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Abstract
Background: There is an urgent need for new prognostic markers of breast cancer metastases
to ensure that newly diagnosed patients receive appropriate therapy. Recent studies have
demonstrated the potential value of gene expression signatures in assessing the risk of developing
distant metastases. However, due to the small sample sizes of individual studies, the overlap among
signatures is almost zero and their predictive power is often limited. Integrating microarray data
from multiple studies in order to increase sample size is therefore a promising approach to the
development of more robust prognostic tests.

Results: In this study, by using a highly stable data aggregation procedure based on expression
comparisons, we have integrated three independent microarray gene expression data sets for
breast cancer and identified a structured prognostic signature consisting of 112 genes organized
into 80 pair-wise expression comparisons. A classical likelihood ratio test based on these
comparisons, essentially weighted voting, achieves 88.6% sensitivity and 54.6% specificity in an
independent external test set of 154 samples. The test is highly informative in assessing the risk of
developing distant metastases within five years (hazard ratio 9.3 with 95% CI 2.9–29.9).

Conclusion: Rank-based features provide a stable way to integrate patient data from separate
microarray studies due to invariance to data normalization, and such features can be combined into
a useful predictor of distant metastases in breast cancer within a statistical modeling framework
which begins to capture gene-gene interactions. Upon further confirmation on large-scale
independent data, such prognostic signatures and tests could provide a powerful tool to guide
adjuvant systemic treatment that could greatly reduce the cost of breast cancer treatment, both in
terms of toxic side effects and health care expenditures.

Background
Breast cancer is the most common form of cancer and the
second leading cause of cancer death among women in
the United States, with an estimated ~213,000 new cases
and ~41,000 deaths in 2006 [1]. The main cause of breast
cancer death comes from its metastases to distant sites.

Early diagnosis and adjuvant systemic therapy (hormone
therapy and chemotherapy) substantially reduce the risk
of distant metastases. However, adjuvant therapy has seri-
ous short- and long-term side effects and involves high
medical costs [2]. Therefore, highly accurate prognostic
tests are essential to aid clinicians in deciding which
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patients are at high risk of developing metastases and
should receive adjuvant therapy. Currently, the most
widely used treatment guidelines, St. Gallen [3] and the
US National Institutes of Health (NIH) [2] consensus cri-
teria, assess a patient's risk of distant metastases based on
clinical prognostic factors such as tumor size, lymph node
status, and histologic grade. These guidelines cannot accu-
rately identify at-risk patients and about 70–80% of
patients defined as being at risk by these criteria and
receiving adjuvant therapy would have survived without it
[4]. In addition, many patients who would be cured by
local or regional treatment alone are "over-treated" and
suffer toxic side effects of adjuvant therapy unnecessarily.
Therefore, there is an urgent need for new prognostic tests
to precisely define a patient's risk of developing metas-
tases to ensure that the patient receives appropriate ther-
apy.

The advent of DNA microarray technology provides a
powerful tool in various aspects of cancer research. Simul-
taneous assessment of the expression of thousands of
genes in a single experiment could allow better under-
standing of the complex and heterogeneous molecular
properties of breast cancer. Such information may lead to
more accurate prognostic signatures for prediction of
metastasis risk in breast cancer patients. Over the past few
years, a number of studies have identified prognostic gene
expression signatures and proposed corresponding prog-
nostic tests based on these genes. In many cases, the pre-
diction of breast cancer outcome is superior to
conventional prognostic tests [5-11]. Among these stud-
ies, the two largest have attempted to identify gene expres-
sion signatures and prognostic tests strongly predictive of
distant metastases. van't Veer et al. applied a supervised
method to identify a 70-gene signature, and a correlation-
based test capable of predicting a short interval to distant
metastases, in a cohort of 78 young breast cancer patients
(<55 years of age) with lymph-node-negative tumors [6].
The test was applied to a cohort of 295 patients with either
lymph-node-negative or lymph-node-positive breast
tumors [5]. Using a different microarray platform, Wang
et al. derived a 76-gene prognostic signature from 115
lymph-node-negative patients who had not received adju-
vant systemic treatment. The signature could be used to
predict distant metastasis within five years in breast cancer
patients of all age groups with lymph-node-negative
tumors and was subsequently applied to a set of 171
lymph-node-negative patients [7]. These studies have
shown that tests based on gene expression signatures
would result in a substantial reduction of the number of
patients receiving unnecessary adjuvant systemic treat-
ment, thereby preventing over-treatment in a considera-
ble number of breast cancer patients.

The most striking observation when comparing the signa-
tures from different studies is the lack of overlap of signa-
ture genes. For instance, in the studies of van't Veer et al.
and Wang et al., despite the similar clinical and statistical
designs, there is an overlap of only three genes in the two
gene signature lists. These diverse results make it difficult
to identify the most predictive genes for breast cancer
prognosis. The disagreements in gene signatures may be
partly due to the use of different microarray platforms and
differences in patient selection, normalization procedures
and other experimental choices. Moreover, in a recent
study [12], reanalysis of the van't Veer data has shown that
the prognostic signature is even strongly influenced by the
subset of the patients used for signature selection within a
particular study. This observation indicates that given the
small number of samples in the training sets, many genes
might show what appear to be significant correlations
with clinical outcome and the differences among these
correlations might be small. Therefore, it is possible to
combine genes in many ways to generate different signa-
tures with similar predictive power when validated on
internal test sets [12]. Moreover, in general, these prog-
nostic tests are not robust, meaning that they cannot be
validated on independent, external data sets [9]. Inde-
pendent reanalysis on other microarray data sets has
shown very similar findings [13]. Given the large numbers
of features (~10,000 to 40,000 genes) in microarray data
and the relatively small numbers of samples (~100
patients) used in the training set of each study, it is highly
possible to accidentally find a set of genes with good pre-
dictive power on internal test sets. This is the type of
"over-fitting" that is typical when the number of observed
variables far exceeds the number of samples. In light of
this general "small-sample dilemma" in statistical learn-
ing and the particular observations from the two reanaly-
sis studies mentioned above, the disagreements in gene
signatures obtained from different data sets are not sur-
prising. We believe that much larger numbers of samples
(patients), perhaps thousands, are needed to develop
more robust prognostic tests and signatures.

The rapid accumulation of microarray gene expression
data suggests that combining microarray data from differ-
ent studies may be a useful way to increase sample size
and diversity. In particular, "meta-analyses" have recently
been used to merge different studies in order to develop
prognostic gene expression signatures for breast cancer
[14,15]. However, effectively integrating microarray data
from different studies is not straightforward due to several
issues of compatibility, such as differing microarray plat-
forms, experimental protocols and data preprocessing
methods. Instead of directly integrating microarray gene
expression values, meta-analyses combine results (e.g. t
statistics) of individual studies to increase statistical
power. The major limitation of meta-analyses is that the
Page 2 of 14
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:125 http://www.biomedcentral.com/1471-2105/9/125
small sample sizes typical of individual studies, coupled
with variation due to differences in study protocols, inev-
itably degrades the results. Also, deriving separate statis-
tics and then averaging is often less powerful than directly
computing statistics from aggregated data.

In contrast to the meta-analysis approach, in which the
results of individual studies are combined at an interpre-
tative level, other methods, such as Z-score, Distance
Weighted Discrimination (DWD), integrate microarray
data from different studies at the expression value level
after transforming the expressions to numerically compa-
rable measures [14,16-20]. In general, the procedure
involves the following steps. First, a list of genes common
to multiple distinct microarray platforms is extracted
based on cross-referencing the annotation of each probe
set represented on the microarrays. Cross-referencing of
expression data is usually achieved using the UniGene
database [21]. Next, for each individual data set, numeri-
cally comparable quantities are derived from the expres-
sion values of genes in the common list by applying
specific data transformation and normalization methods.
Finally, the newly derived quantities from individual data
sets are combined to increase sample size and statistical
methods are applied to the combined data to build diag-
nostic and prognostic signatures. One major limitation of
these direct integration methods is that there is still no
consensus on how best to perform data transformation
and normalization.

In our previous work [22], we proposed a novel method
for molecular classification which builds predictors from
relative expression values, which can be directly applied to
integrated microarray data and which generates very sim-
ple decision rules. Because this method is based only on
the ranks of the expression values within a profile (sam-
ple), there is no need to prepare the data for integration,
in particular there is no need for data normalization, since
ranks are invariant to all types of within-array monotonic
preprocessing. This approach to data integration was vali-
dated on prostate cancer data [23], resulting in a powerful
two-gene diagnostic classifier. It has also been applied
recently to differentiating between gastrointestinal stro-
mal tumors and leiomyosarcomas [24]. Here, we extend
this method to predict distant metastases in breast cancer,
and attempt to overcome the limitations of previous
study-specific methods and meta-analyses.

Results
Summary
We integrate three independent microarray gene expres-
sion data sets to obtain an integrated training set of 358
samples and identify a set of features for predicting distant
metastases. All the samples included in this study are from
lymph-node-negative patients who have not received

adjuvant systemic treatment. Each feature is based on an
ordered pair of genes and assumes the value one if the first
gene is expressed less than the second gene, and assumes
the value zero otherwise. These genes may not all be
highly differentially expressed, and one gene in the pair
may serve as a "reference" for the other one. Since the fea-
tures are rank-based, no data normalization is needed
before data integration. A classical likelihood ratio test is
used to classify patients as either poor-outcome, meaning
they are likely to metastasize, or good-outcome, meaning
that they are unlikely to develop distant metastases. The
choice of features is motivated by achieving the highest
possible specificity at an acceptable level of sensitivity,
taken here to be 90% in accordance with the St. Gallen
and NIH treatment guidelines. The number of features
chosen in the prognostic signature, as well as the thresh-
old in the likelihood ratio test (LRT), is optimized with k-
fold cross-validation on the integrated training set. The
optimal feature number is estimated to be 80, correspond-
ing to 112 genes (since some genes appear in more than
one feature). The prognostic test based on this signature is
validated using an independent microarray data set. Upon
further validation on large-scale independent data, the
prognostic gene expression signature could support other
breast cancer prognostic tests with high enough specificity
to help avoid over-treatment of newly diagnosed patients.

Study data
Four breast cancer microarray data sets are included in this
study. Each data set has been downloaded from publicly
available gene expression repositories (e.g. Gene Expres-
sion Omnibus) or supporting web sites [7,11,25,26]. All
four data sets are generated from the same Affymetrix HG-
U133A microarray platform. Here, the names of the first
authors of individual studies are used as the names of the
data sets. Three data sets, Miller (251 patients), Sotiriou
(189 patients) and Wang (286 patients), are used as train-
ing data and the other one, Pawitan (159 patients), is used
as independent test data. The reason for this division into
training and test data is that detailed clinical information
has been provided for the Miller, Sotiriou and Wang data
sets and this information has been used to select specific
patients for training, whereas little clinical information is
provided for the Pawitan study. For the Miller, Sotiriou
and Pawitan studies, because the gene expression data sets
provided by them have undergone cross-sample normali-
zation, we have downloaded the raw CEL files and calcu-
lated expression values using the Affymetrix GeneChip
Operating Software version 1.4. There is an 85-patient
overlap between Miller and Sotiriou data sets, so we have
excluded the replicate samples from our study. Detailed
patient information in each study has been described in
the corresponding literature.
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Motivated by a recent study [27], we employ the idea of
restricting training data to extreme patient samples, which
are more informative in identifying a prognostic signa-
ture. Extreme patients are either short-term survivors with
poor-outcome within a short period or long-term survi-
vors who maintain a good-outcome after a long follow-up
time. Specifically, we select patients who developed dis-
tant metastases (relapse) within five years as poor-out-
come samples and patients who were free of distant
metastases (relapse) during the follow-up for a period of
at least eight years as good-outcome samples. The sharp
contrast between short-term and long-term survivors
should identify more informative and reliable genes for a
prognostic signature. Only early stage lymph-node-nega-
tive patients who had not received adjuvant systemic
treatment are included in the training data because adju-
vant treatment is likely to modify patient outcome. The
selection is irrespective of age, tumor size and other clini-
cal parameters. After applying the above selection criteria,
a total of 358 patients are identified from the three train-
ing data sets and used to learn a prognostic signature and
prognostic test. The numbers of selected patients from
each training data set are listed in Table 1.

A prognostic signature from integrated data
We directly merge the three microarray data sets in Table
1, using the 22283 probe sets on Affymetrix HG-U133A
microarray, to form an integrated training data set. The
integrated data set consists of 122 extreme poor-outcome
samples (distant metastases within five years after sur-
gery) and 236 extreme good-outcome samples (free of dis-
tant metastases during the follow-up for a period of at
least eight years after surgery). Recall that each feature is
based on a pair of genes. The integrated training set is used
to estimate the relationship between the number m of fea-
tures in a prognostic classifier and the specificity at 90%
sensitivity level, evaluated by the 40-fold cross-validation,
as described in 'Methods'. The result is plotted in Figure 1.
As can be seen, the specificity is nearly constant after
about 80 features are included. Our final prognostic signa-
ture then consists of the 80 top-ranked features (gene
pairs) from the feature list generated from the original
integrated training data, using the feature selection and
transformation procedures described in 'Methods'.
Because some genes appear in more than one feature, the

80 top-ranked gene pairs in our prognostic signature
include 112 distinct genes (Table 2). To illustrate the
behavior of the 80 features in the signature on the Wang
data set (part of the integrated training data), we show the
difference in expression between the two genes in each of
the 80 gene pairs in the form of a heat map in Figure 2.
Distinct patterns of expression differences can be
observed for good- and poor-outcome samples.

In order to evaluate the reproducibility of the 112-gene
signature, we repeat the same feature selection process
with several re-samplings of 300 patients out of the 358
patients in the integrated data set. The average overlap is
39.0%. This is not surprising in view of the still modest
sample size and the fact that most of the changes occur in
the second half of the ranked list of gene pairs.

Validation of the prognostic test on independent data
To validate the prognostic test, we compute its sensitivity
and specificity on an independent set of samples, the Paw-
itan data set [26], which consists of 159 primary breast
cancer patients. This test set includes both patients with
lymph-node-negative tumors and patients with lymph-
node-positive tumors, and who had or had not received
adjuvant systemic therapy. Following the practice in most
of the literature, our objective is to predict the develop-
ment of distant metastases within five years. Of the 159
patients, 35 patients developed distant metastases
(relapse) within five years ("poor-outcome"), and 119
patients were free of distant metastases (no relapse) dur-
ing the follow-up for a period of at least five years ("good-
outcome"). Note that the definition of good-outcome for
patients in the validating data is different from the defini-
tion in the training data because we have used extreme
samples to identify the prognostic signature.

Our prognostic test is the classical likelihood ratio test,
determined by assuming that the features are condition-
ally independent under both classes, namely "poor out-
come" (the null hypothesis) and "good outcome" (the
alternative hypothesis); see 'Methods'. The LRT reduces to
comparing a weighted average of the 80 features to a
threshold. The weights depend on the statistics of the
individual features under both classes and are estimated
from the training data; the threshold is also estimated

Table 1: Training data sets: lymph-node-negative patients with no adjuvant treatment

Data Set No. of Patients No. of Good-outcome No. of Poor-outcome

Miller [25] 106 92 14
Sotiriou [11] 43 30 13
Wang [7] 209 114 95

Total 358 236 122
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from the training set, using cross-validation. The LRT built
from the prognostic signature achieves a sensitivity of
88.6% (31 out of the 35 poor-outcome samples) and a

specificity of 54.6% (65 out of the 119 good-outcome
samples) on the 154 samples included in the validating
data set. The remaining five patients, who either devel-
oped distant metastases after five years or were free of dis-
tant metastases with a follow-up period less than five
years, are not included in the validating data set. We com-
pute the odds ratio of the prognostic test for developing
metastases within five years between the patients in the
poor-outcome group and in the good-outcome group as
determined by the prognostic test. The prognostic test has
a high odds ratio of 9.3 (95% confidence interval: 3.1 –
28.1) with a Fisher's exact test p-value < 0.00001. To make
the results easier to understand, we have included in the
additional files the heat maps of the two-group (good-
and poor-outcomes) supervised clusters of the integrated
training data and test data for the 112-signature genes (see
Additional file 1 and file 2).

It is noteworthy that performance of the LRT on the vali-
dation data is actually somewhat better than the perform-
ance on the training set (which is estimated by cross-
validation). Specifically, from Figure 1 (see also 'Meth-
ods'), the specificity of the LRT prognostic test is around
43% at approximately 90% sensitivity when estimated
from the training data, whereas a specificity of approxi-
mately 55% at about the same sensitivity is achieved on
the independent validation set.

The heat map of the 80 signature gene pairsFigure 2
The heat map of the 80 signature gene pairs. The Wang data set is used to illustrate the gene expression values of the 
signature genes. A heat map is generated using the matrix2png software [34]. There are 80 rows corresponding to the 80 gene 
pairs; the displayed intensities are the differences between the expression values of the two genes in each pair. The expression 
value for each difference is normalized across the samples to zero mean and one standard deviation (SD) for visualization pur-
poses. Differences with expression levels greater than the mean are colored in red and those below the mean are colored in 
green. The scale indicates the number of SDs above or below the mean.

Choosing size of the signatureFigure 1
Choosing size of the signature. The relationship between 
the number of features in a prognostic signature and the spe-
cificity at 90% sensitivity of the corresponding prognostic 
test, evaluated by 40-fold cross-validation. We select mopt = 
80, the smallest value that achieves roughly maximum specifi-
city at the 90% sensitivity level. The specificity observed on 
the validation set is in fact higher.

Choosing the size of the signature
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Table 2: Genes in the identified prognostic signature. For each probe set the first column lists the subset of the eighty pairs which 
contain it. The pairs are ordered from 1 to 80 by their scores.

Pair Rank Probe Set Gene Symbol Gene Title

1, 43 91816_f_at RKHD1 ring finger and KH domain containing 1
1, 6, 73 204641_at NEK2 NIMA (never in mitosis gene a)-related kinase 2
2 213139_at SNAI2 snail homolog 2 (Drosophila)
2, 4, 9, 33 212188_at KCTD12 potassium channel tetramerisation domain containing 12
3 212022_s_at MKI67 antigen identified by monoclonal antibody Ki-67
3, 61, 80 219716_at APOL6 apolipoprotein L, 6
4 205264_at CD3EAP CD3e molecule, epsilon associated protein
5 206687_s_at PTPN6 protein tyrosine phosphatase, non-receptor type 6
5, 67 218009_s_at PRC1 protein regulator of cytokinesis 1
6, 35, 39, 55 219579_at RAB3IL1 RAB3A interacting protein (rabin3)-like 1
7 221824_s_at MARCH8 membrane-associated ring finger (C3HC4) 8
7 209574_s_at C18orf1 chromosome 18 open reading frame 1
8 210199_at CRYAA crystallin, alpha A
8, 24, 26, 31 219493_at SHCBP1 SHC SH2-domain binding protein 1
9 204177_s_at KLHL20 kelch-like 20 (Drosophila)
10, 34 203010_at STAT5A signal transducer and activator of transcription 5A
10 212747_at ANKS1A ankyrin repeat and sterile alpha motif domain containing 1A
11, 19, 21 205034_at CCNE2 cyclin E2
11, 65 217427_s_at HIRA HIR histone cell cycle regulation defective homolog A (S. cerevisiae)
12, 46, 54, 74 222077_s_at RACGAP1 Rac GTPase activating protein 1
12, 62 36545_s_at SFI1 Sfi1 homolog, spindle assembly associated (yeast)
13, 17, 72 218883_s_at MLF1IP MLF1 interacting protein
13 203332_s_at INPP5D inositol polyphosphate-5-phosphatase, 145kDa
14, 15 211584_s_at NPAT nuclear protein, ataxia-telangiectasia locus
14 219512_at C20orf172 chromosome 20 open reading frame 172
15 221193_s_at ZCCHC10 zinc finger, CCHC domain containing 10
16 221521_s_at GINS2 GINS complex subunit 2 (Psf2 homolog)
16 209671_x_at TRA@///TRAC T cell receptor alpha locus///T cell receptor alpha locus
17 208952_s_at LARP5 La ribonucleoprotein domain family, member 5
18, 30 218726_at DKFZp762E1312 hypothetical protein DKFZp762E1312
18, 51 211581_x_at LST1 leukocyte specific transcript 1
19 221273_s_at DKFZP761H1710 hypothetical protein DKFZp761H1710
20 205395_s_at MRE11A MRE11 meiotic recombination 11 homolog A (S. cerevisiae)
20, 59 214973_x_at IGHD immunoglobulin heavy constant delta
21, 27 211881_x_at IGLJ3 immunoglobulin lambda joining 3
22 202602_s_at HTATSF1 HIV-1 Tat specific factor 1
22 218143_s_at SCAMP2 secretory carrier membrane protein 2
23 212911_at DNAJC16 DnaJ (Hsp40) homolog, subfamily C, member 16
23 204817_at ESPL1 extra spindle poles like 1 (S. cerevisiae)
24 215783_s_at ALPL alkaline phosphatase, liver/bone/kidney
25, 38, 39, 44, 52, 71 204825_at MELK maternal embryonic leucine zipper kinase
25 213689_x_at RPL5 Ribosomal protein L5
26 206545_at CD28 CD28 molecule
27 206364_at KIF14 kinesin family member 14
28, 60, 61 208079_s_at AURKA aurora kinase A
28 214955_at TMPRSS6 transmembrane protease, serine 6
29 210966_x_at LARP1 La ribonucleoprotein domain family, member 1
29 218830_at RPL26L1 ribosomal protein L26-like 1
30 204498_s_at ADCY9 adenylate cyclase 9
31 206211_at SELE selectin E (endothelial adhesion molecule 1)
32, 34, 69 201890_at RRM2 ribonucleotide reductase M2 polypeptide
32 219298_at ECHDC3 enoyl Coenzyme A hydratase domain containing 3
33 204847_at ZBTB11 zinc finger and BTB domain containing 11
35, 62 203214_x_at CDC2 cell division cycle 2, G1 to S and G2 to M
36 204605_at CGRRF1 cell growth regulator with ring finger domain 1
36 211251_x_at NFYC nuclear transcription factor Y, gamma
37, 65 213008_at KIAA1794 KIAA1794
37, 73 210042_s_at CTSZ cathepsin Z
38 203595_s_at IFIT5 interferon-induced protein with tetratricopeptide repeats 5
40 221529_s_at PLVAP plasmalemma vesicle associated protein
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To obtain another useful estimate of the clinical outcome,
we apply the LRT built from the prognostic signature to all
of the 159 samples in the Pawitan data set and calculate
the probability of remaining free of distant metastases
according to the prognostic signature by using Kaplan-
Meier analysis. The Kaplan-Meier curve of the prognostic
signature shows a significant difference (p-value < 0.001)

in the probability of remaining free of distant metastases
between the patients in the poor-outcome group and
those in the good-outcome groups (Figure 3A). The p-
value is computed by the use of log-rank test. The Mantel-
Cox estimation of hazard ratio for distant metastases
within five years in the poor-outcome group as compared

40 202114_at SNX2 sorting nexin 2
41 211779_x_at AP2A2 adaptor-related protein complex 2, alpha 2 subunit
41, 63 202324_s_at ACBD3 acyl-Coenzyme A binding domain containing 3
42, 57 201821_s_at TIMM17A translocase of inner mitochondrial membrane 17 homolog A (yeast)
42 201551_s_at LAMP1 lysosomal-associated membrane protein 1
43 48808_at DHFR dihydrofolate reductase
44 211643_x_at LOC651961 Myosin-reactive immunoglobulin light chain variable region
45 210396_s_at LOC440354 PI-3-kinase-related kinase SMG-1 pseudogene
45 201070_x_at SF3B1 splicing factor 3b, subunit 1, 155kDa
46 207391_s_at PIP5K1A phosphatidylinositol-4-phosphate 5-kinase, type I, alpha
47 200800_s_at HSPA1A heat shock 70 kDa protein 1A
47 201009_s_at TXNIP thioredoxin interacting protein
48 203530_s_at STX4 syntaxin 4
48, 50 218085_at CHMP5 chromatin modifying protein 5
49, 68, 70 219555_s_at C16orf60 chromosome 16 open reading frame 60
49 210419_at BARX2 BarH-like homeobox 2
50 214119_s_at FKBP1A FK506 binding protein 1A, 12 kDa
51, 58 203362_s_at MAD2L1 MAD2 mitotic arrest deficient-like 1 (yeast)
52 218910_at TMEM16K transmembrane protein 16K
53 208838_at KIAA0829 KIAA0829 protein
53 212081_x_at BAT2 HLA-B associated transcript 2
54 202115_s_at NOC2L nucleolar complex associated 2 homolog (S. cerevisiae)
55 209714_s_at CDKN3 cyclin-dependent kinase inhibitor 3 (CDK2-associated dual specificity 

phosphatase)
56 205701_at IPO8 importin 8
56 205063_at SIP1 survival of motor neuron protein interacting protein 1
57 200918_s_at SRPR signal recognition particle receptor ('docking protein')
58 212527_at D15Wsu75e DNA segment, Chr 15, Wayne State University 75, expressed
59 204244_s_at DBF4 DBF4 homolog (S. cerevisiae)
60 214508_x_at CREM cAMP responsive element modulator
63 200787_s_at PEA15 phosphoprotein enriched in astrocytes 15
64 203764_at DLG7 discs, large homolog 7 (Drosophila)
64 205877_s_at ZC3H7B zinc finger CCCH-type containing 7B
66 200848_at AHCYL1 S-adenosylhomocysteine hydrolase-like 1
66 201091_s_at CBX3 chromobox homolog 3 (HP1 gamma homolog, Drosophila)
67 64064_at GIMAP5 GTPase, IMAP family member 5
68 211649_x_at IGHG1 Immunoglobulin heavy constant gamma 1 (G1m marker)
69 204398_s_at EML2 echinoderm microtubule associated protein like 2
70 220433_at PRRG3 proline rich Gla (G-carboxyglutamic acid) 3 (transmembrane)
71 219169_s_at TFB1M transcription factor B1, mitochondrial
72 34689_at TREX1 three prime repair exonuclease 1
74 212604_at MRPS31 mitochondrial ribosomal protein S31
75 213907_at EEF1E1 Eukaryotic translation elongation factor 1 epsilon 1
75 209622_at STK16 serine/threonine kinase 16
76 209716_at CSF1 colony stimulating factor 1 (macrophage)
76 219575_s_at PDF peptide deformylase (mitochondrial)
77 219328_at DDX31 DEAD (Asp-Glu-Ala-Asp) box polypeptide 31
77 213121_at SNRP70 small nuclear ribonucleoprotein 70 kDa polypeptide (RNP antigen)
78 218870_at ARHGAP15 Rho GTPase activating protein 15
78 219105_x_at ORC6L origin recognition complex, subunit 6 like (yeast)
79 216510_x_at IGHA1 immunoglobulin heavy constant alpha 1
79 215207_x_at YDD19 YDD19 protein
80 219918_s_at ASPM asp (abnormal spindle)-like, microcephaly associated (Drosophila)

Table 2: Genes in the identified prognostic signature. For each probe set the first column lists the subset of the eighty pairs which 
contain it. The pairs are ordered from 1 to 80 by their scores. (Continued)
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to the good-outcome group is 9.3 (95% confidence inter-
val: 2.9 – 29.9, p-value < 0.001).

Comparison of the prognostic signature to study-specific 
signatures
To evaluate the potential statistical power gained by inte-
grating multiple data sets to increase diversity and sample
size, we compare the predictive power of our integrated
prognostic signature with each of the three separate study-
specific prognostic signatures identified from the three
data sets in Table 1. We use exactly the same method we
used for the integrated data and each of the resulting three
prognostic tests is applied to the same independent test
data, the Pawitan data. The results are reported in Table 3.
In the case of the Sotiriou data, we do not achieve the tar-
geted sensitivity of at least ninety percent due to the very
small sample size; the estimate of the threshold in the LRT
does not generalize to the Pawitan test set. For the Miller
and Wang data sets, the desired sensitivity is achieved but

the specificity is far lower than for the classifier learned
from the integrated data set.

The Wang data set is the largest. Using 40-fold cross-vali-
dation, the optimal feature number of gene pairs for the
prognostic signature is mopt = 60. The 94.3% sensitivity on
the test set (33 out of the 35 poor-outcome samples) is
close to the target of 90%. The specificity of the classifier
is 10.1% (12 out of the 119 poor-outcome samples), sub-
stantially lower than the classifier based on the integrated
training set, albeit at somewhat higher sensitivity.
(Indeed, the performance of the prognostic LRT test based
on the Wang data alone is barely better than the com-
pletely randomized, data-independent procedure which
chooses poor-outcome with probability 0.9 and good out-
come with probability 0.1, independently from sample to
sample.) The odds ratio of this test is 1.9 (95% confidence
interval: 0.4 – 8.7, Fisher's exact test p-value = 0.74), and
the Kaplan-Meier curve (Figure 3B) shows a less signifi-

Table 3: Test results on Pawitan data (154 patients)

Training Data No. of Patients Sensitivity (%) Specificity (%)

Sotiriou 43 51.4 47.1
Miller 106 100.0 15.1
Wang 209 94.3 10.1
Integrated 358 88.6 54.6

The Kaplan-Meier analysisFigure 3
The Kaplan-Meier analysis. Kaplan-Meier analysis of the probability of remaining free of distant metastases among 159 Paw-
itan patients between the good-outcome group and the poor-outcome group. The LRT is based on the integrated data in (A) 
and the single, Wang data set in (B). CI denotes confidence interval and the p-value is calculated by the log-rank test.

                                             (A)                                    (B) 
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cant difference between the patients in the poor-outcome
and good-outcome groups than that of the signature from
the integrated data. Finally, the estimated hazard ratio of
1.6 (95% confidence interval: 0.4 – 6.8, 0.01 < p-value <
0.05) is much lower than that of the prognostic test from
the integrated data.

These comparisons demonstrate that the prognostic test
derived from the integrated data is superior to the prog-
nostic test derived from any of the individual studies and
highlight the value of data integration. By integrating sev-
eral microarray data sets with our rank-based methods,
study-specific effects are reduced and more features of
breast cancer prognosis are captured.

Discussion
Using a rank-based method for feature selection, we inte-
grate three independent microarray gene expression data
sets of extreme samples and identify a 112-gene breast
cancer prognostic signature. The signature is invariant to
standard within-array preprocessing and data normaliza-
tion. All of the patients in the integrated training set had
lymph-node-negative tumors and had not received adju-
vant systemic treatment, so the identification of the prog-
nostic signature is not subject to potential confounding
factors related to lymph node status or systemic treat-
ment. A LRT constructed from the prognostic signature is
used to predict whether a breast cancer patient will
develop distant metastases within five years after initial
treatment. This prognostic test achieves a sensitivity of
88.6% and a specificity of 54.6% on an independent test
data set of 154 samples. The test set includes patients who
had and who had not received adjuvant systemic treat-
ment, and those with both lymph-node-negative and
lymph-node-positive tumors, indicating that our prog-
nostic signature could possibly be applied to all breast
cancer patients independently of age, tumor size, tumor
grade, lymph mode status, and systemic treatment. It
should be pointed out that, somewhat paradoxically, one
reason for this ability to generalize is that, as with all
machine learning methods, the feature seleciton process is
not guided by specific biological knowledge about the
underlying processes and pathways.

One motivation for using the LRT is simplicity: under the
assumption of independent features, the test statistic is a
weighted average of the feature values and the test itself
reduces to comparing this average to a fixed threshold.
Another motivation stems from the Neyman-Pearson
lemma of statistical hypothesis testing [28], which states
that the LRT achieves optimal specificity at any given level
of sensitivity. However, we cannot claim optimal specifi-
city (at roughly ninety percent sensitivity) for our prog-
nostic test since our LRT is constructed by assuming the 80
binary comparison features are statistically independent

in each class, which is likely to be violated in practice due
to correlations among the genes and genes appearing in
multiple pairs. But this approach does offer a rigorous sta-
tistical framework for constructing prognostic tests at a
given sensitivity. It also provides a direction towards more
powerful procedures. Evidently, increasingly better
approximations to the "true" LRT, and hence to optimal
specificity, would be obtained by accounting for more and
more of the dependency structure among the features.
Indeed, accounting for pair-wise correlations alone would
be a significant step in this direction.

Comparison with the conventional treatment guidelines
(e.g. St. Gallen and NIH) is instructive. While maintaining
almost the same level of sensitivity (~90%), our prognos-
tic test achieves a specificity which is well above the
10–30% range of the St. Gallen and NIH targets. This
means that our test can spare a significant number of
good-outcome patients from unnecessary adjuvant ther-
apy, while ensuring roughly the same percentage of poor-
outcome patients receive adjuvant therapy as recom-
mended by the treatment guidelines. Therefore, our prog-
nostic test and signature, if further validated on large-scale
independent data, could potentially provide a useful
means of guiding adjuvant systemic treatment, reducing
cost and improving the quality of patients' lives.

Other strengths of our study, compared with previous
ones, are the larger number of homogeneous patients
(lymph-node-negative tumors without adjuvant systemic
treatment) in the training set, and an external independ-
ent test set. In each of the two major breast cancer prog-
nostic studies [6,7], the training and validation data are
extracted from the same study group from the same pop-
ulation. More specifically, the entire data set is randomly
divided into two pieces, one serving as a training set and
the other as a validation or test set. In this case, the train-
ing data and the validation data are likely to have similar
properties. Therefore, the study-specific prognostic test
identified from the training data usually gives over-prom-
ising results when assessed using the "internal" validation
data. (Similar remarks apply to methods which measure
performance using cross validation.) This argument may
explain why the two major prognostic signatures,
although validated internally with about 90% sensitivity
and about 50% specificity, cannot be validated externally
with an independent data set [9]. In addition, splitting the
original data set into two pieces only aggravates the small-
sample problem, as well as producing other sources of
bias [12]. In our study, we increase diversity and sample
size by integrating several microaray data sets involving
patients from different populations. By selecting a homo-
geneous subgroup of patients and combining data from
multiple studies, the derived prognostic test and signature
is less sensitive to study-specific factors. An intriguing
Page 9 of 14
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advantage of inter-study data integration is that it
increases the statistical power to capture essential prog-
nostic features which might be masked by study-specific
features and the small sample sizes of individual data sets.
In this sense, our prognostic test is more robust to inter-
study variability and may facilitate external validation.

Comparison of our prognostic signature with the two
major signatures of van't Veer et al. and Wang et al. is not
straightforward because of differences in patients, micro-
array platforms, and algorithms. The study of van't Veer et
al. uses an Agilent array platform and our study uses an
Affymetrix array platform. Only 46 out of the 112 genes in
our prognostic signature are present on the Agilent Hu25K
array and only 36 of the 70 genes in the van't Veer signa-
ture are present on the Affymetrix HG-U133A array.
Therefore, we can neither validate the van't Veer prognos-
tic test on our validation data nor validate our test on their
data set. There is a three-gene overlap between the van't
Veer signature and our signature (CCNE2, ORC6L, and
PRC1). Since the data set in Wang et al. is included in our
training set, we cannot validate our test on that data set.
On the other hand, in order to validate the test proposed
by Wang et al., we need to know the estrogen receptor
(ER) status of our test samples because the classification
rule based on their signature is depend on ER status,
which is absent from our validation data. Again, there is a
four-gene overlap between the Wang signature and our
signature (AP2A2, CBX3, CCNE2, and MLF1IP). It is note-
worthy that the gene CCNE2 is included in all of the three
signatures and is reported to be related to breast cancer
[29]. CCNE2 could be a potential target for the rational
development of new cancer drugs.

Using the program DAVID [30], according to the gene
ontology biological process categories, the 112-gene sig-
nature is highly enriched in cell cycle (P-value = 1.45E-5)
and cell division (P-value = 5.9E-4). To pinpoint the role
of some of the genes in our signature, the cell cycle path-
way is displayed in the additional files with our signature
genes shown in red (see Additional file 3). These findings
demonstrate that deregulation of these pathways has a
direct impact on tumor progression and indicate that the
112-gene signature is biologically relevant.

To assess the benefit of data integration, we compared the
predictive power of our signature with that of three study-
specific signatures identified from the Sotiriou, Miller and
Wang data sets using the same LRT procedure. When
applied to the same independent test data, our prognostic
test consistently outperforms the study-specific tests and
the largest study (Wang) in particular, in terms of specifi-
city (54.6% vs. 10.1%) at roughly the same 90% sensitiv-
ity level, odds ratio (9.3 vs. 1.9), hazard ratio (9.3 vs. 1.6),
and Kaplan-Meier analysis. These findings again suggest a

prognostic test derived from a single data set may be over-
dedicated and might perform weakly on external data. In
contrast, a prognostic test derived from integrated data is
more likely to be more robust to study-specific factors and
to be validated satisfactorily on external data.

Recently, some studies have shown that combining gene
expression data and conventional clinical data (e.g. tumor
size, grade, ER status) could lead to improved breast can-
cer prognosis [31,32]. An approach based on solid statis-
tical principles can accommodate aggregating data of
multiple types, e.g., combining gene expression signatures
with traditional clinical factors. In this study, due to the
lack of clinical information for some of the training sam-
ples, we could not incorporate such information into the
development of our prognostic test. As clinical informa-
tion becomes publicly available, it might be combined
with the integrated gene expression data to further
improve prognosis.

Conclusion
The opinion expressed in recent studies that gene expres-
sion information can be useful in breast cancer prognosis
seems to be well-founded. However, due to the small sam-
ple sizes relative to the complexity of the entire expression
profile, existing methods suffer certain limitations,
namely the prevalence of study-specific signatures and dif-
ficulties in validating the prognostic tests constructed
from these signatures on independent data. Integrating
data from multiple studies to obtain more samples
appears to be a promising way to overcome these limita-
tions.

We have integrated several gene expression data sets and
developed a likelihood ratio test for predicting distant
metastases that correctly signals a poor outcome in
approximately ninety percent of test cases while maintain-
ing about fifty-five percent specificity for good outcome
patients. This well exceeds the St. Gallen and NIH guide-
lines and compares favorably with the best results previ-
ously reported (although not yet validated on external test
data). As more and more gene (and protein) expression
data is generated and made publicly available, modeling
the interactions among genes (and gene products) will
become increasingly feasible, and is likely to be crucial in
designing prognostic tests which achieve high sensitivity
without sacrificing specificity.

Methods
Data integration
Recently, our group has developed a family of statistical
molecular classification methods based on relative expres-
sion reversals [22,33], and applied one variant based on a
two-gene classifier to microarray data integration [23].
These methods only use the ranks of gene expression val-
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ues within each profile and achieve impressive results in
both molecular classification and microarray data integra-
tion. An important feature of rank-based methods is that
they are invariant to monotonic transformations of the
expression data within an array, such as those used in
most array normalization and other pre-processing meth-
ods. This property makes these methods especially useful
for combining data from separate studies since the nature
of the primary features extracted from the data, namely
comparisons of mRNA concentration between pairs of
genes, eliminates the need to standardize the data before
aggregation. Specifically, the ranks of gene expression val-
ues are invariant to monotonic data transformations
within each microarray. Consequently, we directly merge
gene expression data of the patients from three training
data sets in Table 1, using the 22283 probe sets on
Affymetrix HG-U133A microarray, to form an integrated
training data set of 358 samples. After aggregation, we
extract a list of pair-wise comparisons; each of these "fea-
tures" corresponds to a pair of genes and is assigned the
value zero or one depending on the observed ordering of
expressions; see the following section. The number of fea-
tures retained is much smaller than the number of genes
on the array. The procedure is now described in more
detail.

Feature selection and transformation
Consider G genes whose expression values X = {X1, X2, ...,
XG} are measured using a DNA microarray and regarded
as random variables. The class label Y for each profile X is
a discrete random variable taking on one of two possible
values corresponding to the two prognostic states or
hypotheses of interest, namely "poor-outcome," denoted
Y = 1, and "good-outcome," denoted Y = 2. The integrated
training microarray data represent the observed values of
X and comprise a G × N matrix x = [xgn], g = 1, 2, ..., G and
n = 1, 2, ..., N, where G is the number of genes in each pro-
file and N is the number of samples (profiles) in the inte-
grated data set. Each column n represents a gene
expression profile of G genes with a class label yn = 1
(poor-outcome) or yn = 2 (good-outcome) for the two-
class problem in our study. Among the N samples, there
are N1 (respectively, N2) samples labeled as class 1
(respectively, class 2) with N = N1 + N2.

For each pair of genes (i, j), where i, j = 1, 2, ..., G, i ≠ j, let
P(Xi <Xj|Y = k), k = 1,2, denote the conditional probability
of the event {Xi <Xj} given Y = k. We define a score by

∆j = |P(Xi <Xj|Y = 1) - P(Xi <Xj|Y = 2)| (1)

and estimate the score of pair (i, j) based on the training
set x by

where

In other words, the estimated score is simply the absolute
difference between the fraction of poor-outcome patients
for which gene i is expressed less than gene j and the same
fraction in the good-outcome examples. The feature selec-
tion procedure consists of forming a list of gene pairs,
sorted from the largest to the smallest according to their
scores ∆ij, and selecting the top M pairs. The M top-ranked
gene pairs are then considered to be the most discriminat-
ing candidate gene pairs for breast cancer prognosis if only
relative expressions are taken into account. During the
process, we have transformed the original feature vector X
= {X1, X2, ..., XG}(G = 22283 in this study), each of which
assumes scalar values, to a new ordered feature vector Z =
{Z1, Z2, ..., ZM}(usually, M <<G), each of which assumes
only two values.

Suppose Zm, m = 1, 2, ..., M, corresponds to the gene pair
{i, j}. For convenience, the ordering (i, j) will signify
which probability in Equation (1) is larger. The reason for
this is to facilitate interpretation of the results, as will
become apparent. If P(Xi <Xj|Y = 1) ≥ P(Xi <Xj|Y = 2), as
estimated by the fractions in (2), we will write (i, j) and if
P(Xi <Xj|Y = 1) <P(Xi <Xj|Y = 2) we will denote the pair by
(j, i). The value assumed by Zm is then set to be 1 if we
observe Xi <Xj and set to 0 otherwise, i.e., if we observe Xi
≥ Xj. Of course the same definition is applied to each fea-
ture in the training set. In this way, observing Zm = 1 (resp.,
Zm = 0) represents an indicator of the poor outcome
(resp., good outcome) class in the sense that pm = P(Zm =
1|Y = 1) ≥ qm = P(Zm = 1|Y = 2). For all the features selected
in our signature we in fact have pm > 1/2 > qm.

After this procedure, the original G × N data matrix is
reduced to an M × N data matrix. The number of distinct
genes in a prognostic signature is obviously fewer than
2M. In our practice, there are always more than M distinct
genes among the top M gene pairs. Given that the num-
bers of genes in published breast cancer prognostic signa-
tures are mostly fewer than 100, we fix M = 200 in this
study to maker sure we can identify a prognostic feature
signature based on a reasonable number of genes.

Likelihood ratio test
The classical likelihood ratio test (LRT) is a statistical pro-
cedure for distinguishing between two hypotheses, each
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constraining the distribution of a random vector Z = {Z1,
Z2, ..., ZM}. In our case the variables Zm are the simple,
binary functions of the gene expression profile defined
above.

The LRT is based on the likelihood ratio

where z = {z1, z2, ..., zM}are the observed values in a new
sample. Notice that z assumes values in {0, 1}M, the set of
binary strings of length M. The LRT chooses hypothesis Y
= 1 if LR(z) > t and chooses Y = 2 otherwise, i.e., if LR(z) ≤
t. The threshold t is adjusted to provide a desired tradeoff
between type I error and type II error, i.e., between sensi-
tivity and specificity. Choosing t small provides high sen-
sitivity at the expense of specificity and choosing t large
promotes the opposite effect.

Naive Bayes Classifier
In the special case in which the random variables Z1, ...,
ZM are binary (as here) and are assumed to be condition-
ally independent given Y, the LRT has a particularly sim-
ple form. It reduces to comparing a linear combination of
the variables to a threshold. Recall that pm = P(Zm = 1|Y =
1) and qm = P(Zm = 1|Y = 2), m = 1, 2, ..., M. In this case,

and a similar expression holds for P(z|Y = 2) with pm
replaced by qm.

It follows that

and consequently

The LRT then reduces to the form: Choose Y = 1 if

and choose Y = 2 otherwise, where

Since pm > qm, all these coefficients in Equation (4) are
positive and the decision rule in Equation (3) reduces to
weighted voting among the pair-wise comparisons: every
observed instance of zm = 1 is a vote for the poor outcome
class with weight λm. Moreover, under the two assump-
tions of i) conditional independence and ii) equal a priori
class probabilities (i.e., P(Y = 1) = P(Y = 2)), this is in fact
the Bayes classifier (which is optimal) for the threshold t
= 0.

Sensitivity vs. Specificity
Since our interest lies in high sensitivity at the expense of
specificity if necessary, we do not choose t = 0. Since we
want a very high likelihood of detecting the poor-out-
come class, we choose the threshold t to achieve high sen-
sitivity, defined to be above 90%. Let tα denote the
(largest) threshold achieving sensitivity 1 - α. That is, sup-
pose

(We explain how to estimate tα from the training data in
the next sections.) Then, from the Neyman-Pearson
lemma, we know that our decision rule achieves the max-
imum possible specificity at this level of sensitivity. More
precisely, this threshold maximizes

which is the probability of choosing good-outcome when
in fact good-outcome is the true hypothesis.

Of course this is only a theoretical guarantee and depends
very strongly on the conditional independence assump-
tion which is surely violated in practice; indeed, some
genes are common to several of the variables Zm. Still, the
LRT does provide a framework in which there are clearly
stated hypotheses under which specificity can be opti-
mized at a given sensitivity. Moreover, it provides a very
simple test and the parameters pm, qm are easily estimated
with available sample sizes. Most importantly, the deci-
sion procedure dictated by the LRT does indeed work well
on independent test data (see 'Results').

Signature identification and class prediction
In clinical practice, when selecting breast cancer patients
for adjuvant systemic therapy, it is of evident importance
to limit the number of poor-outcome patients assigned to
the good-outcome category. The conventional guidelines
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(e.g., St. Gallen and NIH) for breast cancer treatment usu-
ally call for at least 90% sensitivity and 10–30% specifi-
city. Therefore our objective in selecting the threshold t is
to maintain high sensitivity (~90%); the specificity is then
determined by the sample size and the information con-
tent in the features. In order to meet these criteria, we
employ k-fold cross-validation to estimate the threshold
which maximizes specificity at ~90% sensitivity for each
signature size for our likelihood ratio test.

The idea is to use k-fold cross validation to estimate the
sensitivity and specificity for each possible value of m = 5,
10, 15, ..., 200, (the number of features in the LRT) and t
= 1, 2, ..., 200 (the threshold in Equation (3)). For each
such m we then compute the specificity at the largest
threshold t(m) achieving at least 90% sensitivity; this
function is plotted in Figure 1. (Obtaining 90% sensitivity
can always be achieved by selecting a small enough
threshold.) Finally, we then choose the smallest value mopt
which (approximately) maximizes specificity; the thresh-
old is then topt = t(mopt). From Figure 1, we see that mopt =
80.

Specifically, the steps are as follows: 1) Divide the inte-
grated training data set into k disjoint subsets of approxi-
mately equal sample size; 2) Leave out one subset and
combine the other k-1 subsets to form a training set; 3)
Generate a feature list of M gene pairs ranked from most
to least discriminating according the score defined in
Equation (1) and compute the corresponding binary fea-
ture vector of length M for every training sample and every
left-out sample; 4) Starting from the top five features,
sequentially add five features at a time from the ranked
list, generating series of 40 feature signatures of sizes m =
5, 10, ..., 200; 5) For each signature in 4), classify the left-
out samples using the LRT in Equation (3) for each possi-
ble integer threshold t = 1, 2, ..., 200 and record the num-
bers of misclassified poor-outcome and misclassified
good-outcome samples; 6) Repeat steps 1)-5) exhaus-
tively for all k divisions into training and testing in step 1);
7) Calculate the sensitivity and specificity for the prognos-
tic LRT test for each of the 40 signatures, and keep only the
largest threshold for which the sensitivity exceeds 90%.
The optimal number of features, mopt, is the smallest
number which effectively maximizes specificity.

The final prognostic signature is the mopt top-ranked fea-
tures (gene pairs) generated from the original integrated
training set. The final prognostic test is the LRT with these
features and the corresponding threshold topt = t(mopt); this
is the classifier which is applied to the validation set and
yields the error rates reported in 'Results'.

Additional statistical analysis
We compute the odds ratio of our prognostic test for
developing distant metastases within five years between
the patients in the poor-outcome group and good-out-
come group as determined by LRT classifier. The p-values
associated with odds ratios are calculated by Fisher's exact
text. We also plot the Kaplan-Meier curve of the signature
on the independent test data with p-values calculated by
log-rank test. The Mantel-Cox estimation of hazard ratio
of distant metastases within five years for the signature is
also reported. All the statistical analyses are performed
using MATLAB.
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Additional file 1
Clustering of the training data. Shown is the heat map of the two-group 
(good- and poor-outcome) supervised clusters of the integrated training 
data for the 112 signature genes. Those genes which appear in multiple 
pairs among the 80 gene pairs in the signature will appear multiple times 
in the heat map. The total number of the rows is 160.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
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Additional file 2
Clustering of the test data. Shown is the heat map of the two-group (good- 
and poor-outcome) supervised clusters of the test data (Pawitan) for the 
112 signature genes. Those genes which appear in multiple pairs among 
the 80 gene pairs in the signature will appear multiple times in the heat 
map. The total number of the rows is 160.
Click here for file
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2105-9-125-S2.jpeg]

Additional file 3
The cell cycle pathway. Our signature genes which appear in the cell cycle 
pathway are shown in red.
Click here for file
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