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AIMS
Using a model-based approach, the efavirenz steady-state pharmacokinetics in African children is characterized, quantifying
demographic and genotypic effects on the drug’s disposition. Simulations are also conducted allowing prediction of optimized
doses of efavirenz in this population.

METHODS
We modelled the steady-state population pharmacokinetics of efavirenz in Ugandan and Zambian children using nonlinear
mixed-effects modelling. Individual mid-dose efavirenz concentrations were derived and simulations explored genotype-based
dose optimization strategies.

RESULTS
A two-compartment model with absorption through transit compartments well described 2086 concentration-time points in 169
children. The combined effect of single nucleotide polymorphisms (SNPs) 516G>T and 983T>C explained 44.5% and 14.7% of the
variability in efavirenz clearance and bioavailability, respectively. The detected frequencies of composite CYP2B6 genotype were 0.33 for
516GG|983TT, 0.35 for 516GT|983TT, 0.06 for 516GG|983TC, 0.18 for 516TT|983TT, 0.07 516GT|983TC and 0.01 for 516GG|983CC.
The corresponding estimated clearance rates were 6.94, 4.90, 3.93, 1.92, 1.36, and 0.74 l h�1 for a 15.4 kg child andmedian (95%CI)
observed mid-dose concentrations 1.55 (0.51–2.94), 2.20 (0.97–4.40), 2.03 (1.19–4.53), 7.55 (2.40–14.74), 7.79 (3.66–24.59) and
18.22 (11.84–22.76) mg l�1, respectively. Simulations showed that wild-type individuals had exposures at the bottom of therapeutic
range, while slower metabolizers were overexposed.

CONCLUSIONS
Dosage guidelines for African children should take into consideration the combined effect of SNPs CYP2B6 516G>T and 983T>C.
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WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT
• High variability in efavirenz pharmacokinetics is largely contributed by SNPs in CYP2B6: 516G>T and 983T>C.
• SNP 983T>C is virtually absent in individuals of European ancestry.
• No previous studies quantified the effect of 983T>C on efavirenz clearance in children using a model-based approach or recom-
mended dose optimization strategies accounting for this SNP.

WHAT THIS STUDY ADDS
• We propose a model concomitantly accounting for effect of weight and CYP2B6 516G>T|983T>C variants in African children.
• Using the model we simulated and compared exposures in weight bands between CYP2B6metabolic subgroups and suggested
a dose optimization strategy adjusting for effect of both 516G>T and 983T>C.
Introduction

Efavirenz is a non-nucleoside reverse transcriptase inhibitor
(NNRTI) commonly used in first-line antiretroviral treatment
(ART) for HIV-1 infected adults and children over 3 years old
[1, 2]. Due to its ease of dosing (the long half-life allows once
daily administration), proven efficacy, ability to be used with
anti-TB drugs, and availability of cheap generic formulations,
it is especially widely used in Africa.

Suboptimal efavirenz exposures have previously been re-
lated to treatment failure and high concentrations to central
nervous system (CNS) side-effects [3, 4]. Numerous studies
reported very large between-subject variability (BSV) in
efavirenz pharmacokinetics (PK) [3, 5–7]. This variability is
attributed largely to single nucleotide polymorphisms (SNPs)
in the CYP2B6 gene which encodes the key metabolizing
enzyme. The loss-of-function polymorphism, 516G>T
(rs3745274) [4, 7–9] alters drug metabolism to the extent that
dose adjustment based on CYP2B6 516G>T genotype is cur-
rently under investigation in children [10, 11]. The propor-
tion of slow metabolizers varies among different
populations and is relatively high among black Africans
[4, 6, 8, 9, 12]. In addition, efavirenz concentrations are af-
fected by the functional polymorphisms CYP2B6 983T>C
(rs28399499) [8, 9], 785A>G (rs2279343) [13, 14] and
15582C>T (rs4803419) [8, 12], which are reported predom-
inantly in black African and African-American patients; by
polymorphisms involving its accessory pathways, including
CYP2A6, CYP3A4 and UGT [15–17]; and in genes coding
nuclear receptors CAR (NR1|3) and PXR (NR1|2), which
regulate enzyme expression [18, 19]. PK variability has also
been linked to several physiological and environmental
factors, such as sex [6, 13, 20], ethnicity [6, 21, 22],
formulation type [2, 23], concomitant food [2] or co-
medication (e.g. zidovudine [22], rifampicin and isoniazid
[7, 22, 24]), and adherence [25]. However, reports on these
effects have been to some extent contradictory and vary
between adults and children.

Several investigators have reported a high proportion of
subtherapeutic efavirenz concentrations in children,
highlighting the need for optimization of paediatric dosing
guidelines [26–28]. The aim of this analysis was therefore to
characterize the steady-state PK of efavirenz in the largest co-
hort of African children reported so far, quantifying demo-
graphic and genotypic effects on efavirenz disposition, and
thus allowing prediction of optimized doses of efavirenz in
this population.
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Methods
PK and other data from two studies in African children from
Uganda and Zambia were pooled together: CHAPAS-3 [29]
(Children with HIV in Africa – Pharmacokinetics and
Adherence/Acceptability of Simple antiretroviral regimens)
and ARROW [28, 30] (Anti-Retroviral Research for Watoto).
CHAPAS-3
Efavirenz was dosed once daily, either in the morning or at
night, following modified WHO 2010 guidelines (Table 4),
using a new paediatric double-scored 600 mg efavirenz tablet
(provided by Cipla Pharmaceuticals, India) that can be split
into two or three parts enabling administration of doses of
200, 300, 400 or 600 mg.

All included patients took part in sparse PK sampling on
clinic visits at weeks 6, 36, and every 24 weeks thereafter until
the end of the study. The self-reported time of the last dose
was recorded. Additional intensive PK sampling was con-
ducted in the first patients enrolled in each WHO weight
band at week 6 and in all patients who acquired tuberculosis
during the study (4–10 weeks after tuberculosis treatment ini-
tiation and again 4–10 weeks after tuberculosis treatment ces-
sation). Children in this intensive PK substudy were advised
to take efavirenz in themorning for 6 weeks prior to sampling
and the drug intake on the PK day was observed. Plasma was
separated and stored at �80°C until transportation on dry
ice for drug concentration assay.

Plasma efavirenz concentrations from the intensive PK
were assayed using ultra high-performance liquid chromatog-
raphy (HPLC) at the Department of Clinical Pharmacy of
Radboud University Nijmegen Medical Centre, Nijmegen,
the Netherlands. The method produced linear results over
the range of 0.0517 to 15.51 mg l�1. The lower limit of quan-
tification was 0.05 mg l�1. The intraassay and interassay coef-
ficients of variation (CV) were 1.01–5.31% and 0.1–1.63%,
respectively. Relative error of the method ranged from
97.7% to 104.5% [31]. Plasma efavirenz concentrations from
sparse PK were determined by liquid chromatography tan-
dem mass spectrometry (LC–MS/MS) in the Division of Clin-
ical Pharmacology, University of Cape Town, South Africa.
The method was accurate over the range of 0.0195–20mg l�1.
The lower limit of quantification was 0.0195 mg l�1. The
interassay CV and residual error (RE) were 3.59–5.78% and
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�2.57–0.92%, respectively, and the intraassay CV and RE
were 1.50–9.67% and �6.00–4.28%, respectively [32].

Both laboratories participate in international quality as-
surance and proficiency testing schemes and are expected to
have comparable standards, although no cross-validation
was performed for the assays. Systematic differences between
the labs and assays were tested as covariates in the PK model
(see Population pharmacokinetic analysis/Covariates).
Arrow
Efavirenz was dosed once-daily, either in the morning or at
night, according to modified WHO 2006 paediatric recom-
mendations. The tested formulations included 50, 100 and
200 mg capsules; and half or whole 600 mg tablets (provided
by the national ART programme in Uganda).

Children in a PK substudy [28] were sampled on two occa-
sions: 36 and 40 weeks after starting ART. Eligible children
were advised to take efavirenz in the morning for 4 weeks
prior to sampling and drug intake on the PK day was ob-
served. Samples were stored and assayed at the Department
of Clinical Pharmacy of Radboud University Nijmegen Medi-
cal Centre, Nijmegen using the same methods as described
above.

Genotyping
Genotyping was performed by allelic discrimination real-time
PCR assay on aDNAEngine Chromo4 system (Bio-Rad Laborato-
ries, Inc., Hercules, CA, USA). The PCR protocol involved an ini-
tial denaturation step at 95°C for 15min, followed by 50 cycles of
amplification at 95°C for 15 s and final annealing at 60°C for
1 min. TaqMan® Genotyping Master Mix and assays for
CYP2B6-516G>T (rs3745274, C_7817765_60), CYP2B6-
983T>C (rs28399499, C_60732328_20), CYP2B6-c.485-18C>T
(rs4803419; C_7817764_10), CYP2B6-499C>G (rs3826711,
C__27522377_10; ARROW patients only), CYP3A4*22
(rs35599367, C__59013445_10), CYP3A5-6986G>A (rs776746,
C__59013445_10), NR1I3 (rs3003596, C__16194070_10;
rs2307424, C__25746794_20), NR1I2-63396C>T (rs2472677,
C__26079845_10) were obtained from Life Technologies Ltd
(Paisley, Renfrewshire, UK). CYP2B6*4 (785A>G, rs2279343)
and CYP2B6*29 copy number assay were performed on samples
from ARROW study only using previously described custom
TaqMan assays [33, 34]. Opticon Monitor® version 3.1 (Bio-Rad
Laboratories, Inc., Hercules, CA, USA) was used to obtain allelic
discrimination plots and make allele calls. The assays were per-
formed at the Department of Molecular and Clinical Pharmacol-
ogy, University of Liverpool, Liverpool, UK.

The distribution of the genotypes was evaluated for com-
pliance with Hardy–Weinberg equilibrium using the exact
test conducted using R-package “genetics” [35].

Population pharmacokinetic analysis
Model building. The steady-state efavirenz PK was analysed
using nonlinear mixed-effects modelling with software
NONMEM VII (version 7.3) [36] and the first-order
conditional estimation method with interaction. PsN 4.4.0,
Pirana and Xpose were used to facilitate modelling and for
model diagnostics [37]. The model was developed and
validated in accordance with standard methods described in
the literature [38]. For the structural model, one-, two-, and
three-compartment models with first-order absorption and
elimination were tested, as well as time lag or transit-
compartment absorption [39] and hepatic first-pass model
[40]. Between-subject and -occasion variability (BSV, BOV)
were tested on PK parameters assuming lognormal
distribution. Residual unexplained variability (RUV) was
tested using a combined proportional and additive error.
Data below level of quantification (BLQ) were included in
the analysis by imputing half of the lower limit of
quantification (LLOQ) of the corresponding assay as
suggested in Beal et al. (M6 method) [41]. Implausible
samples and PK profiles were identified using extreme
values of CWRESI and their exclusion was evaluated based
on visual checks.

Model development and covariate selection was guided
by the NONMEM objective function value (OFV), inspection
of goodness-of-fit (GOF) plots and visual predictive checks
(VPCs), biological plausibility and clinical relevance. OFV
(proportional to �2 log-likelihood of the data) was assumed
to be χ2-distributed and a drop of 3.84 or more between two
hierarchical models after inclusion of one additional parame-
ter (df = 1) was considered a significant improvement
(P = 0.05). Stability and robustness of the final model, to-
gether with precision of its parameter estimates, was evalu-
ated through a nonparametric bootstrap (n = 200).

Intensive and sparse data were included in the model de-
velopment process in a stepwise manner as suggested in
Svensson et al. [42], starting with intensive PK data from
CHAPAS-3, followed by the intensive data from ARROW,
and finally the sparse PK data from CHAPAS-3.

The model-derived empirical Bayesian estimates for the
individual parameters were used to predict steady-state mid-
dose concentrations (measures 12 h after dose) for each sam-
pling occasion and patient.

Covariates. Allometric scaling was added to the model at an
early development stage as previously suggested [43]. The
effect of maturation of metabolic pathways on PK
parameters was tested using post-menstrual age (gestation-
adjusted age) as a predictor. Both a power function or a
sigmoidal model with and without Hill coefficient were
tested [43]. Besides weight and age, the other covariates
tested were: tuberculosis co-treatment, study site,
nucleoside reverse transcriptase inhibitor (NRTI) backbone,
sex, weight-for-age Z-score (WAZ) and height-for-age Z-score
(HAZ), drug formulation, the effect of splitting tablets used
in CHAPAS-3 (inferred from total daily dose) and genotype
information (SNPs listed above). The potential differences
between assays and lab procedures for the quantification of
drug concentrations were tested in the model as
proportionality and correction factors on RUV.

Missing genotype values were imputed using mixture
modelling with frequencies fixed to those observed in the rest
of the cohort as previously suggested by Keizer et al. [44].

Simulations. The final model was used to simulate exposures
after administration of efavirenz with the formulation given
in CHAPAS-3 and using a dataset of subjects with a uniform
distribution of weights ranging from 10 to 40 kg, in 0.1 kg
Br J Clin Pharmacol (2016) 82 185–198 187
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steps (300 individuals simulated 100 times). Several dosing
strategies were explored. To avoid generating implausibly
extreme values, the maximum variability for each random
effect was limited to three standard deviations. Data were
analysed and plots generated using R [35].
Results

Demographic results and samples
This analysis included data from 128 children from CHAPAS-
3 and 41 children from ARROW. Relevant subject characteris-
tics including the genotype frequencies for the tested SNPs
are presented in Table 1. All tested genotypes were in
Hardy–Weinberg equilibrium (HWE). For SNPs rs35599367,
rs3826711 and CYP2B6*29, all patients were homozygous
for the common allele and HWE was not calculated. The
genotype information was missing for five children from
ARROW and two from CHAPAS-3, who were assigned by the
mixture model as follows: two as 516GG|983TT, four as
516GT|983TT, and one as 516TT|983TT.

From CHAPAS-3, 61 intensively sampled PK profiles (a total
of 474 samples) and 510 sparse PK profiles (1002 samples, 1–2
per occasion) were available. The PK data were collected from
6 weeks after starting efavirenz up to a maximum of 132 weeks.
There were up to 7 PK sampling visits per child. Of 14 children
who acquired tuberculosis, nine had at least one intensively
sampled PK profile on efavirenz with tuberculosis treatment.
The only BLQ measurement from intensive PK substudy was a
pre-dose measurement and all eight samples from that PK visit
for that patient were excluded from the analysis as it was
deemed likely not to be in steady state due to poor adherence.
Within the sparse data, 15 samples were BLQ andwere included
by imputing half LLOQ, i.e. 0.00975 mg l�1. From the ARROW
study, 611 intensive PK samples from 82 PK visits (two visits
per patient) were available. Data from one visit were discarded
due to an implausible PK profile, possibly caused by mismatch
of samples. No samples were BLQ.

Population pharmacokinetics
The data were best described using a two-compartment model
with first-order elimination and transit compartment absorption
[39]. Final parameter estimates, their precision (obtained through
a bootstrap) and statistical significance for the inclusionof the co-
variate and random effects (based on drop in OFV) are presented
in Table 2. The PK parameters were estimated relative to oral
bioavailability whose typical value was fixed to one due to lack
of intravenous data. Adequate fit of the model was confirmed
by a GOF plot and VPC (see Supplementary Figures S1 and S2).

The effect of body size on all clearance and volume parame-
ters was accounted for using allometric scaling, which signifi-
cantly improved model fit (18-point drop in OFV) [43]. No
effect of age on the maturation of clearance could be detected.
After adjusting for body size, the main predictor of clearance
was the effect of CYP2B6 genotype, categorized into six sub-
groups based on the combined effect of 516G>T and 983T>C
SNP variants present in our population (Tables 2, 3).CYP2B6 ge-
notype explained 44.5% and 14.7% of BSV in clearance and oral
bioavailability respectively. Exclusion of individuals with miss-
ing genotype did not have a significant effect on final results.
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The absorption rate constant (ka) and the absorption
mean transit time (MTT) were 1.6-fold larger and 1.4 times
longer in ARROW compared with CHAPAS-3. Splitting of
the new double-scored efavirenz tablets used in CHAPAS-3
was not found to affect efavirenz bioavailability. No other
covariate (see Methods) was found to significantly improve
the model fit. We did not detect any systematic differences
between the assays and labs employed in the analysis.

The model fit was markedly improved by inclusion of a cor-
rection parameter to allow for larger residual unexplained vari-
ability for all samples obtained after self-recorded efavirenz
intake. This includes all predose intensive PK samples and all
the sparse PK samples from CHAPAS-3. The residual variability
for those samples was twice as large as in the rest of the data.
Simulations
Simulations were performed to predict exposures in African
children based on their weight and genotype, when dosed ac-
cording to the regimen used in CHAPAS-3. Median mid-dose
concentrations were comparable across weight bands but no-
ticeable differences were observed between the CYP2B6 geno-
type subgroups (Figure 1, Table 3).

A dose optimization strategy for African children was de-
vised by categorizing subjects into four phenotypic sub-
groups based on their composite genotype vector 516G>T|
986T>C, similarly to Dooley et al. [32] (presented in Table 3).
The proposed dose adjustment between metabolic sub-
groups is based on optimal ratios of 1:0.66:0.33:0.1 for EM:
IM:SM:USM (extensive, intermediate, slow and ultra-slow
metabolizers), respectively, and is outlined in Table 4.

The predicted exposures based on the suggested dose-
optimization algorithm are presented in Figure 2 and
Supplementary Table S1. The suggested dosing approach
ensured adequate drug exposure in all simulated weight
bands (Figure 2, left panel), and reduced the differences due
to metabolic status (Figure 2, right panel).
Discussion
Efavirenz pharmacokinetics in Africans has previously been
shown to be affected by the combined effect of SNPs
516G>T and 983T>C [8, 12, 14, 17, 32]. The current investi-
gation confirms those findings and is the first analysis to
quantify the effect of the CYP2B6 516G>T|983T>C SNP vec-
tor on efavirenz clearance in African children using nonlinear
mixed-effects modelling. The use ofmodelling provides a tool
to concomitantly account for multiple effects such as geno-
type and weight, and a platform to derive a dose adjustment
strategy based on these effects.

Numerous studies in adults and children have reported a
significant effect of CYP2B6 516G>T on efavirenz clearance.
Our analysis shows that presence of one variant allele in
516G>T causes clearance to drop by 34%, while the
reduction reaches 72% for homozygous mutants, which is
in line with previously reported reductions of 20–47% and
58–80%, respectively [13, 20, 24, 26, 45–47]. Our findings
also show that the effect of SNP 516G>T is significantly mod-
ified by the 983T>C (i.e. in wild type 516G>T individuals
presence of a single variant allele in 983T>C causes a 43%



Table 1
Demographic characteristics

Characteristics

ARROW CHAPAS-3

CombinediPK iPK sPK

No. of children* 41 51 128 169

No. of samples 611 474 1002 2087

Sampling schedule 0 h, 1 h, 2 h, 4 h, 6 h, 8 h, 12 h, 24 h 2 samples 2 h apart

No. of samples excluded 9 8 5 22

Age (years)** 7.6 (4.0–12.5) 4.5 (2.1–13.8) 4.7 (2.1–13.8)

Weight (kg)** 20.0 (14.0–30.0) 15.0 (7.8–29.9) 15.5 (7.8–30.0)

Sex (M/F) 17/24 63/65 80/89

Race Black African

CYP2B6 516GT (rs3745274; HWE P = 1)†

GG 16 (44%) 49 (39%) 65 (40%)

GT 14 (39%) 53 (42%) 67 (41%)

TT 6 (17%) 24 (19%) 30 (19%)

MAF 0.36 0.40 0.39

CYP2B6 983T>C (rs28399499; HWE P = 0.6)†

TT 33 (92%) 106 (84%) 139 (86%)

TC 3 (8%) 19 (15%) 22 (14%)

CC 0 (0%) 1 (1%) 1 (1%)

MAF 0.04 0.08 0.07

CYP2B6 15582C>T (rs4803419; HWE P = 1)†

CC 32 (89%) 113 (90%) 145 (90%)

TC 4 (11%) 13 (10%) 17 (10%)

MAF 0.06 0.05 0.05

CYP3A4*22 (rs35599367)†

GG 36 (100%) 126 (100%) 162 (100%)

CYP3A5 6986G>A (rs776746; HWE P = 0.57)†

GG 1 (3%) 2 (2%) 3 (2%)

GA 7 (19%) 41 (33%) 48 (30%)

AA 28 (78%) 83 (66%) 111 (69%)

MAF 0.12 0.18 0.17

NR1I3 (rs3003596; HWE P = 0.34)†

AA 7 (19%) 30 (24%) 37 (23%)

AG 18 (50%) 55 (44%) 73 (45%)

GG 11 (31%) 41 (33%) 52 (32%)

MAF 0.46 0.46 0.46

NR1I3 540 C>T (rs2307424; HWE P = 1)†

TT 0 1 (1%) 1 (1%)

(Continues)
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Table 1
(Continued)

Characteristics

ARROW CHAPAS-3

CombinediPK iPK sPK

CT 3 (8%) 23 (18%) 26 (16%)

CC 33 (92%) 102 (81%) 135 (83%)

MAF 0.04 0.10 0.09

NR1I2 63396C>T (rs2472677; HWE P = 0.07)†

CC 13 (36%) 43 (34%) 56 (35%)

CT 16 (44%) 72 (57%) 88 (54%)

TT 7 (19%) 11 (9%) 18 (11%)

MAF 0.42 0.37 0.38

CYP2B6*4 785A>G (rs2279343; HWE P = 0.47)‡

AA 16 (44%)

AG 14 (39%) not tested

GG 6 (17%)

MAF 0.36

CYP2B6 499C>G (rs3826711)‡

CC 36 (100%) not tested

CYP2B6*29‡

*1/*1 36 (100%) not tested

Data are median (range) or no. (%) of subjects. *51 children in the CHAPAS-3 study who underwent both intensive and sparse sampling are counted
in both categories. **Baseline values. †162 pts from both CHAPAS-3 and ARROW studies. ‡36 pts from ARROW study. HWE, Hardy–Weinberg
equilibrium; iPK, intensive sampling; MAF, minor allele frequency; sPK, sparse sampling.
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drop in clearance and 89% if no functional allele is present),
confirming associations found by Holzinger et al. [8] and in
a number of African studies [12, 14, 32]. This polymorphism
is virtually absent in individuals of European ancestry [8, 9]
and was not detected in a study of Cambodian patients [24].
The combined effect of the CYP2B6 516G>T|983T>C SNP
vector on efavirenz clearance has previously been reported
distinguishing four phenotypic subgroups [32]. In our study,
we were able to further characterize this effect using six
CYP2B6 516G>T|983T>C SNP variants. Similarly to previous
reports we show that, despite its low prevalence, SNP 983T>C
is not only a significant predictor of efavirenz clearance, but it
is responsible for a larger drop inmetabolic rate than 516G>T
(i.e. 29% drop in clearance in 516G>T heterozygote vs. 43%
drop in 983T>C heterozygote, when no other polymor-
phisms were present) [8, 12]. No further significant genetic
associations were detected.

A genome-wide association study by Holzinger et al. identi-
fied rs4803419 as another significant polymorphism in CYP2B6
affecting efavirenz clearance [8]. The effect of SNP rs4803419
becomes significant only for homozygousmutants who are wild
type for 516G>T and983T>Candno such variantswere present
in our population. Although this finding was recently replicated
in South African patients, the investigators concluded this effect
was negligible in comparison to 516G>T and 983T>C [12].
190 Br J Clin Pharmacol (2016) 82 185–198
Results from the simulations (Figure 1) showed that, even
though the dosage guidelines tested in CHAPAS-3 result in
average mid-dose concentrations within target range of 1.0–
4.0 mg l�1 [3], the effect of CYP2B6 genotype leads to large dif-
ferences within each weight band. In particular, children with
slower CYP2B6 genotypes (516GG|983CC, 516GT|983TC and
516TT|983TT) were overexposed, while the fastest metabolizers
(516GG|983TT) achieved exposures at the bottom of the
therapeutic range. Over 20% of children in the study with the
516GG|983TT genotype had efavirenz concentrations below
the proposed minimum target concentration of 1.0 mg l�1

(Table 3). Moreover, our model indicates that disregarding the
effect of the 983T>C SNP and basing dose optimization only
on 516G>T could lead to exposures significantly higher than
the therapeutic range [3] in ~14% of African patients with
983TCor 983CCgenotypes (Table 3 in green). This suggests that
genotype-based dose optimization in African children should
take into account both 516G>T and 983T>C SNPs.

The only available guidelines on genotype-adjusted pae-
diatric dosage were recently formulated for patients under
3 years of age by the Panel on Antiretroviral Guidelines for
Adults and Adolescents and are currently being tested in the
IMPAACT study P1070 [10, 11]. The dose-adjusted strategy
was developed based on results of an analysis by Salem et al.
[23] and preliminary results of IMPAACT P1070 [48] and



Table 2
Final parameter estimates (5th and 95th percentile)*

Fixed Effects (THETA) P-value†

BIO 1 (FIXED)

NN (number) 25.0 (17.7-35.1)

MTT (h)

CHAPAS-3 0.82 (0.69-0.96) P<0.001 (dOFV = 21.4, df = 1)

ARROW 1.17 (1.02-1.37)

Ka (1/h)

CHAPAS-3 0.79 (0.37-0.95) P<0.001 (dOFV = 37.9, df = 1)

ARROW 1.27 (0.90-1.62)

CL (l h�1)

516GG|983TT 6.94 (6.47-7.61) P<0.001 (dOFV = 154.7, df = 5)

516GG|983TC 3.93 (2.61-5.65)

516GG|983CC 0.74 (0.72-0.75)

516GT|983TT 4.90 (4.40-5.46)

516GT|983TC 1.36 (0.97-1.76)

516TT|983TT 1.92 (1.52-2.33)

Vc (l) 64.1 (49.1-73.3)

Q (l h�1) 17.1 (14.1-20.9)

Vp (l) 92.2 (80.1-112.7)

Random Effects (ETA)** P-value†

BSVBIO 42.2% (31.3%-50.8%) P<0.001 (dOFV = 19.7, df = 1)

BOVBIO 50.5% (42.3%-55.9%) P<0.001 (dOFV = 304.3, df = 1)

BOVMTT 78.0% (71.5%-96.1%) P<0.001 (dOFV = 443.3, df = 1)

BOVKA 57.7% (45.5%-69.0%) P<0.001 (dOFV = 96.7, df = 1)

BSVCL 36.9% (24.9%-45.6%) P<0.001 (dOFV = 64.2, df = 1)

BOVCL 26.6% (18.9%-35.4%) P<0.001 (dOFV = 26.9, df = 1)

Error model (SIGMA) P-value†

Additive error (mg l�1) 0.101 (0.067-0.131) P<0.001 (dOFV = 199.2, df = 1)

Proportional error (%) 6.72 (5.20-7.90) P<0.001 (dOFV = 678.5, df = 1)

Increased error for sparse data 2x (1.7x �2.5x) P<0.001 (dOFV = 17.7, df = 1)

Final parameter estimates are typical population values estimated by the model. All clearance and volume parameters scaled allometrically to median
weight of 15.4 kg. *Estimated from nonparametric bootstrap (n = 200) of the final model. **Expressed as approximate %CV on SD scale

ffiffiffiffiffiffiffiffiffiffi
ETA

p
*100

� �
.

†Change in the objective function value after elimination of the parameter from the final model (dOFV> 10.83 corresponds to P< 0.001). BOVBIO,
between occasion variability in bioavailability; BOVCL, between occasion variability in clearance; BOVMTT, between occasion variability in medium
transit time; BOVKA, between occasion variability in absorption rate constant; BSVBIO, between subject variability in bioavailability; BSVCL, between
subject variability in clearance; CL, clearance; BIO, bioavailability; Ka, absorption rate constant; MTT, mean transit time; NN, number of transit
compartments; Q, inter-compartmental clearance; Vc, volume of central compartment; Vp, volume of peripheral compartment.

Efavirenz pharmacogenomics in African children
proposed different dosing for individuals with 516GG or
516GT genotype versus 516TT. In contrast to previous paedi-
atric studies [46, 49], Salem et al. did not detect significant differ-
ences in clearance rate between patients with 516GG and
516GT genotypes, and the effect of 983T>C was not evaluated.
Their findings might differ from the current investigation for
several reasons: the study by Salem et al. included a smaller
number of patients, the lowest age of participants was only
2 months, the tested population comprised patients of various
races and the formulations included capsules and liquid. Ac-
cording to simulations from the current model, direct applica-
tion of that strategy in African children could result in
Br J Clin Pharmacol (2016) 82 185–198 191
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Figure 1
Individual mid-dose concentrations estimated by the population pharmacokinetic model (black dots) plotted on top of the mid-dose concentra-
tions (percentile plots) simulated across weight-bands (left) and by different CYP2B6 516GT|983TC subgroups (right). Red horizontal lines corre-
spond to efavirenz concentrations of 1 mg l�1 and 4 mg l�1 [3]. Breaks in the percentile plot correspond to 25th, median and 75th percentile and
whiskers correspond to 5th and 95th percentile of the simulated data. CYP2B6 ( ) 516GG|983TT; ( ) 516GG|983TC; ( ) 516GG|983CC;
( ) 516GT|983TT; ( ) 516GT|983TC; ( ) 516TT|983TT

Table 4
Dosage tested in CHAPAS-3 vs. proposed genotype adjusted dose optimization

CHAPAS-3 Based on 516GT|986TC

Weight
(kg) Dose

Weight
(kg)

EM IM SM USM

1 0.66 0.33 0.1

10–13.9 200 10–13.9 300 200 100 50

14–19.9 300 14–19.9 400 300 150 50

20–24.9 400 20–24.9 600 400 200 100

25–29.9 400 25–29.9 600 400 200 100

30–39.9 400 30–39.9 600 400 200 100

EM (extensive metabolizers), 516GG|983TT; IM (intermediate metabolizers), 516GG|983TC or 516GT|983TT; SM (slow metabolizers), 516TT|983TT or
516GT|983TC; USM (ultra-slow metabolizers), 516GG|983CC [32]. The dose recommendations were rounded to the nearest full entity of currently
available formulations (50 mg capsule, 100 mg capsule and 600 mg double scored tablets allowing doses of 200 mg, 300 mg, 400 mg and 600 mg).

Efavirenz pharmacogenomics in African children
exposures above the therapeutic range [3] in a large proportion
of patientswho are either heterozygous for 516G>T orwild type
with 983TC or 983CC genotypes (Figure 3).

Our recommendations were simplified to the previously
described fourmetabolic subgroups determined by the compos-
ite genotype vector 516G>T|983T>C outlined in Table 3 [32].
The clearance between EM:IM:SM:USM drops as follows:
1:0.6:0.24:0.1, which is remarkably similar to the ratios
detected by Dooley et al. in African adults (1:0.6:0.26:0.08, re-
spectively) [32]. Our dosage algorithm presented in Table 4
(1:0.66:0.33:0.1) was adjusted to maximize the use of currently
available solid formulations. A similar dose adjustment pattern
(1:0.66:0.33) was previously successfully implemented based
on phenotypic differences in an adult study byMello et al. [50].

The results of the few dose reduction studies guided by
CYP2B6 genotype conducted in developed countries
highlighted improved treatment tolerability and cost-
effectiveness in adults [50–53]. These results were confirmed
by recent cost-effectiveness analysis of this practice in Amer-
ican adults [54]. It could be speculated that in resource-
limited settings, cost and logistical challenges would make
implementation of such practice difficult. Nonetheless, de-
creasing price and broader availability of genotyping technol-
ogy and economic development open future scenarios in
which genotype-based dosing approaches may be economi-
cally viable and beneficial even in developing countries. The
IMPAACT P1070 study, which is currently being conducted
in HIV-infected infants and children, should give more in-
sight into the practical implications of genotyping in low-
and middle-income countries.

Similarly to previous paediatric studies, the average clear-
ance value (before inclusion of genotype effect) was higher than
Br J Clin Pharmacol (2016) 82 185–198 193



Figure 2
Simulated mid-dose concentrations across weight-bands (left) and by different 516GT|983TC genotypes (right) based on suggested most
optimal dosing. Red horizontal lines correspond to efavirenz concentrations of 1 mg l�1 and 4 mg l�1 [3]. Breaks in the percentile plot correspond
to 25th, median and 75th percentile and whiskers correspond to 5th and 95th percentile of the simulated data. CYP2B6 ( ) 516GG|983TT;
( ) 516GG|983TC; ( ) 516GG|983CC; ( ) 516GT|983TT; ( ) 516GT|983TC; ( ) 516TT|983TT

A. Bienczak et al.
findings in adults: 14.34 L h�1 vs. 7.5 to 11.7 L h�1 (both after
scaling with allometry up to 70 kg) [5, 21, 24, 45, 46]. This is
consistent with reports that clearance in children of age
1–4 years exceeds adult values [27, 46, 55]. In keeping with
previously published paediatric models, the effect of size on
clearance and volume was explained through allometric scaling
[23, 43, 46]. Unlike Salem et al., we did not observe age-related
maturation of clearance, but the previous analysis showed that
90% of maturation was reached by the age of 9 months [23]
and the majority of patients in the current study were>3 years.

We detected significant differences in absorption parame-
ters between CHAPAS-3 and ARROW, possibly related to the
use of different formulations (tablets in the former and
mostly capsules in the latter). The formulations were
Figure 3
Simulated mid-dose concentrations across weight-bands (left) and by differe
tested in IMPACT study P1070 applied to our population. Red horizontal line
Breaks in the percentile plot correspond to 25th, median and 75th percentile
data. CYP2B6 ( ) 516GG|983TT; ( ) 516GG|983TC; ( ) 516GG|983CC

194 Br J Clin Pharmacol (2016) 82 185–198
assumed to be bioequivalent and indeed no formulation ef-
fect on bioavailability was detected.

Due to the availability of data from multiple sampling
occasions within the same patient, it was possible to charac-
terize both BSV and BOV in the PK parameters. Large BOV
was identified for absorption parameters and bioavailability.
Drug absorption is widely known to be a variable phenome-
non, depending on occasion-specific factors, such as food in-
take, gastric emptying times and GI tract pH. In the current
study, other factors may have contributed to inflating BOV
(in particular bioavailability), including differences between
actual and self-reported intake times for the sparse data, lack
of accurate intake history before the last dose, lack of infor-
mation on accompanying food consumption. The fact that
nt 516GT|983TC genotypes (right) based on dose recommendations
s correspond to efavirenz concentrations of 1 mg l�1 and 4mg l�1 [3].
and whiskers correspond to 5th and 95th percentile of the simulated
; ( ) 516GT|983TT; ( ) 516GT|983TC; ( ) 516TT|983TT



Efavirenz pharmacogenomics in African children
the information about intensively sampled occasions was
more accurate was accounted for with the introduction of a
scaling factor on residual unexplained variability (2-fold
larger for sparse data).

The current study had several limitations. As mentioned,
the dosage timing and food co-administration was not re-
corded beyond the last intake. Previous studies showed that
efavirenz PK was affected by adherence and food effects [2,
21, 25]. Polymorphisms in accessory pathways including
CYP2A6 and CYP3A4 or UGT were not assessed and the effect
of CYP2B6 785A>G was only evaluated in patients from the
ARROW study. Despite several reports suggesting that
efavirenz metabolism is affected by polymorphisms in those
pathways, the genome-wide association study by Holzinger
et al. showed that their effect was significantly less dramatic
than for 516G>T and 983T>C [8].

Furthermore, no PK/PD relationship was explored in this
analysis for either efficacy or toxicity, but currently accepted
therapeutic ranges were used as cut-offs guiding dose optimi-
zation. These targets were generated in an adult cohort and
have recently been brought into question, suggesting that
lower efavirenz concentrations might be sufficient to provide
viral suppression [17]; however, no alternative has been sug-
gested to date.

Lastly, our study was underpowered to determine the
effect of tuberculosis treatment on efavirenz concentrations,
but recent findings suggest that the inducing effect of rifam-
picin on clearance is counterbalanced by a concentration-
dependent inhibitory effect of isoniazid that could explain
contradictory conclusions from previous studies [7, 24, 32].
Conclusions
Our study suggests that genotype-adjusted efavirenz dosage
in African children should be based on the composite
516G>T|983T>C SNP vector, due to significant modification
of clearance rates caused by SNP 983T>C genotype, whose
prevalence in Africans is much higher than in other popula-
tions. Using nonlinear mixed-effects modelling, we quanti-
fied this effect and suggest that a dose optimization
algorithm 1:0.66:0.33:0.1 (EM:IM:SM:USM, respectively)
would provide more balanced drug exposures between indi-
viduals with a different metabolic status while maximizing
the potential of using the new double-scored efavirenz tablets
tested in the CHAPAS-3 study. The findings warrant further
studies evaluating the genotype-based dosing approach and
the feasibility of genotyping in resource-limited settings.
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Table S1 Simulated values of mid-dose concentrations ob-
tained after suggested dose optimization and proportions of
patients of less than 1 mg l�1, between 1 mg l�1 and 4 mg l�1,
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Figure S1 Goodness of fit plots. Top left, observations vs.
population predictions; top right, observations vs. individual
predictions; bottom left, conditional weighted residuals vs.
time after dose; bottom right, absolute values of individual
weighted residuals vs. individual predictions
Figure S2 Visual predictive check of the final model by
516GT|983TC SNP vector in semi-log scale. Hollow points,
observations; red solid line, median of observed data; red line
with breaks, 5th and 95th percentile of observed data; orange
fill area, 95% CI of simulated median; blue fill area, 95% CI of
simulated 5th and 95th percentile


