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Hypofractionation, defined as the delivery of radiation
in >2 Gy fractions, is not a new phenomenon. Hypo-
fractionated regimens have long been used as convenient
schedules for palliation, with use in the radical setting
generally reserved for patients in whom tolerance of
conventionally fractionated schedules was of concern.
Ultra-hypofractionation, referring to the use of fraction
size >5 Gy, has become increasingly fashionable over
recent years and is now an accepted standard of care for
many indications. The rapid rise of ultra-hypofractionation
has been facilitated by advances in radiotherapy technol-
ogy and image guidance enabling high precision radiation
delivery, most notably the advent of stereotactic ablative
radiotherapy (SABR).

So, what makes ultra-hypofractionated radiotherapy so
attractive? On a practical level, reducing treatment atten-
dances is appealing to both patients and healthcare pro-
viders. This has been of particular relevance during the
COVID-19 pandemic, during which hypofractionated regi-
mens were rapidly adopted across the UK and interna-
tionally [1,2]. Radiobiologically, hypofractionation may be
advantageous, particularly for tumours with low alpha/beta
ratios, where increasing fraction size results in a relative
increase in tumour dose [3]. Additionally, the shorter
treatment duration provides flexibility in scheduling
around other treatment modalities.

Historically, the major concern has been the potential for
increased toxicity and the journey to hypofractionation has
not necessarily been a smooth one. For example, early
studies in pancreatic cancer showed unacceptable rates of
high-grade gastrointestinal toxicity, leading to the approach
temporarily falling out of favour [4,5]. However, advances in
technology in all aspects of treatment, including tumour
localisation, on-treatment imaging, planning techniques
and motion management, together with an improved un-
derstanding of appropriate fractionation schedules, have
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permitted safer delivery of hypofractionation in recent
times.

The aim of this special issue of Clinical Oncology is to
bring together a comprehensive review of the current status
of hypofractionation and examine its role in various disease
sites.

The special issue is opened by a review by Brand et al. [3]
summarising the therapeutic rationale of hypofractionation
and its radiobiological effects on toxicity and tumour con-
trol. This provides not only a pertinent reminder of the
impact of hypofractionation on the ‘5 Rs’ but highlights the
opportunities for triallists to contribute to our currently
imperfect knowledge of the underlying radiobiology
through well thought out trial design.

In order to mitigate the risk of toxicity with SABR, dose
limits to organs at risk (OARs) must be respected. In the
second general article, Diez et al. [6] give a timely update to
their original 2017 publication, providing an updated UK
consensus on normal tissue constraints for SABR [7]. They
review and update the recommended constraints based on
the published literature, adding single-fraction recom-
mendations to the existing fractionation schemes. This will
no doubt prove to be an invaluable resource for oncologists
and physicists alike, joining the recent HyTEC special issue
as essential reading in this area [8].

While discussing the benefits of magnetic resonance-
guided radiotherapy (MRgRT), Gough et al. [9] focus on
pancreatic cancer as an exemplar tumour site. Magnetic
resonance imaging facilitates clearer delineation of anat-
omy, whereas online daily plan adaption and ability to track
and treat are additional features that make MRgRT an
attractive option, particularly for upper abdominal tumours,
given the complex anatomy. Dose escalation using SABR in
pancreatic tumours remains challenging, given the prox-
imity to OARs. However, higher doses appear deliverable
with MRgRT, and studies of dose escalation and further
hypofractionation are underway [10]. Other scenarios
where precise imaging and precision delivery are of
particular importance, for example, re-irradiation, are also
likely to benefit from MRgRT.

0936-6555/© 2022 Published by Elsevier Ltd on behalf of The Royal College of Radiologists.
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Macbeth and Treasure [11] and Chapman and colleagues
[12] debate the role of SABR for oligometastatic disease,
perhaps the single-most prominent indication that has
defined the role of ultra-hypofractionated radiotherapy in a
point—counterpoint argument. Whereas, Macbeth and
Treasure [11] question the evidence base for SABR, attrib-
uting its popularity to ‘cognitive and technical biases’ and
‘the unconscious tendency of individuals to fit their pro-
cessing of information to conclusions that suit some end or
goal’, Chapman and colleagues [12] explore the biological
underpinnings for oligometastatic disease and highlight six
randomised controlled trials that argue the case in its
favour. However, they acknowledge the need for careful
patient selection and for molecular-based strategies to
define suitable candidates. The role of SABR over conven-
tional single or five-fraction palliative radiotherapy for oli-
gometastatic or oligoprogressive spinal metastasis is
discussed by Dunne and colleagues [13]. In randomised
studies, a single fraction (24 Gy) and two fractions (24 Gy in
two fractions) showed superior pain control outcome at 3
months with low rates of radiation toxicity, although one
randomised controlled trial comparing 16—18 Gy to 8 Gy
failed to demonstrate a benefit.

Adjuvant breast cancer is a prime example of how robust
evidence generated through sequential UK-led randomised
controlled trials has resulted in ultra-hypofractionation
becoming the new international standard of care. Yarnold
et al. [14] provide an elegant commentary detailing the
evidence base supporting the reduction in fractionation
schedule from 5 weeks to 1 week and provide insight on
future avenues for research, including more extreme
hypofractionation and the potential for biomarker-driven
‘personalised’ fractionation.

The CHHIP trial, which many readers will be familiar
with, helped to establish moderate hypofractionation as a
standard of care in localised prostate cancer [15]. Corkum
et al. [16] focus on more extreme hypofractionation,
reviewing the evidence base for fewer than five fraction
treatments with SABR and high dose rate brachytherapy.
The authors address the hot topic of ‘How low can you go?’,
acknowledging the lessons learnt from the disappointing
biochemical failure rates of single-fraction compared with
two-fraction high dose rate brachytherapy [17].

Tjong et al. [ 18] review the role of single-fraction SABR as
an alternative to multi-fractionated SABR in non-small cell
lung cancer. They discuss the data in support of single-
fraction regimens as a safe and efficacious alternative to
the more commonly utilised three-to five-fraction regimens
for stage I peripheral tumours, an approach recommended
during the COVID-19 pandemic by an ASTRO-ESTRO
consensus. However, in the context of treating lung me-
tastases, the SAFFRON II trial showed higher local failure
rates in colorectal cancer patients treated with 28 Gy single-
fraction regimens compared with a multi-fractionated
approach [19] and the authors recommend that a dose-
escalated single-fraction approach should be investigated
in this group.

Lewis et al. [20] review the role of SABR and hypo-
fractionated radiotherapy (one to 10-fraction schedules) in

hepatocellular carcinoma. Studies that were reported in
the last 10 years and had a minimum of 25 patients were
reviewed. The authors conclude that the optimum dose
fractionation is yet to be defined, and a risk-adapted
approach, based on baseline liver function and normal
liver volume, tumour size and location, is preferable, with
one-to three-fraction regimens proposed for peripheral
and smaller lesions and a more fractionated regimen
preferable for larger lesions and those near critical organs.
Local control exceeds 80%, with radiation-induced liver
disease noted in less than 5% of cases in appropriately
selected patients.

Slevin and colleagues [21] provide a comprehensive re-
view of short-course radiotherapy (SCRT) in rectal cancer.
Although the overall merits of SCRT over long-course che-
moradiotherapy is a matter of debate, SCRT remains an
attractive option in conjunction with chemotherapy as a
part of a total neoadjuvant therapy approach for localised
cancer or in the presence of resectable metastatic disease,
and in combination with transanal endoscopic microsur-
gery as an organ-preservation approach for early stage
rectal cancer. Ongoing research focuses on radiotherapy
dose escalation, technical advances (e.g. MRgRT) and com-
bination with novel biological agents.

Finally, Tsao et al. [22] bring the special issue to a close
with an overview of hypofractionation in the management
of non-melanomatous skin cancers, highlighting how well
suited the approach is to an often elderly and frail patient
group. This is supported by meta-analysis findings of
similar cosmesis compared with fractionated approaches
and acceptable local control rates, albeit in the context of
retrospective data.

In summary, we hope this special issue showcases how
the rise in hypofractionation has changed the landscape of
radiation therapy. For a number of tumour sites, conven-
tional fractionation has already become obsolete and this
trend will probably extend to further indications over the
next decade.

So, what does the future hold? Further improvements in
technology are anticipated — integrating the full comple-
ment of novel imaging, daily plan adaptation, tracking/
gating and auto-contouring into treatment will add further
technical precision and improve the efficiency of the
pathway, whereas combination with systemic agents may
improve the efficacy of the treatment. Conventionally
accepted OAR constraints will need to be questioned as
they were based on previous imprecise imaging, local-
isation and delivery. Our understanding of the ‘ground
truth’ of OAR constraints should improve as newer tech-
nologies, such as MRgRT, shed light on delivered versus
planned dose. With increased precision in contouring and
delivery, we will probably see a ‘greater’ radiation toler-
ance for OARs than previously anticipated. Finally, clini-
cians may become the ‘weakest link’ in the pathway as the
precision of target and OAR contouring will ultimately
define the success and failure of the treatment — high-
lighting the need to formally incorporate radiology in ra-
diation oncology training, and to work collaboratively with
our radiology colleagues.
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