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Abstract

Fragile X syndrome (FXS) is the most common single gene cause of intellectual disability and it is 

characterized by a CGG expansion of more than 200 repeats in the FMR1 gene, leading to 

methylation of the promoter and gene silencing. The fragile X premutation, characterized by a 55 

to 200 CGG repeat expansion, causes health problems and developmental difficulties in some, but 

not all, carriers. The premutation causes primary ovarian insufficiency in approximately 20% of 

females, psychiatric problems (including depression and/or anxiety) in approximately 50% of 

carriers and a neurodegenerative disorder, the fragile X-associated tremor ataxia syndrome 

(FXTAS), in approximately 40% of males and 16% of females later in life. Recent clinical studies 

in premutation carriers have expanded the health problems that may be seen. Advances in the 

molecular pathogenesis of the premutation have shown significant mitochondrial dysfunction and 

oxidative stress in neurons which may be amenable to treatment. Here we review the clinical 

problems of carriers and treatment recommendations.
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Introduction

Fragile X premutation carriers are identified by an expanded trinucleotide (CGG) expansion 

in the 5’ untranslated region of the FMR1 gene. In the past, research mainly focused on the 

individuals with the full mutation with fragile X syndrome (FXS) and carriers were thought 

to be unaffected. In the last 20 years, our knowledge of clinical involvement in premutation 

carriers has expanded to a broad range of neurological, neurocognitive, endocrine and 

psychiatric problems related to RNA toxicity [1, 2]. This review will focus on disorders 
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related to the premutation and recommendations for treatment. The premutation is common 

in the general population and approximately 1 in 130 to 250 women and 1 in 250–810 males 

have the premutation [3–5].

FMRP, the protein produced by the FMR1 gene, is important in embryonic development, 

including the differentiation and migration of neurons and glia cells, for regulation of 

synaptic plasticity throughout life and for adult neurogenesis [6–9]. FMRP is also critical for 

normal connectivity with an appropriate balance of excitatory (glutamate) and inhibitory 

(GABA) circuits [10, 11]. In the absence of FMRP there is a deficit of GABAA activity [12] 

and up-regulation of the metabotropic glutamate receptor 5 (mGluR5) pathway leading to 

enhanced long term depression (LTD) of synaptic connections [13]. Hays et al. [14] have 

demonstrated a prolonged neocortical UP (depolarized firing of neurons) state in FXS 

mouse that is rescued by mGluR5 antagonists. FMRP also regulates presynaptic release of 

neurotransmitters. When it is absent or deficient, there is enhanced release which leads to 

problems in detecting subtle changes in synaptic stimulation [15]. Those with the full 

mutation have little or no FMRP, whereas the levels of FMRP in carriers of the premutation 

correlates inversely with CGG repeat number [16, 17]. Most carriers have normal levels of 

FMRP but those with a premutation above 120 can have significant deficits of FMRP [16–

21].

The premutation is associated with significant up-regulation (2 to 8 times normal) of the 

FMR1 mRNA that correlates directly with CGG repeat number [22]. Elevated FMR1 mRNA 

leads to a process of RNA toxicity which is thought to be the main cause of clinical 

involvement in premutation carriers [23]. The excess FMR1 mRNA contains the expanded 

repeats that form hairpin loops which are sticky and sequester proteins that are needed for 

normal neuronal function (including Sam 68, DROSHA and DGCR8) [23–25]. The elevated 

FMR1 mRNA and the sequestered proteins lead to the formation of inclusions in neurons, 

astrocytes, and peripheral nervous system and tissue including the adrenals, testes, pancreas, 

heart, and other organs [26–28].

The development of the knock-in premutation mouse has allowed further studies of the 

neuronal dysregulation that occurs in carriers. The premutation mouse also develops 

inclusions and neurological symptoms with aging [29]. There is a deficit of GABA 

inhibition noted in the mice and also in females with the premutation through transcranial 

magnetic stimulation (TMS) studies [12, 30]. In premutation neuron cultures, the dendritic 

tree is less complex with fewer synaptic connections [31]. The mitochondria also have 

slower movement within dendrites and axons [32] and the neurons have enhanced spikes 

[33] compared to controls.

There is evidence that both mild deficits of FMRP and the RNA toxicity of elevated FMR1 

mRNA can contribute to the phenotype of premutation carriers [1]. Recent studies have 

shown that FMRP levels may vary in the general population in those that do not have an 

FMR1 mutation [34]. Keri and Benedek [35] studied typical individuals and found that the 

level of FMRP correlates with studies of visual contrast sensitivity and perception, such that 

those with a higher level of FMRP have better visual perceptual abilities. Wang et al [36] 

found that the size of cortical structures correlated with FMRP levels in those without a 
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fragile X mutation. Recently, in those with schizophrenia, it has been found that the age of 

onset and the IQ correlated with the level of FMRP in blood [34, 37]. Fatemi and colleagues 

[38, 39] have found that various neuropsychiatric disorders including depression, bipolar 

disorder, autism, and schizophrenia have a deficit of FMRP in the brain.

Seizures can be deleterious for development and early life seizures in rats without an FMR1 

mutation have been shown to shift FMRP away from the dendritic spines and into the 

perinuclear area leading to FMRP dysfunction at the synapse [40]. These findings emphasize 

the need to treat seizures as early as possible so that the levels of FMRP in the dendrites can 

be sustained. Seizures in boys with the premutation have been associated with the 

development of autism spectrum disorder (ASD) [41]. Therefore both the molecular findings 

(CGG repeats, FMRP and FMR1 mRNA) and environmental experiences such as seizures or 

exposures to toxins may influence the early development and aging of carriers (Figure 1).

FXPOI and FXTAS

In 1991 Cronister et al [42] discovered an increased prevalence of premature ovarian failure 

(POF; menopause before age 40) in females with the premutation that has been confirmed 

by many others. This condition is now called fragile X-associated primary ovarian 

insufficiency (FXPOI) [43–45]. FXPOI occurs in approximately 20% of carriers, whereas 

cessation of periods before age 45 occurs in an additional 20% [46].

Ten years later in 2001, the fragile X-associated tremor ataxia syndrome (FXTAS) was 

reported in older male carriers [47] followed by a report of FXTAS in females with the 

premutation [48].

FXTAS is characterized by intention tremor, ataxia leading to frequent falling, peripheral 

neuropathy, autonomic dysfunction including hypertension, orthostatic hypotension, and 

cognitive decline [49, 50]. The cognitive problems begin with executive function and short 

term memory deficits and then gradual cognitive decline occurs, sometimes leading to 

dementia, particularly in males [51–54]. FXTAS is also characterized by generalized brain 

atrophy and white matter disease in the periventricular and subcortical regions in addition to 

the middle cerebellar peduncles (MCP sign) [55]. More recent reports have shown thinning 

of the corpus callosum with white matter disease in the splenium, pons and insula [1, 56, 

57].

The diagnostic criteria for FXTAS were described after the original patients were reported 

[49]. The original diagnostic guidelines for FXTAS based on clinical reports were later 

expanded to include characteristic FXTAS eosinophilic intranuclear inclusions that are seen 

in neurons and astrocytes throughout the brain of individuals with FXTAS [28, 48, 58]. The 

onset and trajectory of the cognitive problems FXTAS is similar to that of Alzheimer 

Disease (AD), and, in fact, may benefit from research into treatments for AD [59, 60] or 

other neurodegenerative diseases such as Parkinson’s disease (PD). Neuropathological 

studies of those with FXTAS have shown the common co-morbidity of FXTAS, AD and PD 

suggesting that FXTAS may stimulate the onset of these other aging diseases [1, 59].
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Expanding the Premutation Clinical Picture

We now realize that premutation clinical involvement includes many more conditions than 

FXTAS or FXPOI alone. In those carriers that have mild deficits of FMRP [20] there may 

be features of FXS, including prominent ears or more significant deficits in executive 

function [61, 62] and visuospatial perception, [35, 63],[64, 65]. There are working memory 

deficits in the premutation carriers both with and without FXTAS [36, 61, 66–68].

Studies of the brain of the premutation mouse models have demonstrated deficits of FMRP 

throughout the brain [69–71]. The dual mechanism of involvement, of high FMR1 mRNA 

and low FMRP is considered a double hit, including features of FXS and premutation 

involvement. The phenotype of these individuals is somewhat different from typically 

affected males with FXS because a mild deficit of FMRP usually causes only mild 

developmental problems so that these individuals have a higher IQ, and less severe 

behavioral problems than those with full mutation FXS [36, 61, 66–68].

In a national survey study of over 1,276 families who have children with either the full 

mutation or the premutation, Bailey et al [72] found a high rate of co-morbidity in boys with 

the premutation. The problems that were significantly different from their non-fragile X 

brothers included autism in 19.3%, attention problems in 41%, seizures in 11.3%, 

developmental disabilities in 33%, and anxiety in 33% of the premutation brothers. Similar 

results were seen by Farzin et al [73] who studied premutation proband brothers who 

presented clinically compared to premutation brothers who were identified by cascade 

testing and brothers without the premutation. There was a significantly higher rate of autism, 

ASD, and ADHD in the probands compared to the other two groups. However, nonproband 

brothers also had an increase in social deficits compared to the non-premutation brothers. In 

a subsequent study by Chonchaiya et al [41], boys with the premutation had a higher rate of 

seizures than controls and the presence of seizures correlated with the presence of ASD. 

This study suggests that the occurrence of seizures will further interfere with the 

connectivity of the brain in young carriers and make ASD a more likely outcome. Therefore, 

early identification and treatment of seizures is a priority in premutation carriers and in those 

with FXS [74, 75], because seizures can further reduce the available FMRP levels in 

dendrites [40].

The emotional problems of carriers have been well studied [76–81]. Females with the 

premutation have been found to have higher rates of mood disorders than the general 

population, [82] and those with FXTAS have higher rates of major depressive disorder, 

panic disorder, post-traumatic stress disorder, and specific phobia compared to the general 

population [83]. Carriers without FXTAS have higher rates of social phobia compared to the 

general population [83]. These problems are thought to be related to RNA toxicity in the 

amygdala and hippocampus. MRI imaging has demonstrated that the size of the 

hippocampus directly correlates with the level of anxiety in females with the premutation 

who have not developed FXTAS [84]. Therefore, the higher the anxiety level, the smaller 

the hippocampus suggesting that long term stress and anxiety in carriers is deleterious to the 

brain. In female carriers, there is a correlation of CGG repeats, cortisol level, negative life 

events and the risk for the development of emotional problems [2, 81].
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Additional medical problems that are common in carriers, particularly aging carriers with 

neurological problems or FXTAS, include hypothyroidism (50% of females) [85], 

fibromyalgia (43% of females) [85], sleep apnea [86], migraine headaches [87], Restless 

Legs syndrome [88], fatigue [89] and hypertension [90]. Regular screening for 

hypothyroidism, hypertension, migraines, and sleep apnea are recommended because these 

problems also require treatment and can interfere with brain function if untreated. Olfaction 

deficits with FXTAS can also cause quality of life issues for premutation carriers [91].

Sleep apnea may often start before the onset of other neurological problems with FXTAS 

[86]. Therefore, we recommend that all individuals with FXTAS or neurological symptoms 

be tested for sleep apnea, since the hypoxia generated by sleep apnea may further exacerbate 

the MRI abnormalities seen in carriers including the white matter disease. Hypertension is 

significantly increased in FXTAS compared to controls and this may also be exacerbated by 

sleep apnea. Treatment of hypertension is also a necessity in premutation carriers because 

uncontrolled hypertension can also lead to further CNS dysfunction including progression of 

white matter disease and brain atrophy [86, 92].

MRI studies of Premutation Carriers

Work by Hessl and Rivera has advanced our understanding of the molecular underpinnings 

of CNS dysfunction causing problems in carriers who do not have FXTAS. In their study of 

23 young adult male carriers (mean age 32.9 years), compared to age-matched controls, they 

found a significantly smaller left and right amygdala volume and a significant decrease in 

the right amygdala activation in an emotion matching task [93]. The molecular parameters 

of lowered FMRP levels and the elevated FMR1 mRNA levels correlated significantly with 

the decreased activation of the amygdala, but FMRP was the most significant molecular 

factor in these correlations [93]. Additional MRI studies by Hashimoto et al have shown 

significant grey matter reduction in the anterior subregions of the cerebellar vermis and 

hemispheres [94]. Additionally, in carriers without FXTAS, as compared to age-matched 

controls, display decreased activation in the right ventral inferior frontal cortex and in the 

left premotor dorsal inferior frontal cortex on fMRI [95]. The problems in the frontal cortex 

may relate to the executive function and memory deficits seen in some premutation carriers 

who do not have FXTAS [61, 95]. On DTI studies, there are significant elevations in the 

axial diffusivity and in the radial diffusivity in the MCP area in carriers without FXTAS 

compared to age-matched controls [96] in addition to some connectivity loss [97]. A study 

by Apartis et al. describes corpus callosum splenium hyperintensities as being as frequent as 

the MCP hyperintensities, especially in female carriers [50].

These changes in the MRI studies on brain structure and function in carriers compared to 

controls are present in young adults and therefore likely represent long term effects of RNA 

toxicity in addition to mild deficits of FMRP. It is uncertain which, if any, of these deficits 

will predict the development of FXTAS, which occurs in 40 % of male carriers and up to 

16.5% of female carriers [77, 78, 85, 98]. Typically, the onset of FXTAS occurs in the early 

60s, with tremor and then ataxia [54], but, on occasion, FXTAS may present with cognitive 

decline initially [54, 99]. However, when FXTAS emerges, the abnormalities in white 

matter are apparent on a clinical reading of the MRI. Battistella et al [100] have noted 
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significant decreases in gray matter in the cerebellar and hippocampal areas of 

asymptomatic premutation carriers as young as twenty years old (average age of 47) and 

also that a later onset of diffuse white matter disease may serve as a marker for imminent 

FXTAS onset [100]. These signs indicate a long progression towards FXTAS and offer hope 

for a wider window during which treatments may be effective [36, 101].

Premutation Neurons in Culture

Chen et al. [31] have studied premutation mouse neurons in culture compared to neurons 

without the premutation. The complexity of the dendritic tree was reduced and stress 

proteins were increased in the premutation neurons compared to controls. The premutation 

neurons would die more easily in culture with a significant increase in the death rate by 21 

divisions. Additional morphological differences include reduced postsynaptic density 

protein 95 (PSD 95) expression, reduced synaptic puncta density, and reduced neurite length 

[102]. Premutation neurons are also functionally abnormal as clustered spontaneous calcium 

oscillations have been observed with amplitudes increased over normal [102, 103]. 

Premutation cells in culture are hyper-responsive to glutamate in that intracellular calcium 

concentrations remained elevated after exposure [102]. These findings suggest that 

premutation neurons are more vulnerable to toxicity or stressful conditions in culture, and 

this has been seen in clinical cases who have enhanced neurological problems when exposed 

to toxins such as chemotherapy [104] or environmental toxins [105]. Smoking is another 

toxin that can negatively impact premutation cells. Smoking in females with the premutation 

can significantly lower the age of FXPOI compared to non-smokers [106]. The premutation 

neurons demonstrate enhanced oxidative stress and a rise in heat shock proteins (including α 

B crystallin and dysregulation of lamin A/C) [31, 107]. These findings suggest that 

treatment with antioxidants would help premutation neurons and cellular studies are 

underway to assess this effect. Because of the known oxidative stress, we recommend 

treatment with antioxidants in carriers as described below (Figure 2).

Mitochondrial Dysfunction and FMR1 RNA Toxicity

The toxicity that excessive FMR1 mRNA levels cause in premutation cells may be related to 

several factors. The dysregulation of lamin A/C is significant, and distortions of nuclear 

structure can be seen in fibroblasts, neurons and even embryonic cells [107, 108]. The 

binding and sequestration of DROSHA and DGCR8 can lead to microRNA (miRNA) 

dysregulation [24]. These two proteins are critical for miRNA maturation, and when they are 

depleted, related to sequestration, there is dysregulation of the miRNA levels, which are 

important control elements for most of the activities of the cell. Dysregulation of several 

miRNA levels have been found those with FXTAS [25, 109]. Additionally, in the 

Drosophila model of FXTAS, the activation of specific retrotransposons can modulate 

neurodegeneration [110]. The intrinsic mis-folding and aggregation tendencies of FMR1 

RNA has also been suggested as a possible mechanism in the pathology of the 

neurodegeneration associated with FXTAS [111]. A recent report of RAN translation in 

those with FXTAS can lead to the development of toxic levels of polyglycine [112]. 

Premutation hippocampal neurons have reduced mobility and higher rates of basal oxygen 

consumption and proton leakage in mouse models [32].
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There are also abnormalities of mitochondrial functions related to transport problems of 3 

nuclear encoded proteins into the mitochondria in carriers both with and without FXTAS 

[113, 114]. The brain’s dependence on oxidative phosphorylation of glucose for ATP makes 

this especially important in neural tissues. In addition to iron dysregulation and deposition, 

defective zinc bioavailability and/or transport may be related to this mitochondrial 

dysfunction [114]. This problem can be compounded with environmental stress and/or 

toxins leading to even more impairment [114]. This is especially problematic as stress 

mRNAs appear to accumulate in the nucleus of cells, and may be linked to 

neurodegeneration [115]. Deficits in mitochondrial function are also seen in autism [116] 

and in other neurodevelopmental disorders in addition to some neurodegenerative disorders 

including PD and AD [117, 118].

The premutation has been seen in a limited number of other neurodegenerative diseases such 

as PD [56]. In fact, some cases of PD are nearly indistinguishable from cases of FXTAS 

[119]. The use of L-DOPA, deep brain stimulation and other treatments for PD may prove 

helpful for carriers [60, 120].

FXTAS in Gray Zone and in Unmethylated Full Mutation Carriers

The original diagnostic criteria for FXTAS state that the premutation is necessary for the 

diagnosis [49]. However, recent reports have documented FXTAS in individuals with a gray 

zone CGG repeat expansion (45–54 CGG repeats) [121, 122]. In the Liu et al paper, grey 

zone individuals with tremor and balance problems were in families known to have 

individuals with FXTAS related to the premutation. Since FXTAS can cluster in families, 

there may be additional genetic predisposing or protective factors. One report has found that 

an ApoE4 allele, which predisposes to AD, is also associated with FXTAS [123]. Loesch et 

al [124] have demonstrated that the gray zone shows elevated FMR1 mRNA compared to 

the general population. Thus, it is likely that the elevation in FMR1 mRNA is sufficient to 

induce FXTAS through FMR1 mRNA toxicity. However, since the gray zone is very 

common in the general population (approximately 1 in 30) most individuals with a gray 

zone do not develop FXTAS.

Those individuals with an unmethylated full mutation can also develop FXTAS because 

they have elevated FMR1 mRNA. The first case was first reported by Loesch et al. [125] 

and this patient was affected by substance abuse (alcoholism). This patient met all of the 

criteria of FXTAS including the MCP sign and cognitive decline. It is possible that his 

alcoholism also predisposed him to FXTAS. We have also seen an unmethylated mosaic 

patient who presented with a neurodegenerative condition that was diagnosed as PD [121] 

but, on autopsy, FXTAS inclusions were seen, and he demonstrated the clinical features of 

FXTAS [126]. Even though these cases may be rare, they suggest that the definition of 

FXTAS should be extended to include those with a gray zone and an unmethylated full 

mutation.

Toxins and Anesthesia

The issue of exacerbation of the molecular dysregulation in fragile X premutation carriers by 

environmental toxins requires further research [127]. Work in autism has implicated a broad 
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group of toxins including insecticides, pesticides, polychlorinated biphenyls (PCBs), fire 

retardants, mercury and others [127–132]. Organophosphate pesticides can interfere with 

acetylcholine and GABA neurotransmission. PCBs and related non-coplanar structures such 

as triclosan, a common antibacterial, can also activate the ryanodine receptor and mobilize 

Ca+2, which disrupts signaling and effects both neurodevelopment and neurodegeneration 

[128]. Recent work by Wolstenholme et al [133] has demonstrated transgenerational 

disruption of mRNA levels in the brain leading to social deficits related to bisphenol A 

exposure in mice. These toxins are likely to exacerbate the clinical picture in both 

premutation carriers and full mutation patients with FXS.

Anesthesia and surgery can also lead to neurotoxicity in the general population, particularly 

for children who have had multiple surgeries [134, 135] and for more vulnerable populations 

such as those with AD [136]. In AD, biomarkers for neuroinflammation are increased in 

cerebrospinal fluid after anesthesia [136]. Amyloid β production and tau phosphorylation are 

increased as well [136]. Premutation carriers, particularly those with FXTAS, are also a 

vulnerable population, and we have seen the onset of FXTAS symptoms following a 

prolonged surgery, particularly in those who are 60 years old and older [1]. However, these 

cases are anecdotal. There is a need for large-scale studies to understand the link between 

general anesthesia and the development of FXTAS. Even so, avoidance of prolonged 

general anesthesia, when possible, is recommended for older carriers, particularly if 

neurological symptoms or FXTAS are present.

Drugs of abuse are another source of toxins. In our experience, premutation carriers who 

abuse drugs often have faster progression of their FXTAS symptoms. Heroin, cocaine, 

methamphetamine, and marijuana induce oxidative stress in neurons [137–143]. The use of 

drugs and/or excessive alcohol is common in carriers [144, 145], perhaps in an effort to 

selfmedicate and improve ADHD symptoms, anxiety, and chronic pain caused by 

neuropathy even prior to FXTAS. However, there may be a biological drive related to 

elevation of mGluR5 that modulates alcohol self-administration and relapse behavior, 

potentially allowing for treatment with acamprosate [146, 147].

Animal studies suggest that the oxidative stress related to drugs of abuse can be reversed by 

antioxidants [137, 148]. Methamphetamine abuse leads to very significant neurotoxicity 

relating to a long lasting glial response with an increase in the number of astrocytes, release 

of inflammatory mediators, production of reactive oxygen species (ROS), and an increase in 

the blood brain barrier permeability through modification of the tight junctions [138]. 

Methamphetamine abuse augments dopamine levels and dopamine removal by auto-

oxidation or monoamine oxidase, leads to the production of ROS. Some of these changes 

can be improved by antioxidants as described below [137, 139, 148].

Opioids are also concerning because they can lead to exacerbation of white matter disease, 

yet many premutation carriers are prescribed these drugs because of pain symptoms related 

to neuropathy or fibromyalgia. In animal models, opioid use has been shown to cause brain 

damage across a broad range of doses [149] and induces cell death through mitochondrial 

dysfunction [150]. Similar compounds that act on opioid receptors, such as methadone, 

should also be avoided due to similar effects [151, 152].
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Alcohol is especially important to avoid in excess. Chronic excessive alcohol consumption 

can cause neuroinflammation, brain damage, and disrupts myelination [153, 154]. Alcohol 

consumption also decreases white matter integrity [155], potentially complementing a 

decline into FXTAS as seen in the Loesch et al case [125]. Although red wine, in 

moderation may protect against neurodegeneration (due to the neuroprotective effects of 

resveratrol [156], excessive alcohol consumption should be avoided.

Treatment Implications for Premutation Carriers

A significant question that arises on a regular basis in clinic is what can be done to reduce 

the risk of developmental problems and aging problems in individuals with the premutation. 

While longitudinal studies have not yet been done to investigate this issue, current molecular 

finding (including enhanced molecular stress and mitochondrial dysfunction as described 

above) suggest the use of treatments proven in similar conditions may be beneficial. 

Additionally, premutation carriers may be proactive about treating other quality of life 

aspects of global health impacted by the premutation (such as anxiety or stress) (Figure 2), 

especially as it has been suggested that there exists a limited developmental window during 

which intervention would be most effective [157].

Medical Interventions

Although no medication has been found to block or reverse FXTAS so far, new research has 

opened possibilities of medical interventions to help mitigate some of the problems with the 

premutation throughout the lifespan. Interventions are being studied now to lower the excess 

FMR1 mRNA, but they are not available clinically yet [23]. A controlled trial of memantine 

to block glutamate toxicity exacerbated by glutamate abnormalities in carriers [103] was not 

shown to be efficacious for the tremor, balance or executive function deficits in FXTAS 

[158]. However, ERP studies have shown improvement in brain-language processing in 

those with FXTAS treated with memantine compared to controls, so there may be some 

minimal cognitive improvements in processing information [159]. Allopregnanolone, a 

natural neurosteroid, has shown some benefit to the mouse model of premutation. When 

administered to premutation neurons in culture, allopregnanolone mitigated functional 

impairments observed in premutation neurons in a reversible manner [33]. The use of an 

mGluR5 antagonist (MPEP) was also helpful to the premutation neurons, suggesting that 

this category of targeted treatments for FXS may be helpful in FXTAS.

When depression or anxiety are present, selective serotonin reuptake inhibitors (SSRIs) are 

recommended, and their effect is usually beneficial [160]. SSRIs not only increase serotonin 

levels, but they also stimulate neurogenesis [161–163] through increased levels of BDNF 

[164]. This may be helpful in FXTAS individuals who have significant brain atrophy [60]. 

Encouraging neurogenesis may facilitate prevention and treatment of depression as well 

[162, 163].

Antioxidants

Based on animal studies or human studies on disorders similar to the premutation, there are 

a variety of antioxidants that are likely to be helpful in reversing the oxidative stress of 
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neurons with the premutation (Table 1). In newborn KO mice, de Diego-Otero et al 

demonstrated that treatment with alpha-tocopherol (vitamin E), in addition to N acetyl –L 

cysteine (NAC), normalized synaptic connections and rescued aspects of the physical and 

cognitive/ behavioral phenotype [165]. Additional studies have linked vitamin E to 

improvements in dementia associated with AD as well as generalized mild cognitive 

impairments common with age [166, 167]. Chronic pharmacological treatment with 

alphatocopherol (Vitamin E) in fragile X mice has been shown to alleviate free radical 

overproduction, and reduce oxidative stress [165]. The same study also showed improved 

behavior and reversed learning deficits [165]. Vitamin E and other vitamins are likely 

helpful for premutation carriers as well. However, further studies of these antioxidants have 

not been carried out in patients with the premutation.

Melatonin is another antioxidant where use in FMR1 knockout mice normalized glutathione 

levels compared to controls [168]. Melatonin has also shown to improve context-depended 

exploratory and anxiety behaviors and learning abnormalities [168]. Melatonin has also 

shown to be an effective sleep aid in individuals with FXS [169]. As sleep disturbances are 

very common in individuals with the premutation, particularly in carrier daughters of men 

who have FXTAS [170], earlier and longer sleep may significantly improve quality of life 

for premutation carriers. Melatonin, while effective for sleep, is also effective in preventing 

oxidative stress in models of PD and AD [171]. Melatonin is also unique in that it is 

selectively taken up by mitochondrial membranes [171] which may enhance its protective 

action in the premutation.

Folic acid is an antioxidant that has been studied for years in individuals with FXS [173, 

174]. It has a minimal psychotropic effect in some controlled studies, although the reason 

for this effect is not known. It is clearly important for aging because folic acid, combined 

with vitamin B12, lowers homocysteine levels. This combination reduces brain atrophy in 

typically aging individuals and also in those with mild cognitive impairment (MCI) [175]. 

Since brain atrophy is a severe problem in older premutation carriers with FXTAS, we 

routinely recommend treatment with folic acid and vitamin B 12 in older carriers to lower 

homocysteine levels.

Coenzyme Q10 (CoQ10) acts as an electron carrier in the electron transport chain of 

mitochondria and appears to have antioxidant effects. CoQ10 deficiencies have been 

documented in diseases similar to FXTAS such as PD and AD [178, 193]. Although more 

studies are needed, widespread preliminary data shows that CoQ10 have shown encouraging 

data results in treating neurological disorders such as Alzheimer, Parkinson, Friedrich and 

Huntington diseases [176–180, 194].

Other antioxidants that may prove beneficial to premutation carriers include ginseng and 

ginsenosides. Korean Red Ginseng has been shown to protect mitochondria from damage, 

prevent cell death during iron-induced oxidative stress, [181] and also to prevent 

neuroinflammation associated with neurodegeneration [182]. In mice, ginseng shows a 

fluoxetine-like anti-depressant effect and regulates synaptic plasticity proteins (including 

BDNF) to prevent cognitive decline associated with aging [183, 184].
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Omega 3 fatty acids also have a protective function against oxidative stress. Human studies 

show reduced oxidative stress and damage [185]. Omega 3s increase superoxide dismutase 

activity in rats [186] where it is also shown that induced oxidative stress is compensated for 

through daily doses of omega 3s [187].

Anecdotally, patients with FXTAS have commented on beneficial effects of L-Arginine. 

There are some studies in rats that support a protective effect of L-Arginine against 

oxidative stress [195], however this, in addition to other antioxidants, have not been studied 

in premutation carriers.

Glutathione is also an essential cofactor for glutathione peroxidase, which acts as an 

antioxidant enzyme in the cell. Deficits of glutathione peroxidase cause additional oxidative 

stress in cells. Anthocyanin class compounds are effective in reducing the iron based lipid 

peroxidation and overall levels of oxidative stress in cells [192]. Additionally, anthocyanins 

significantly enhance glutathione peroxidase activity in cell-free assays [192].

Epigallocatechin-3-gallate (EGCG), found in green tea, is another potent antioxidant whose 

antioxidant effects in-vivo are well known [188–190, 196]. Consumption of green tea has 

been shown to alleviate age-related neuro-degeneration and boost cognitive function and 

would thus likely be helpful for FXTAS [189, 191, 196].

A study by Bowman et al [197] analyzed plasma biomarkers as a measure of nutritional 

quality. Higher levels of plasma vitamins and marine omega 3 fatty acids were linked to 

higher cognitive ability and higher brain volume with aging. Conversely, the study found 

that higher levels of trans-fats were linked to lower cognitive ability and reduced brain 

volume [197]. This evidence suggests that such changes in diet may be helpful for FXTAS 

with aging also.

While each of these vitamins and antioxidants have shown significant protection against 

oxidative stress, none have been studied specifically in premutation carriers with or without 

FXTAS. There is a need for such studies. Although these interventions are not likely to 

reverse FXTAS, they may be important, along with other lifestyle changes, to stall, delay, or 

avoid the onset of FXTAS in carriers.

Stress reduction

Raising a child with FXS, taking care of someone with FXTAS, or other significant 

involvement from the premutation is stressful to parents and to the family [80, 198]. Animal 

models of the premutation have also shown increased stress and cortisol elevations with age 

[199]. Mindfulness based stress reduction has been studied for reducing stress in cases of 

long term conditions with psychological distress and well-being issues such as cancer [200], 

multiple sclerosis [201], fibromyalgia [202] and rheumatoid arthritis [203] and have yielded 

positive results. Fibromyalgia is common in female premutation female carriers with age 

and the prevalence rises to 43% if neurological problems/FXTAS are present [85, 204]. 

Mindfulness stress reduction is a mental training to develop awareness and acceptance skills 

to cope with daily events that otherwise cause heightened elevated stress. Mindfulness 
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meditation has been shown to reduce anxiety, improve mood, and increase brain GABA 

levels [205].

Relaxation is a process that decreases the effects of stress and supports stress management. 

Beneficial effects of relaxation techniques include: slowing heart and breathing rate, 

lowering blood pressure, increased blood flow, reduced muscle tension and pain, and 

improved concentration. The National Center for Complementary and Alternative Medicine 

(NCCAM) published an overview about relaxation techniques for health [206].

Bio and neurofeedback treatments for relaxation and other behavioral interventions have 

been reported on for over 30 years [207]. Biofeedback and neurofeedback provides specific 

information about internal biological processes (i.e. muscle activity, respiration, heart rate 

variability, skin temperature and brain electrical activity) in an individual. Depending upon 

the physiological processes targeted, healthier patterns of activity can be achieved by most 

people after they have participated in 10 to 50 sessions of biofeedback or neurofeedback 

supported with professional coaching and practice. For example, Thompson, Thompson and 

Reid [208] described that effective neurofeedback plus biofeedback for individuals with 

Asperger disorder included several 50-minute sessions of neurofeedback twice weekly. Ten 

to fifteen of these sessions combined neurofeedback with biofeedback of other physiological 

parameters, such as heart rate variability, respiration, or electrodermal activity, if an initial 

assessment suggested that the individual experienced difficulties sustaining alertness or 

heightened anxiety. The therapists also guided individuals to practice and generalize these 

skills to daily activities. Further, once the individual achieved a relaxed, calm and focused 

state during the feedback training, they were also trained to maintain this state while 

performing mental activities designed to improve their cognitive processes (e.g., emotional 

comprehension in listening).

The 2011 study by Prinsloo et al. [209] showed an improvement in cognitive performance in 

healthy male volunteers (aged 23 to 41 years old) after the use of a short duration heart rate 

variability (HRV) biofeedback intervention with the StressEraser, a handheld portable HRV 

biofeedback device (StressEraser TM, Helicor, USA). Various biofeedback protocols [210] 

and assistive electronic technologies such as the NeXus-10, emWave Personal Stress 

Reliever® or StressEraser® exist to enhance the balance of parasympathetic activity, vagal 

tone, increase HRV and synchronize respiration with the heart rhythm (i.e., the slowing 

down and speeding up of the heart over time). The emWave® Coherence System by 

HeartMath is one example that has an emerging evidence base for its efficacy with children 

[211, 212]. Although these techniques have not been studied in premutation carriers with or 

without FXTAS, the need is great, and they are worthy of future investigations.

Exercise, Cognitive training, and Neurogenesis

To complement the use of antioxidants to protect against oxidative stress, exercise may also 

prove beneficial. Among regularly exercising older men, there is a marked decrease in 

vascular endothelial oxidative stress [213]. This likely holds true for brain tissue as well. A 

separate study by Shanely et al finds overall lower levels of inflammation and oxidative 

stress in adults who are physically fit and regularly active [214, 215]. Furthermore, 
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Traustadottir et al have found that exercise helps to blunt the body’s hypothalamicpituitary-

adrenal (HPA) axis response to psychological stress [216].

Exercise offers other benefits as well. Physical exercise increases adult neurogenesis and 

telomerase activity [161, 217, 218]. Telomeres are shorter in carriers compared to controls, 

which exercise would likely improve [219]. Exercise in rats boosts immune and 

neuroimmune cytokines [218]. Exercise also increases the size and plasticity of the 

hippocampus and improves memory [220, 221]. Although exercise increases the levels of 

brain-derived neurotrophic factor (BDNF) it appears that the increase in hippocampus size is 

independent of BDNF levels [215, 221]. Exercise in the mouse model of schizophrenia 

improves behavioral deficits [217]. Exercise also reduces feelings of depression perhaps by 

increasing serotonin levels [222]. A daily regimen of resistance training can also increase 

general cognition [223] and produces a shift in mitochondrial DNA that dilutes mutational 

burdens associated with aging [224]. Even brief bouts of activity increased levels of 

mitochondria in cells and helps cope with stress [225].

Several studies have shown beneficial effects of cognitive training to improve cognitive 

abilities [226, 227]. Cognitive training can be computer-based, and it typically involves a 

guided practice of standard tasks to reflect areas of cognition, such as memory, attention, or 

executive function.

Conclusions

The premutation is common in the general population and it can be associated with both 

developmental problems in addition to neurological and psychiatric problems with aging. 

The molecular underpinnings of premutation involvement are known and treatment for 

specific difficulties including ASD, anxiety, and depression often responds well to the use of 

an SSRI and counseling/ therapy. Prophylactic intervention with antioxidants, exercise, 

mindfulness meditation and avoidance of toxins has been anecdotally helpful, although 

controlled studies are needed to judge efficacy. This issue is complex because it is unclear 

why some individuals with the premutation have developmental and aging problems, 

whereas others do not. The reasons are likely related to both environmental and genetic 

effects. Treatments outlined here may offer some benefit for premutation carriers.
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Figure 1. 
General model of aging in FMRl premutation carriers. Normal aging processes, like 

telomere shortening, gerontogenesis etc., are exacerbated by FMRl toxicity across the whole 

lifespan of a premutation carrier.
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Figure 2. 
Recommendations and treatments to support healthy aging and support for FMRl 

premutation carriers including medications, complementary and alternative treatment 

methods, and lifestyle changes as evidenced by similar neurodegenerative disorders.
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Table 1

Antioxidant for fragile X premutation carriers as evidenced by their use in similar population.

Substance Outcome Study Population Reference

Alpha Tocopherol (Vitamin E) Normalization of synaptic connections FMR1 KO Mouse [165]

Improvements in dementia Alzheimer disease [166, 167]

Reduction of oxidative stress FMR1 KO Mouse [165]

Melatonin Glutathione level normalization FMR1 KO Mouse [168]

Improvement of anxiety and learning abnormalities FMR1 KO Mouse [168]

Sleep Aid Children with fragile X [169]

Women with the premutation [170]

Reduction of oxidative stress Parkinson disease [171, 172]

Folic Acid (Vitamin B9) Lowers homocysteine levels Fragile X [173, 174]

Reduced brain atrophy with age Typically aging individuals [175]

CoEnzyme Q10 Global symptoms (UPDRS Score –Unified Parkinson’s 
Disease Rating Scale)

Parkinson Disease [176, 177]

Cognitive Function Alzheimer Disease [178]

Overall energy level Friedreich Ataxia [179]

Early tremor symptoms Huntington Disease [180]

Ginseng Reduction of oxidative stress Cell cultures [181]

Reduction of neuroinflammation Mice [182]

Mood Mice [183]

Memory Mice [184]

Omega 3s Improved antioxidant activity Humans [185]

Rats [186, 187]

Epigallocatechin-3-gallate (EGCG) Reduction of oxidative stress Cell cultures [188–190]

Humans [189]

Rats [191]

Anthocyanins Reduction of oxidative stress Cell cultures [192]

N acetyl–L cysteine Normalization of synaptic connections FMR1 KO Mouse [165]
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