored in mainstream malaria
research, which might have resulted in missing critical candidates
for the development of malaria therapeutics. The current study
has characterized HPs by following a systematic computational
pipeline, based on extensive comparative analysis of sequences,
results from computational structural biology, and protein-
protein interaction networks (PPIs) (da Fonsêca et al., 2012;
Dhanyalakshmi et al., 2016). Each computational step of the
pipeline filters the best available supporting evidence to shortlist
proteins with functional annotations to be a potential drug target.
Our analysis revealed 266 proteins have conserved functional
sites, of which structures of 11 proteins were successfully modeled
and validated. After that, these proteins were mapped to a
protein-protein interaction network, which revealed that these
proteins interact with 3,737 other proteins. Out of 11 proteins,
seven are non-homologous with human proteome and can be
selected as potential targets for drug designing. Lastly, the sub-
networks of each chosen protein were identified, followed by

clustering and pathway enrichment analysis for further
functional assessment. In the current study, we have
characterized the hypothetical proteins with a view to explore
them as potential novel drug targets. Also, this information can be
subsequently used by malaria researchers for future experimental
validation. Moreover, the study pipeline can be an effective
platform to characterize hypothetical proteins in other
organisms too. The workflow chart representing the overall
study methodology is shown in Figure 1.

MATERIALS AND METHODS

Data Extraction and Identification of
Hypothetical Proteins
The complete proteome of Plasmodium falciparum 3D7 was
downloaded from the PlasmoDB (https://plasmodb.org/
plasmo/app, Bahl et al., 2003) and NCBI with genome
reference number GCA_000002765 (https://www.ncbi.nlm.nih.
gov/genome). All the sequences with functions were downloaded
in fasta format and the non-redundant proteins, found to be
uncharacterized or hypothetical in both the sequence datasets,
were selected for further analysis. To confirm further, UniProtKB
accessions of these proteins were also identified by mapping to
the UniProt database (http://www.UniProt.org/HYPERLINK
http://www.UniProt.org/).

Identification of Functional Domains and
Characterization of Sequences
To identify the functional signature present in the sequences of
the selected hypothetical proteins, NCBI-CDD (Derbyshire et al.,
2015), Interproscan (Jones et al., 2014) and SMART (Letunic
et al., 2015) analysis was performed. Pfam search (Finn et al.,
2014) was used to predict protein families, and for superfamilies
of proteins, we employed SCOP-Superfamily assignment (Wilson
et al., 2007). Furthermore, the ScanProsite tool was used to
identify prosite motifs in the selected sequences (Sigrist et al.,
2010). Based on the conserved domains and motifs, functions of
various hypothetical proteins can be predicted at the sequence
level. For higher confidence in the functional assignment,
identified sequences were selected for physiochemical
characterization. Theoretical isoelectric point (pI) and
molecular weight were calculated by using Compute pI/Mw
tool (Bjellqvist et al., 1994). The values for the grand average
of hydropathy of protein sequences were examined using
GRAVY CALCULATOR (http://www.gravy-calculator.de/).
Additionally, to evaluate the aromatic and aliphatic properties
of the sequences with the average number of polar and non-polar
amino acids, the acidic and basic nature of protein sequences, the
EMBOSS PepStat tool was used (Rice et al., 2000).

Protein Localization, Functional Annotation
and Pathway Analysis
After identifying functional sequence signatures in the
hypothetical proteins, we analyzed the proteins’ predicted
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cellular and sub-cellular localization. Predicted cellular
localization were determined using TMHMM (Krogh et al.,
2001), HMMTOP (Tusnady and Simon, 2001) and TOPCONS
(Tsirigos et al., 2015). Whereas the sub-cellular location was
predicted using CELLO2GO (Yu et al., 2014) and signal peptide
prediction using SignalP (Emanuelsson et al., 2007). For
discovering the functional roles of these proteins, gene
ontology was predicted using PANTHER (Mi et al., 2021).
This tool is used to predict proteins’ cellular components,
biological processes, and molecular functions. Using the
KEGG database, the role of hypothetical proteins in different
pathways was analyzed (Kanehisa and Goto, 2000).

Structural Analysis and Validation of
Proteins
The structures of the shortlisted proteins were obtained from the
AlphaFold protein structure database (https://alphafold.ebi.ac.
uk). The overall quality of the selected structures were
validated using SAVES (Structure Analysis and Verification
Server) by estimating stereochemical quality at the molecular
level, parameters of residues, model compatibility, non-bonded
interactions, and macromolecular volume of atoms (Lüthy et al.,
1992; Colovos and Yeates, 1993; Hooft et al., 1996; Pontius et al.,
1996). To check the residues in the most favored regions of the
Ramachandran plot, PROCHECK at the SAVES server was used
(Pontius et al., 1996).

Molecular Dynamics Simulation of Proteins
To check the stability of validated structures, MD simulations of
the models were performed using GROMACS 5.0 (GROningen
MAchine for Chemical Simulation) package, using the
CHARMM27 force field and files related to the topology of
proteins generated using the pdb2gmx command. Firstly, the
proteins were solvated and placed in a cubic box with a distance of
1 nm between box edges and the surface of proteins (Berendsen
et al., 1995). As per the requirement of proteins, periodic
boundary conditions and PME electrostatics were applied in
all directions and Na+ ions were added to neutralize the
systems. To avoid the steric clashes within the system, energy
minimization was carried out using 50,000 steps of steepest
descent. For MD simulations, each system was equilibrated (at
NVT and NPT) for 10ns at 300 K temperature and a pressure of 1
bar. Sampling was carried out at 10ps intervals during MD
production (RA and MB, 2011).

Homology Analysis of Proteins With
Humans, Followed by Active Site Pockets
Identification
Sequences of the structurally validated proteins were compared
with the human proteome sequence data (human; taxid: 9,906) to
identify non-homologous proteins using BLASTP (Altschul et al.,
1997). Proteins hits with E-value (expectation value) less than
0.0001 were considered to be in the homologous category and

FIGURE 1 | Workflow representing the overall study methodology.
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hence cannot be selected for drug designing, while non-
homologous proteins can be regarded as to be specific for
Plasmodium falciparum 3D7. The homology of the proteins
was also checked using OrthoMCL analysis in PlasmoDB.
Finally, the identified proteins were subjected to active site
identification using Schrödinger’s “sitemap” (Jacobson et al.,
2004).

Protein-Protein Sub-Network Analysis of
Characterized Proteins
The proteome-wide interaction network of Plasmodium
falciparum was downloaded from the STRING (v11.5)
database (Szklarczyk et al., 2021). Functionally characterized
proteins were mapped to this network and their first
interacting nodes were identified to construct a sub-network of
targeted proteins, using Cytoscape software 3.8.2 (Shannon et al.,
2003). Further to identify top modules for each of the
characterized proteins, MCODE clustering was performed by
separately selecting the first neighbors of each protein. After that,
pathway enrichment analysis of each protein’s top modules was
examined using the KEGG database (Kanehisa and Goto, 2000)
and DAVID Bioinformatics Resources 6.8 (Jiao et al., 2012).

RESULTS AND DISCUSSION

Identification of Hypothetical Proteins and
Sequence-Based Analysis
Currently, 5,389 proteins are annotated in the whole proteome
of Plasmodium falciparum 3D7 available in the PlasmoDB
resource (release 53, https://plasmodb.org/plasmo/app, Bahl
et al., 2003) and NCBI genome (reference number GCA_
000002765, https://www.ncbi.nlm.nih.gov/genome).
Sequence-based analysis revealed that 1,608 proteins (~30%)
are annotated as hypothetical proteins, which were selected for
functional characterization, using downstream steps in the
study pipeline. The existence of these proteins was further
confirmed by mapping with the UniProt database (http://www.
UniProt.org/) and UniProtKB accessions were identified. Out
of the 1,608 proteins, 266 proteins were found to have
conserved motifs, which can provide helpful information
about functional sites and predict their functions. Further
analysis of the proteins revealed 133 proteins are
represented by specific families, and 127 proteins have a
specific superfamily. Furthermore, the physicochemical
characterization revealed that 84 proteins have acidic nature
(PI < 7) and 182 proteins are found to be basic (Singh et al.,
2019). Moreover, the aliphatic index of these proteins (266
proteins) was found to be in the range of 8.5–34.7. To check the
stability of proteins at a wide range of temperatures, a higher
aliphatic index is considered as positive for their stability at
higher temperatures (Singh et al., 2017). GRAVY index (GI)
(hydrophobicity criteria of a typical protein) was found in the
range of −2.016 to 0.72 for all the proteins with conserved
functional sites. The role of GI is to determine the interaction
of proteins with water molecules, where the positive value of

GI determines hydrophobic nature and negative values of GI
determine the hydrophilic nature of the protein (Zhang et al.,
2006). Predicted functions of the proteins can be reexamined
on the basis of physicochemical characterization, for a
particular environment of protein existence (Singh et al.,
2017). Details of proteins with functional sites and
physiochemical characterization are shown in
Supplementary Table S1.

Cellular Localization, Pathway Analysis and
Functional Annotation of Proteins
Based on prediction of cellular localization, the biological
function of the proteins can be elucidated as this is an
important criterion to define the functions in a specific
environment (Yu et al., 2006). Also, assigned functions of
specific proteins can be assessed for cell-specific localization
and their important regulatory roles. A total of 115 proteins
were predicted to be present in the transmembrane and 155
proteins were cytosolic. Additionally, subcellular localization
prediction revealed that 76.7% of proteins are present in
nuclear regions, followed by plasma membrane (16.7%) and
mitochondrial regions (4.9%). Of these, 18 proteins were
found to have signal peptides as well. Signal peptides have
an essential role in carrying information related to protein
secretion, disease diagnosis and immunization processes (Owji
et al., 2018). Details related to cellular, sub-cellular localization
and signal peptides are shown in Supplementary Table S2.

Further, all the selected proteins (266) were subjected to gene
ontology annotations. Among several categories, the largest
cluster was cellular processes followed by metabolic processes
in the biological processes, while cellular anatomical entity and
intercellular were highest in cellular components. Likewise,
among molecular functions, binding and catalytic activity were
most abundant. Representation of Gene Ontology annotation for
all the categories is shown in Figure 2. Furthermore, pathway
analysis revealed that 23 proteins have an essential role in
particular pathways as well. These pathways include
metabolism activities, genetic information processing and
cellular processes (Supplementary Table S2). Understanding
metabolic activities is essential for designing inhibitors
targeting crucial metabolic activities, which can potentially
lead to the death of the parasites using antimalarial
compounds (Calas et al., 2000). To unravel the regulatory
machinery of an organism, such as gene regulation, it is
crucial to find all the missing links which might be present in
the hypothetical category. Genetic information processing has a
vital role in understanding gene regulatory mechanisms (Kudyba
et al., 2021). Pathways related to cellular processes such as
‘transport and catabolism’ were also predicted. However, it
may be noted that although studies based on comparative and
functional genomics of Plasmodium falciparum revealed several
important functions and mechanisms, cellular functions are not
clear yet (Le Roch et al., 2012). By means of cellular processes, the
TCA cycle and other important flux mechanisms can be
identified so that inhibitors can be designed to cure malaria
(Ke et al., 2015).
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FIGURE 2 | Gene Ontology (GO) annotation of hypothetical proteins with functional signature sites present in the primary sequences to identify functional
categories: cellular components, biological processes and molecular functions level. The left panel shows a pie chart of the overall percentage. The right panel shows the
precise breakup of sub-components in each category.

FIGURE 3 |Molecular structures andMD trajectory RMSD graphs of the shortlisted proteins (A) PF3D7_1368300, (B) PF3D7_1204500, (C) PF3D7_1308500, (D)
PF3D7_1438600, (E) PF3D7_0418400, (F) PF3D7_1351100, (G) PF3D7_1442800 and (H) PF3D7_1402000.
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Structural Analysis of Characterized
Proteins
After sequence-based functional analysis, all the selected proteins
(266) were subjected to computational structural analysis. Based
on the Alphafold protein structure database, 11 proteins passed
validation based on Ramachandran plot analysis. Also, functional
assignments, based on sequence analysis, are the same as
identified at the structural level, further confirming the
accuracy of functional assignments of the respective
hypothetical proteins. Additionally, to check the stability of
these proteins, energy minimization and MD simulations
revealed eight proteins to be structurally stable as revealed by
analysis of the parameters such as radius of gyration, solvent
accessible surface area and root-mean-square fluctuations.
Structures and RMSF graphs of all the stable proteins are
shown in Figure 3 and Ramachandran plots of respective
structures are shown in Supplementary Figure S1. Protein
PF3D7_1368300 has been annotated as “Non-structural
maintenance of chromosome element 1 (Nse1)”. The Smc5/6
complex has a crucial role in chromosome replication and
repairing DNA, within this, a sub-complex of Nse1, Nse3 and
Nse4 might have multiple roles by DNA binding and regulation
of ATP-dependent activities of the complex (Jo et al., 2021). Nse1
has a RING finger identical to E3 ubiquitin ligases with a crucial
role in DNA repair processes and resolving recombination
structures of chromosomes (Taylor et al., 2008). Protein
PF3D7_0418400 belongs to the Sm-like (Lsm) family of
proteins with an essential role in RNA metabolism (Scofield

and Lynch, 2008). Lsm proteins have a crucial role in mRNA
processing, telomere elongation and ribosomal assembly
(Fernandéz-Taboada et al., 2010). Protein PF3D7_1204500 is
encoded as a small nuclear RNA activating complex (SNAPc)
subunit SNAP43. This protein has an essential role in the
functioning of the spliceosome, as already reported in
Plasmodium falciparum (Horrocks et al., 2009). Also, it
contains a variable amount of TATA box-binding proteins
(TBP) and is required by RNA polymerase II and III for the
transcription of snRNA genes (Sadowski et al., 1996). Protein
PF3D7_1308500 is annotated as P-loop containing nucleoside
triphosphate hydrolase, a large family of proteins with diverse
cellular functions. P-loop proteins can be characterized by a
conserved pattern of sequence GXXXXGKS, known as Walker
A motif, also found in the protein PF3D7_1308500, annotated in
our study as well (Pathak et al., 2014). Protein PF3D7_1442800 is
identified as translation elongation factor (EF-Ts), with an
important role in catalysing nucleotide exchange in elongation
factor Tu (EF-Tu) and promoting the formation of EF-Tu. GTP
from EF-Tu. GDP (Wieden et al., 2002). Another study revealed
that EF-Ts, along with EF-Tu, EF-G1 and release factor RF1,
impairs growth and oxidative phosphorylation (Cristodero et al.,
2013). Protein PF3D7_1438600 is annotated as Golgi to ER traffic
protein 4 (Get4), a tail-anchored (TA) protein with multiple roles
such as response to stress and electron transport. Get4 forms a
hetero-tetrameric complex along with Get5 andmediates delivery
of tail-anchored (TA) substrates from Sgt2 (small glutamine-rich,
tetratricopeptide repeat protein 2) to Get3 (Chang et al., 2010;

FIGURE 4 | Identification of active site pockets (highlighted as clouds) for the shortlisted proteins (A) PF3D7_1368300, (B)PF3D7_1204500, (C) PF3D7_1308500,
(D) PF3D7_1438600, (E) PF3D7_0418400, (F) PF3D7_1442800 and (G) PF3D7_1402000.
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Chartron et al., 2010). The Protein PF3D7_1402000 belongs to
the DHH superfamily of proteins, consisting of a conserved triad
motif DHH (Asp-His-His) that performs a vital role as
phosphoesterases and phosphatases. The motif (DHH) is also
present in PF3D7_1402000, a shortlisted protein. These proteins
have diverse functions, ranging from DNA repair, nucleic acid
metabolism, maintenance of stress conditions, etc. (Srivastav
et al., 2019).

Identification of Proteins as Drug Designing
Targets
The search for non-homologous proteins, by searching
sequence similarity with host proteome (taxid:9,606), helped
filter out the best suitable candidate targets for drug designing.
Out of the eight stable proteins, seven are Plasmodium
falciparum specific, also confirmed by OrthoMCL, that may
be explored for new drug designing strategies. All the proteins
were subjected to identifying active sites using “sitemap” in the
Schrödinger package. After pre-processing, the top-ranked

potential receptor binding sites and respective residue were
identified based on SiteScore. All the sites are shown in
Figure 4 and a list of respective residues are provided in
Supplementary Table S2. The proteins with top ranked
binding sites can be used to design effective lead molecules
as inhibitors, through virtual screening, targeting these sites.

Protein-Protein Interaction Network and
Pathway Enrichment Analysis
The previously determined protein-protein interaction network of
Plasmodium falciparum 3D7 was explored to find the key regulatory
proteins involved in the various important activities such as
metabolism and immune system mechanisms (Saha et al., 2018).
All the structurally characterized proteins (11 proteins) interacted
with 3,737 other proteins, as shown in Figure 5. Further proteins that
were stable and specific to Plasmodium falciparum (7 Proteins) were
subjected to sub-network analysis (Figure 5), followed by clustering
and top modules were selected for pathway enrichment analysis.
Interestingly, the protein PF3D7_1368300 is interacting with 632
other proteins, and by clustering analysis, it is found that 187 proteins

FIGURE 5 | Protein-Protein interaction networks: The overall Protein-Protein interaction network of the proteins selected as drug targets in the center and individual
sub-networks of each protein with interacting nodes zoomed out as circles.
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are present in the top ranked module. Oxidative phosphorylation in
energy metabolism is highly enriched, followed by replication and
repair mechanism, which further affirms the assigned function with a
role in chromosome replication and repairing DNA (Jo et al., 2021).
A total of 1,069 nodes interact with the protein PF3D7_0418400 and
in the top module, 449 proteins are found after clustering analysis.
Translation activity and spliceosome activity are highly enriched,
followed by proteosome and RNA degradation, as evident from
pathway enrichment analysis. Network analysis further confirmed
the role of protein PF3D7_0418400 as mRNA processing, telomere
elongation and ribosomal assembly (Fernandéz-Taboada et al., 2010).
Protein PF3D7_1204500 is interacting with 838 nodes and a total of
280 proteins are found to be present in the top module. The
replication and repair mechanism is highly enriched, followed by
translation revealed by the pathway enrichment analysis, which
further confirmed the assigned function of the protein
PF3D7_1204500. Protein PF3D7_1308500 is connected with 149
nodes and clustering reveals that 118 proteins are present in its top
module. Pathway enrichment analysis revealed that DNA replication
is highly enriched, followed by nucleotide excision repair. The
predicted role of PF3D7_1308500 protein is P-loop containing
nucleoside triphosphate hydrolase, which is a large family of
proteins with diverse cellular functions, including replication and
repairmechanisms (Pathak et al., 2014). Protein PF3D7_1442800 has
663 first nodes in the PPI subnetwork and 111 proteins are present in
the top module. Pathway enrichment reveals that basal transcription
factors and spliceosome are highly enriched, followed by metabolic
pathways. Analysis based on the PPI network further indicates the
role of this protein in growth and oxidative phosphorylation, as
predicted by sequence analysis. PF3D7_1438600 is interacting with
1,137 other proteins, with 647 proteins found in the top module.
Translational pathways such as Ribosomal, Aminoacyl-tRNA
biosynthesis, Nucleocytoplasmic transport are highly enriched,
again its assigned function is confirmed at the sequence level.
Protein PF3D7_1402000 is identified to interact with 1,211 nodes
and clustering revealed 382 nodes in its top ranked module.
Ribosome activity is highly enriched in the translation pathway,
followed by spliceosome and biosynthesis of secondary metabolism.

CONCLUSION

With the continuous revolutionization of next generation sequencing
technologies, large-scale genomic or transcriptome data of several
organisms can be generated in a single run. Although annotation
methods for the analysis of generated data are available on a large
scale, the most disconcerting aspect is that half of the generated data

remains uncharacterized and comes under the “Hypothetical
category”. Functional assignment of the hypothetical proteins can
be elucidated experimentally, however, experimental validations are
time-consuming, expensive and in several cases, technically not
feasible. In this current study, multifaceted approaches such as
domain-based characterization and physiochemical
characterization on the basis of primary sequence analysis
revealed the functions of 266 P. falciparum proteins. Further, the
functions of 11 proteins were successfully validated by in-silico
structural analysis.

Furthermore, protein-protein interaction revealed that these
11 proteins are interacting with 3,737 other Plasmodium
falciparum proteins. After that, molecular dynamics simulation
revealed that eight proteins are stable. Of these, seven proteins are
specific to Plasmodium falciparum which can be explored for
their essentiality in the parasite and design lead molecules as
inhibitors. The methodology followed in this study can also be
extrapolated to assign functions to hypothetical proteins in other
organisms too.
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