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Pluripotent stem cells (PSCs) are defined by their potential to generate all cell types of an 

organism. The standard assay for pluripotency of murine PSCs is transmission of the cells 

through the germ line, but for human PSCs, researchers must depend on indirect methods 

such as differentiation into teratomas in immunodeficient mice. Here we report PluriTest, a 

robust open-access bioinformatic assay of pluripotency in human cells based on their gene 

expression profiles.

The current standard for demonstrating that human stem cells are pluripotent is based on 

their ability to generate a complex variety of tissues in tumors developed in 

immunodeficient mice. This teratoma assay is widely considered to be the most reliable and 
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informative assay for pluripotency in human cells1 and its use has significantly increased 

following the report of induction of pluripotency in somatic cells.2 However, the generation 

of teratomas is technically challenging, resource-intensive and primarily qualitative, is 

difficult to standardize, and there are conflicting reports about its value as a criterion for 

pluripotency.3 With the rapid increase in generation of pluripotent human cells, especially 

induced pluripotent stem cell (iPSC) lines, there is an urgent need for a cost effective, 

animal-free alternative to the teratoma assay for assessing pluripotency in human cells.4 The 

low cost and accessibility of microarray-based gene expression data sets makes transcription 

profiling an attractive alternative. We hypothesized that machine learning methods that are 

capable of delineating stem cell phenotypes5 based on microarray data could also predict the 

presence or absence of pluripotent features for unknown samples of cells.

We considerably expanded the gene expression database that we previously used for 

defining stem cell phenotypes5 to a much larger data set we term ‘Stem Cell Matrix-2’ 

(SCM2). The SCM2 database contains approximately 450 genome-wide transcriptional 

profiles from diverse stem cell preparations from multiple laboratories, differentiated cell 

types, and developing and adult human tissues (Supplementary Table 1). SCM2 contains 

expression profiles from 223 human embryonic stem cell (hESC) and 41 iPSC lines. We 

analysed the samples for SCM2 in a highly quality controlled pipeline, using Illumina 

microarrays. After appropriate transformation and normalization, we used non-negative 

matrix factorization (NMF) for dimension reduction and to identify unexpected patterns 

engrained in the datasets.6 NMF provides a systematic, unbiased approach to identify multi-

gene features, frequently termed ‘metagenes’ in gene- expression studies7, which can be 

used to characterize stem cell phenotypes.3

We then use the SCM2 database to assess pluripotency of an unknown, potentially 

pluripotent sample by comparison of a ‘query gene expression profile’ from the sample to 

data models derived from SCM2 (see Fig. 1a). Our goals are to not only provide a simple 

test for pluripotency, but also detailed information on features of the sample that deviate 

from typical, genomically normal pluripotent stem cell lines. The approach is based on two 

related classifiers, which use two differently constructed metagene models.

For the first classifier, termed the ‘Pluripotency Score’, we used all samples, pluripotent and 

non-pluripotent, to identify the metagenes that have the capability to separate pluripotent 

from non-pluripotent samples in SCM2 (Fig. 1b, Supplementary Figs. 2 and 3).5 The rank 

and number of metagenes were selected by identifying those that provided the largest 

distance between margins of known pluripotent and non-pluripotent samples in the training 

set (Fig. 1; Online Methods and Supplementary Fig. 4). The Pluripotency Score is a logistic 

regression model, thus enabling a probability-based choice between the two phenotypic 

classes.

The second classifier, termed the ‘Novelty Score’, measures the ability of an NMF model to 

approximate a given query gene expression profile (Online Methods).8 We compare the 

query sample to an NMF-reconstructed sample based on the well-characterized pluripotent 

stem cells in the SCM2 dataset and determine model fit and identify deviations from the 

expected gene expression patterns (Fig 1c–g).8 The Novelty Score detects technical as well 
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as biological variations in the data; to deemphasize the technical variation, we applied an 

exponential transformation to empirically weight biological over technical deviations from 

our model (see Online Methods.).

The combination of the Pluripotency Score and the Novelty Score enables the open-ended 

assessment of pluripotent features in a query sample when that sample is a novel kind of 

pluripotent stem cell. The first classifier reports to what degree a query sample contains a 

pluripotent signature, and the second reports on how much of the signal measured in a query 

sample can be explained by the normal PSC lines contained in the SCM2 (Supplementary 

Note 1 and Supplementary Fig. 1). The utility of the two-classifier approach is exemplified 

in a test analysis of germ cell tumor cell lines. These cells are pluripotent and resemble 

normal PSCs, but have genetic and epigenetic abnormalities.9 These cells have high 

Pluripotency Scores, as expected, but the Novelty Score indicates that they deviate from the 

normal PSCs in the SCM2 (Fig. 1 and Supplementary Fig. 2).

We tested the combined classification approach and communication framework, which we 

term ‘PluriTest’, using several independently generated test datasets containing pluripotent 

and non-pluripotent samples: Illumina WG6v15 (Fig. 1d), HT12v3 (Fig. 1e), and HT12v4 

(Fig. 1f) datasets generated in- house on our own microarray scanner and datasets that were 

generated in six different core facilities (Online Methods and Supplementary Table). We 

also used PluriTest to examine a recently published human transcriptome atlas based on 

Affymetrix U133A arrays (Fig. 1g).10

PluriTest predicted pluripotency with excellent sensitivity and specificity. We could set 

thresholds that could separate pluripotent from non-pluripotent samples in a HT12v3 test 

data sets with 98% sensitivity and 100% specificity (Fig. 1e and Supplementary Fig. 2) and 

could also distinguish germ cell tumor cell lines (orange, Fig. 1 d, e and g) and 

parthenogenetic stem cell lines (Fig 1e and f) from the bulk of pluripotent stem cells. A few 

pluripotent samples displayed unusually high novelty scores (Fig. 1e), indicating that these 

test samples should be further evaluated for epigenetic or genetic abnormalities or unwanted 

differentiation (Supplementary Fig. 1). For the most informative analysis, the query sample 

should be analyzed on the same platform as the training dataset (Illumina HT12), but 

acceptable results can be obtained with data from other platforms (Fig. 1f and 

Supplementary Fig. 3, Supplementary Note 2).

We demonstrated the performance of PluriTest on sets of query samples. hESC (SIVF014, 

SIVF011, SIVF042, Fisher42, WA01) and hiPSC (HDF51IPS12, HDF51IPS1) lines, which 

were part of the training dataset, group together and are separated from somatic samples 

(Fig. 2a). PluriTest also separates fully and partially reprogrammed iPSC lines (samples that 

were not included in the training datatset, Fig. 2b); partially reprogrammed cell lines cluster 

with non-pluripotent cells. We then applied PluriTest to samples from a neural 

differentiation time course that was also not used in the training dataset (Fig. 2c, d). WA09 

cells were differentiated into neural precursors and three biological replicates sampled at day 

0, day 3, day 6 and day 14 after neural induction. We observed that the Novelty Score 

changed after 3 days of differentiation, while the Pluripotency Score was still high at this 

time-point, whereas samples from later time points dropped out of the pluripotency space 
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and scored increasingly higher on the Novelty Score (Fig. 2c). In a mixing experiment in 

which we combined RNA samples from different time points (day 0 and day 14) at varying 

ratios, PluriTest could separate the differentially mixed samples (Fig. 2d).

The PluriTest is contained within a single R/Bioconductor open-source open-access 

workspace11 (Supplementary Data 1 and Supplementary Note 3) that also includes the 

SCM2 database-derived NMF models. To enable easy access to PluriTest, we programmed a 

Rich Internet Application (RIA) using Microsoft Silverlight4 and C# (accessible under: 

www.pluritest.org). The RIA automatically performs all data extraction and preprocessing 

steps after the upload of an unmodified microarray scanner output file. All data and results 

are stored securely in an MS-SQL database. We chose to use the binary microarray scanner 

output file (*.idat-file) as the most basic ‘stem cell query term’. After upload, the results of 

our PSC-prediction algorithm are reported back to the user via a web interface (Fig. 2 and 

Supplementary Fig. 5). PluriTest runs on every recent Apple and Windows computer and 

requires internet access and a local installation of the Silverlight4 plug-in. A typical online 

analysis with 12 samples takes less than 10 minutes including data upload (Supplementary 

Note 2).

In summary, we have demonstrated the general feasibility of a web-based prediction of stem 

cell properties.12 PluriTest breaks from the conventional marker-based approaches to assess 

pluripotency of human cells, which typically assay a small number of markers by methods 

such as RT-PCR. With the lowered cost of whole genome analysis, reduction of a gene 

expression profile to a few markers is no longer necessary. Using all of the expression 

information available provides much higher discriminatory power and the ability to identify 

deviations from known patterns that may lead to further insights into cellular phenotypes.

The PluriTest framework could be applied to any unbiased high-content dataset, such as 

global DNA methylation analysis or RNA-seq data, provided that there is sufficient 

representation of a defined target phenotype in the training data set. Our work suggests that 

it will be relatively straightforward to construct similar models of developmental pathways 

such as differentiation along the neural, endodermal or hematopoietic lineages. Such 

databases will inform further experimentation and may be applicable as a rapid method to 

quality control PSC-derived preparations for experimental and pre-clinical investigations.

Methods

Methods, supplementary information and any associated references are available in the 

Online Methods section of this paper.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A multidimensional data model for assessing pluripotent stem cells
A Schematic for PluriTest. (b–c) We constructed and optimized a multi-class classifier 

(Pluripotency Score, b, c) and a one-class classifier (Novelty Score, c) to distinguish 

pluripotent stem cells (PSC) from other cell types and tissues. In (b), we show pluripotent 

(red) and somatic samples (blue) in the training dataset as assessed with the Pluripotency 

Score and in (c) with both PluriTest scores. In (d–g), we plot Pluripotency Scores against 

Novelty Scores for test data set samples. The classifiers were tested against datasets 

generated on four different microarray platforms: Illumina WG6v1 (c, 177 samples)5, 
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HT12v3 (d, 498 samples), HT12v4 (e, 38 samples) and Affymetrix U133A (f, 5372 

samples)10). Samples for these datasets were independently generated (c and d) or curated 

from published studies (c, d, f). In d, the lines in the plot indicate empirically determined 

thresholds for defining normal pluripotent lines (see also Supplementary Fig. 2).

Müller et al. Page 7

Nat Methods. Author manuscript; available in PMC 2012 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Application of PluriTest
The graphs show the actual output of PluriTest. Pluripotency score is plotted against novelty 

score for the indicated samples. The background encodes an empirical density map 

indicating pluripotency (red) and novelty (blue). (a–c) PluriTest results for known 

pluripotent cells and somatic cells and tissues (a), for fully and partially reprogrammed iPSC 

lines (b), and for an hESC line (WA09) being differentiated into neural precursors, at the 

indicated time points. In (d) PluriTest was run on mixed samples of hESC and hESC-
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derived neural precursor RNA (day 0 and day 14 from c) at the indicated ratios. hESC, 

human embryonic stem cell, hiPSC, human induced pluripotent stem cell.
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