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Abstract: End stage renal disease (ESRD) is the last stage of chronic kidney disease that requires
dialysis or a kidney transplant to survive. Many studies reported a higher risk of mortality in
ESRD patients compared with patients without ESRD. In this paper, we develop a model to predict
postoperative complications, major cardiac event, for patients who underwent any type of surgery.
We compare several widely-used machine learning models through experiments with our collected
data yellow of size 3220, and achieved F1 score of 0.797 with the random forest model. Based on
experimental results, we found that features related to operation (e.g., anesthesia time, operation
time, crystal, and colloid) have the biggest impact on model performance, and also found the best
combination of features. We believe that this study will allow physicians to provide more appropriate
therapy to the ESRD patients by providing information on potential postoperative complications.

Keywords: postoperative complication; machine learning model; end stage renal disease; postopera-
tive complications; feature selection

1. Introduction

There have been many statistical studies aimed at discovering correlations or relation-
ships between certain factors (i.e., features, variables) and post-operative adverse outcomes
(e.g., mortality, respiratory failure). For example, Colin P. Dunn et al. conducted statistical
tests to compare risk assessment tools for predicting adverse cardiac events in kidney
transplant patients [1]. James P. Wick et al. proposed an assessment tool for predicting
6-month mortality after dialysis initiation [2]; they used a logistic regression (LR) model to
find potential variables associated with 6-month mortality. In [3], the surgical complexity
score was developed by checking the Area under the ROC Curve (AUC) with various
settings of the LR model. Yue Li et al. found risk factors of post-operative cardiopulmonary
complications by retrospective analysis of 653 lung-cancer surgery cases [4]. These studies
commonly utilized the LR model, but the LR model was used as a measuring tool, not a
predictor; in other words, their major contribution was to discover promising variables
(or features) related to adverse outcomes, and the LR model was used as a verification tool.
Some studies investigated first-hitting-time models for uncertainty analysis and clinical
purposes (e.g., estimated time to infection for burn patients) [5,6]. As described in [7],
although these statistical studies uncovered a large amount of useful information, they are
still practically limited because they are not suitable for developing real-world applications
(e.g., forecasting post-operative outcomes).

End stage renal disease (ESRD) is a loss of renal function for 3 or more months, and
is the last stage of chronic kidney disease that requires dialysis or a kidney transplant
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to survive. Most of these patients have multiple comorbidities including anemia, cardio-
vascular disease, and diabetes mellitus. Considering their severe comorbidities, patients
with ESRD have significantly high perioperative risks. Indeed, the literature consistently
demonstrated a higher risk of mortality in ESRD patients compared with patients without
ESRD, both in the cardiac and noncardiac perioperative periods [8–14]. Across various
types of noncardiac surgery, patients with chronic kidney disease had two- to tenfold higher
risks of postoperative death and cardiovascular events than those with normal kidney
function [15–18]. Additionally, these patients have difficulties in terms of management for
hemodynamic stability; this is because of their high morbidity and frailty. As such, the
prediction of postoperative complications is important regarding perioperative manage-
ment and reducing these complications. Methods to estimate individual risk are needed to
provide individualized care and manage ESRD populations. Many mortality prediction
models exist but they have shown deficiencies in model development (e.g., data compre-
hensiveness, validation) and in practicality. Therefore, we aim to design easy-to-apply
prediction models for postoperative complications in ESRD patients. Postoperative adverse
cardiac events are a major cause of morbidity and mortality in patients after non-cardiac
surgery [19,20]. Therefore, predicting the risk is important in reducing these complications.
The purpose of this study is to make a proper models for predicting postoperative major
cardiac event (MACE) in ESRD patients undergoing general anesthesia.

Data-driven models are used in many fields such as face recognition, intent prediction
of dialog systems, and speech recognition. The most widely-used data-driven models
are logistic regression (LR), support vector machine (SVM) [21], decision tree, random
forest (RF) [22], naive Bayes (NB), artificial neural network (ANN), and extreme gradient
boosting (XGB) [23]). These machine learning models learn from data and have shown
successful performance in various medical fields. For example, Katiuscha Merath et al.
predicted patient risk of post-operative complications (e.g., cardiac, stroke, wound dehis-
cence, etc.) using a decision tree, and achieved about 0.74∼0.98 C-statistics [24]. In [25],
ANN and LR models were used to predict post-operative complications (e.g., cardiac,
mortality, etc.), and achieved about 0.54∼0.84 AUC with a 95% confidence interval (CI).
Paul Thottakkara et al. compared four models (SVM, generalized additive model (GAM),
NB, and LR) for risk prediction of some post-operative complications (e.g., acute kidney
injury, severe sepsis) [26], and the SVM had the best results of 77.7∼85.0% accuracy with
95% CI. YiMing Chen et al. compared five models (SVM, RF, rotation forest (RoF), bayesian
network (BN), and NB) to predict post-operative complications (e.g., wound infection,
free flap infection, etc.), and found that the RF gave the best accuracy of 89.084% [27].
In [28], XGB was employed to predict complications after pediatric cardiac surgery and
achieved about 0.82 AUC. Christine K. Lee et al. designed a deep neural network (DNN),
which is an artificial neural network with many layers for prediction of post-operative
mortality [29]; the proposed DNN consists of 4 layers with 300 nodes followed by ReLU
activation functions [30]. In [31], to predict complications after bariatric surgery, the authors
used three deep learning models: deep neural networks, convolutional neural networks
(CNN) [32], and recurrent neural networks (RNN) [33]. Their dataset was extremely biased,
so the three networks exhibited very poor sensitivities (e.g., 0.06∼0.23). Surprisingly, a
recent study reported that using machine learning models were even more accurate than
human clinicians [34]. In this paper, we adopt various promising machine learning models
to predict postoperative MACE in ESRD patients undergoing general anesthesia.

Our contributions can be summarized as follows. First, as far as we know, this is the
first study to predict post-operative MACE in patients with ESRD using various machine
learning models. The machine learning models used in this paper are the most widely-
used models for various tasks (e.g., image analysis, speech recognition, text analysis, and
healthcare applications), so we compare the models experimentally and find the most
effective one. Second, we suggest carefully designed feature groups, and examine how
much impact each has on the performance. We implement a tool of natural language
processing (NLP) to extract informative clues from preanesthetic assessment documents
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written by clinicians before surgery. We also examine combinations of feature groups and
try feature selection algorithms. Note that the features are collected from several different
sources: devices (or sensors), electronic medical record (EMR), and documents. Therefore,
this study aims at applying machine learning techniques to data collected from different
sources to develop a medical application. We believe that the results of this study eventually
help physicians to make better medical decisions so that the survival rate of patients will
be increased.

2. Materials and Methods
2.1. Materials

This paper tackles the problem of predicting post-operative complications for patients
with end stage renal disease (ESRD). We focus on major adverse cardiac events (MACE),
making it a binary classification problem over two classes (MACE and Not-MACE). The
MACE class means that the patient suffered from MACE within one month (i.e., 30 days)
after any type of surgery. Other than the ESRD, we have no other conditions or constraints
for the patients, so it can be said that we predict the potential post-operative MACE of any
ESRD patients with any type of surgery.

This study was approved by the institutional review board of Soonchunhyang univer-
sity Seoul hospital (approval No. SCHUH 2020-03-031). We collected data from electronic
medical records (EMR) of the corresponding patients as well between the 1 March 2018
and 20 March 2020. The target patients are ESRD patients who underwent surgery under
general anesthesia. There were not any other constraints (e.g., surgery type, age, disease
history) of the patients. Data related to outcomes were obtained by submitting a batch data
request to the Korean National Statistical Office (Microdata Integrated Service, on-demand)
(https://mdis.kostat.go.kr) and electronic medical patient records. As depicted in Figure 1,
pre-operational data is gathered from an EMR database server and pre-anesthetic assess-
ment reports by the clinicians. Peri-operative data is obtained from the EMR database. Some
attributes (e.g., EF, PFT, electrolyte) are collected from devices or sensors such as Ultra-
sound, spirometry, blood gas analyzer, or blood chemistry device. These data are monitored
using attached devices or sensed using blood samples. We also collected preanesthetic
assessment documents written by clinicians right before entrance into the surgery room.

Figure 1. Input and output of the classifier.

2.2. Methods

The problem considered in this study is a binary classification. We adopt and compare
several machine-learning models as a binary classifier. As shown in Figure 1, for a given
patient, the machine-learning models commonly take a feature vector obtainable before
or during the operation and are trained to predict its potential label (e.g., 1 or 0). Once
we have a trained model, then the model analyzes the data for a new patient, helping
physicians by providing information on how likely post-operative MACE is.

https://mdis.kostat.go.kr
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2.2.1. Features

The input of the classification model is the integrated feature vector as represented
in the center of Figure 1. It is obtained by concatenating three features that came from
different sources: pre-op EMR features, peri-op features, and text features. The pre-op
EMR features include demographic values (e.g., height, weight, sex, age, body mass index
(BMI)), several pre-op evaluation results (e.g., EF, PFT), pre/post hemodialysis evaluations
(e.g., Na, K, Cl), and comorbidities (e.g., hypertension, atrial fibrillation). By preprocessing,
the categorical attribute ‘sex’ is converted into {0,1}1 where 0 and 1 represent male and
female, respectively. Multi-valued attribute ‘PFT’ (e.g., 3.63(100)-2.48(104)-68) is separated
into five smaller attributes (PFT1, PFT2, PFT3, PFT4, and PFT5 = [3.63, 100, 2.48, 104, 68]).
Every comorbidity is converted into a binary attribute; if a patient suffered from hyperten-
sion before, then a binary attribute of hypertension is represented by 1, otherwise 0. If a
particular attribute ‘A’ of the pre-op features has any missing values, then we define an
additional attribute ‘A_missing‘ to denote the value of ‘A’ is missing or not. The peri-op
features include anesthesia-related values (e.g., ASA, EM; emergency operation, anesthesia
method), and other operation-related values (e.g., anesthesia time, operation time, infusion
of crystalloid or colloid). Attribute ‘ASA’ is divided into two smaller attributes, ASA3 and
ASA4; if ASA3 is 1, then the ASA of the patient is 3. As our target patients are ESRD, all
patients were either of ASA3 or ASA4. The attribute ’anesthesia method’ is one of {volatile
anesthesia, total intravenous anesthesia (TIVA)}, so it is converted into {0,1}1 where 0 and 1
imply volatile and TIVA, respectively. We also define an additional attribute if there are any
missing values of a certain attribute of the peri-op features. The text features are generated
by applying natural language processing (NLP) techniques to preanesthetic assessment
documents, so it is obtainable before the operation.

The preanesthetic assessment is natural language text, so it is written without any
template and there can be different texts for the same content; this is mainly the result of
inconsistent usage of domain terms. For example, to denote ‘enlarged LA chamber size’,
different people may use different terms such as ‘LA enlargement’ and ‘LAE’. Note that
we need to extract features from the preanesthetic assessment document, and the features
can be divided into two categories: (1) binary features and (2) numerical features. Both
features are extracted through rule-based natural language processing; we design a set
of rules to extract and normalize some keywords and numerical representations. About
the binary features, we first define a set of target keywords as shown in Table 1, where
the sample terms include synonyms or several different terms for the same keyword. For
instance, the keyword ‘CAD’ may appear as different terms (e.g., CAD, coronary artery
disease, coronary artery dz, and coronary artery stenosis), so these terms are listed in
the sample terms. We design rules to detect these terms and normalize them to have the
consistent term ‘CAD’. If the terms of ‘CAD’ appeared together with its level (e.g., CV1D,
CV2D, CV3D), then it is regarded as a distinct keyword (e.g., CAD1, CAD2, CAD3). Given
a list of Kbinary keywords, we will have binary features of {0,1}Kbinary , where 1 implies the
corresponding keyword appears in the preanesthetic assessment, and 0 means it does not.
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Table 1. Target keywords of binary features.

Keyword Sample Terms

COPD asthma, bronchiectasis, emphysema
bedridden state bedridden

cardiac arrest c ROSC cardiac arrest, arrest, CPR
alcoholic hepatitis alcoholic liver disease

LC alcoholic liver cirrhosis, alcoholic LC, liver cirrhosis
IPF pul.Fibrosis, pulmonary fibrosis

Anemia IDA
MI Myocardial infarction, AMI, NSTEMI, STEMI
PCI coronary stent insertion, coronary stent, DES, BMS

Atherosclerosis -
DVT deep vein thrombosis

Carotid artery stenosis Carotid a. stenosis
Cerebral atherosclerosis -

ESRD on KT KT state, KT transplant state, Kidney transplant state,
ESRD s/p KT

hyperparathyroidism -
Fatty liver -

CAD
coronary artery disease, coronary artery dz, coronary
artery stenosis
levels: CV1D, CV2D, CV3D

Angina Angina pectoris, Angina s/p PCI, unstable angina, variant
angina

Depression MDD, Depressive disorder, Depressive episode
VPC PVC
APC PAC

Right heart failure right HF
CHF HF, heart failure, congestive heart failure

MR MVR, Mitral valve regurgitation, mitral regurgitation,
MV regurgitation

Pulmonary hypertension PH, Pul. HTN, Pulmonary HTN
Pulmonary embolism PTE, pulmonary thromboembolism

TR TVR, Tricuspid valve regurgitation, tricuspid regurgitation,
TV regurgitation

HTN hypertension
DM diabetes mellitus

Cancer ca.

CAG -
levels: C1VD, C2VD, C3VD, significant, normal

pneumonia -
atelectasis -
effusion -

cardiomegaly -
pulmonary edema -

consolidation -
ground glass opacity -

EKG -
PSVT -
VPC -
A. fib AF, atrial fibrillation

tachycardia -
bradycardia -

Hypertensive heart disease -
DCMP -
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Table 1. Cont.

Keyword Sample Terms

ICMP -
HHT -

AR AVR, Aortic valve regurgitation, Aortic regurgitation,
AV regurgitation

PAOD -
MVP MV prolapse

Diastolic dysfunction Pseudonormalization of LV filling pattern, E/A reverse,
E/A < 1, Increased DT, Relaxation Abnormality

Concentric LVH Concentric LV wall thickening, Concentric LV remodeling,
Concentric LV hypertrophy

Eccentric LVH Eccentric LV hypertrophy
HCMP Hypertropic cardiomyopathy, Hypertropic CMP

LAE Enlarged LA chamber size, LA enlargement, BAE

RAE right atrial enlargement, RA enlargement,
Enlarged RA chamber size

LVE Enlarged LV chamber size, LV enlargement

RVE RV enlargement, Enlarged RV chamber size,
Enlarged RA & RV chamber size

Ischemic Heart Disease IHD, CAD
Regional wall motion abnormality RWMA

LV systolic dysfunction LV dysfunction, hypokinesia, akinesia
RV dysfunction -

A-fib AF, atrial fibrillation
AS aortic valve stenosis, rheumatic AS
AR aortic regurgitation

MS mitral valve stenosis, rheumatic MS, degenerative MS
levels: mild, moderate, severe

uremic CMP -
IVC plethora -

pericardial effusion -
pleural effusion -

For the numerical features, we also prepare a list of keywords and design rules to
extract numerical values for the keywords. The list of numerical values are summarized in
Table 2; for example, we extract two numerical values (e.g., TFT fT4 = 1.66, TFT T3 = 1.01)
for the keyword ‘TFT’ which stands for thyroid gland function test. Note that this is the infor-
mation extraction task in the NLP field. We implemented this information extraction process
using a publicly available library ‘slotminer’ (https://github.com/bytecell/slotminer) that
was originally designed for rule-based temporal information extraction [35]. We designed
rules to detect and normalize the desired text patterns using the ‘slotminer’ library. If we ob-
tain the numerical features RKnumerical , this is concatenated with the binary features {0,1}Kbinary ;
we eventually have a Ktext (i.e., Knumerical + Kbinary) dimensional real-numbered vector.

Table 2. Numerical values extracted from texts, where the bold parts are samples to be extracted.

Keyword Sample

Glucose Glucose: 50
TFT TSH/fT4/T3 0.30(L)/1.66(N)/1.01(N) (04/03)

aBGA 7.48-39-101-29-98 (04/04)
EGFR 44 (11/15)

https://github.com/bytecell/slotminer
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Given the three features (e.g., pre-op EMR features RKpre , peri-op features RKperi , and
text features RKtext ), we get the integrated feature vector f ∈ RK by concatenating those
three features where K = Kpre + Kperi + Ktext. Some elements (e.g., Age, Glucose, Egfr) of
the integrated feature vector f are numerical and others (e.g., sex, COPD) are binary (i.e., 0
or 1). If a patient suffered from MACE within 30 days after the surgery, then its class label
is 1, otherwise 0. In the perspective of the classification model, the input is the integrated
feature vector f and the output is a scalar value t ∈ {0, 1}.

2.2.2. Models

We used several machine learning models: support vector machine (SVM), decision
tree, random forest (RF), Gaussian naive Bayes (GNB), artificial neural network (ANN),
logistic regression (LR), and extreme gradient boosting (XGB). SVM is known to be robust
to outliers because its decision boundary is determined using only support vectors. The
decision tree is simple and explainable, but is vulnerable to high variance. The random
forest is kind of a bagging-based ensemble method, where it is known to overcome the
limitations of high variance of decision trees without losing low bias. The Gaussian naive
Bayes uses a Gaussian distribution to compute the probabilities of continuous values. The
artificial neural network is a multi-layered perceptron that captures a high level of patterns
beneath the input values. Extreme gradient boosting is an ensemble method utilizing a
boosting algorithm, and is known to lower the variance and bias.

2.2.3. Feature Groups

Instead of simply taking all attributes of f as an input, we design several feature
groups, each of which is a subset of f , to examine which kind of features are more important.
The feature groups are determined based on where or when the attributes came from.
For example, as shown in Table 3, the demographic feature group includes basic patient
information obtainable from the EMR database before entrance into the surgery room.
The history feature group includes records about comorbidities from the EMR database
before entering the surgery room. The Electrolyte (pre&post hemodialysis) feature group
contains attributes of evaluation right before or after hemodialysis and is obtainable
before surgery room entrance. The text feature group includes attributes extracted from
the assessment documents as listed in Tables 1 and 2. This feature group also has an
additional binary feature ‘hasText’ that indicates whether there exists comments in the
assessment or not; if the assessment document is empty, then it is 0, otherwise 1. The
PreEval feature group includes results of pre-operational evaluation such as ejection fraction
(EF), pulmonary function test (PFT), rapid plasma reagin (RPR), blood urea nitrogen
(BUN), alanine aminotransferase (ALT), aspartate aminotransferase (AST), activated partial
thromboplastin time (aPTT), international normalized ratio (INR), prothrombin time (PT),
platelet (Plt), albumin (Alb), hematocrit (Hct), and hemoglobin (Hb). The Anesthesia feature
group is related to the anesthesia process; some of its attributes (e.g., ASA values) are
obtainable before surgery, but the others (e.g., method, EM) are determined during surgery.
The Operation feature group is obtained during the operation. The feature dimensions of
the above feature groups are 5, 32, 12, 77, 42, 4, and 4, respectively; so the total feature
dimension K = 176.

Other than the feature groups, we also adopt two feature selection algorithms: Re-
cursive Feature Elimination (RFE) and K-best. If we want to select K features, then the
RFE algorithm recursively eliminates non-promising features until K features remain. We
use the RF model as an estimator for the RFE algorithm. The K-best algorithm selects K
features according to scores computed using a particular function σ( f , c), where f indicates
an arbitrary feature and c is a label. We use chi-squared stats for the function σ. In the
experimental results of the next section, we exhibit the performance comparison between
different feature groups and selected features.
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Table 3. Feature groups.

Group Name Features (Attributes)

Demographic sex, age, weight, height, BMI

History

hypertension, artial fibrillation, coronary artery disease,
angina pectoris, myocardial infarction, congestive heart failure,
valvular heart disease, DCMP, asthma, COPD, GERD, hepatitis,
interstitial lung disease, liver cirrhosis, viral carrier,
fatty liver, HBV, HCV, alcoholic, autoimmune, acute kidney injury,
chronic kidney injury, diabetes mellitus (DM), HbA1c, thyroid disease,
myasthenia gravis, morbid obesity, epilepsy, cerebrovascular disease,
cerebral aneurysm, dementia

Electrolyte (pre&post HD) Na (pre), K (pre), Cl (pre), Na (post), K (post), Cl (post)

Text All binary & numerical values listed in Tables 1 and 2,
hasText

PreEval EF, PFT1, PFT2, PFT3, PFT4, PFT5, RPR, BUN, ALT, AST, aPTT,
INR, PT, Plt, Ca, P, Alb, Hct, Hb, AntiHBs, HBsAg

Anesthesia method, ASA3, ASA4, EM

Operation anesthesia time, operation time, crystal, colloid

3. Results

The total amount of data in the original dataset Dorigin is 3220. We found that the
Dorigin is highly imbalanced; the ratio of MACE versus Not-MACE was almost 1:10. To
settle this, we generated a balanced dataset by downsampling from Dorigin, so we got a
label ratio of 1:1 as a result. As the downsampling from Dorigin is performed randomly, we
prepared three independently downsampled datasets, Dbalanced1 , Dbalanced2 , and Dbalanced3 .
Each of the three datasets is further divided into three sets: training, validation, and test
sets, while approximately maintaining the balanced label ratio. The statistics of each dataset
are summarized in Table 4.

Table 4. Statistics of a sampled dataset.

# of Data

Total 586
Train 475

Validation 53
Test 58

We compared several machine learning models according to precision, recall, and
F1 score. The models are implemented using scikit-learn package (https://scikit-learn.
org/). Every model is trained using the training dataset, and its parameter is tuned using
the validation dataset. The parameter settings of Table 5 are found by grid searching,
which generally gave the best F1 score. The numerical attributes are scaled between 0
and 1, where the maximum and minimum values are extracted from the training dataset.
We performed three independent experiments using the three downsampled datasets.
Some machine learning models (e.g., ANN, RF) may give different results even if the
same data are given, because of the parameter initialization method or ensemble process
(e.g., random sampling).

Thus, we conducted 10 experiments for each of the sampled datasets (Dbalanced1 ,
Dbalanced2 , and Dbalanced3 ), and all results are thus a weighted average of 3× 10 experiments.

https://scikit-learn.org/
https://scikit-learn.org/
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Table 5. Parameter settings of machine learning models.

Model Setting

Decision tree - Criterion: Gini

Random forest - Number of estimators: 200
- Criterion: Gini

Extreme gradient boosting - Number of estimators: 200
- Criterion: Mean squared error

Support vector machine - Kernel: RBF
- C: 1.0

Gaussian naive bayes - Smoothing with 10−9

Artificial neural network

- Hidden layers: (100, 50, 25)
- Activation functino: ReLu [30]

- Solver: Adam [36]
- Maximum # of iterations: 1000

In Figure 2, F1 scores using the machine learning models with feature groups are
depicted as a surface chart, where the scores are distributed between about 0.4∼0.65.
It turned out that the Operation feature group is the most important among the feature
groups, and the random forest (RF) achieved the best F1 score of 0.684 with this feature
group. On the other hand, the Demographic feature group generally turned out to be the
worst feature group, as about half of the machine learning models gave low scores (e.g.,
lower than 0.45). The random forest (RF) was generally the best with almost all feature
groups, and its F1 score ranged between 0.539 and 0.684.

Figure 2. F1 scores using machine learning models with feature groups, where the vertical axis
indicates scores.

We tried several combinations of feature groups as shown in Table 6. We can inter-
pret the results from two perspectives: the perspective of feature combinations and the
model-wise perspective. In terms of the feature combination perspective, we found that
a combination of feature groups is much better than a single feature group. For exam-
ple, the Demographic feature group alone was the worst among the feature groups, but
using it with the Electrolyte feature group improved the F1 score about 0.7. We also found
that a combination of more feature groups generally had better performance than that
with fewer feature groups; for example, Demographic&Electrolyte&PreEval is better than
Demographic&Electrolyte. However, using all feature groups did not help to improve the
performance, and the most effective combination was Demographic&Electrolyte&PreEval&
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Anesthesia&Operation. In the model-wise perspective, the RF model generally gave the best
performance with all combinations. The best F1 score of 0.797 was achieved by the RF model with
the feature group combination Demographic&Electrolyte&PreEval&Anesthesia&Operation.

Table 6. Performance with combinations of feature groups, where a tuple p/r/ f indicates precision, recall, and f1 score.

Combination DT XGB LR ANN GNB RF SVM F

Demographic 0.560/ 0.593/ 0.541/ 0.518/ 0.631/ 0.606/ 0.531/ 15.351
***/

& Electrolyte 0.558/ 0.593/ 0.540/ 0.516/ 0.580/ 0.605/ 0.529/ 13.058
***/

0.556 0.592 0.534 0.509 0.507 0.604 0.520 12.363 ***

Demographic 0.562/ 0.654/ 0.607/ 0.611/ 0.616/ 0.699/ 0.604/ 15.730
***/

& Electrolyte 0.561/ 0.652/ 0.603/ 0.607/ 0.580/ 0.696/ 0.603/ 21.125
***/

& PreEval 0.561 0.651 0.598 0.603 0.514 0.695 0.603 24.459 ***

Demographic 0.545/ 0.646/ 0.667/ 0.600/ 0.727/ 0.695/ 0.713/ 63.257
***/

& Electrolyte 0.545/ 0.644/ 0.661/ 0.595/ 0.655/ 0.694/ 0.690/ 37.969
***/

& Anesthesia 0.544 0.643 0.659 0.592 0.614 0.693 0.682 26.434 ***
Demographic &

Electrolyte 0.704/ 0.714/ 0.711/ 0.693/ 0.770/ 0.798/ 0.671/ 25.009
***/

& Anesthesia 0.684/ 0.710/ 0.707/ 0.689/ 0.724/ 0.797/ 0.609/ 41.059
***/

& Operation 0.679 0.709 0.706 0.687 0.710 0.796 0.571 55.551 ***
Demographic &

Electrolyte 0.672/ 0.747/ 0.667/ 0.703/ 0.770/ 0.798/ 0.671/ 47.648
***/

& PreEval &
Anesthesia 0.668/ 0.745/ 0.667/ 0.699/ 0.724/ 0.797/ 0.609/ 56.419

***/
& Operation 0.665 0.745 0.666 0.697 0.710 0.797 0.571 67.391 ***

Demographic &
Electrolyte 0.646/ 0.683/ 0.679/ 0.645/ 0.699/ 0.797/ 0.671/ 58.158

***/
& PreEval &
Anesthesia 0.645/ 0.682/ 0.678/ 0.642/ 0.672/ 0.795/ 0.609/ 65.421

***/
& Operation &

History 0.644 0.682 0.678 0.639 0.657 0.795 0.571 71.666 ***

Demographic &
Electrolyte 0.624/ 0.723/ 0.679/ 0.678/ 0.738/ 0.784/ 0.671/ 14.264

***/
& PreEval &
Anesthesia 0.622/ 0.721/ 0.678/ 0.668/ 0.713/ 0.782/ 0.609/ 20.250

***/
& Operation & Text 0.618 0.721 0.678 0.663 0.692 0.781 0.571 21.808 ***

Demographic &
Electrolyte 0.624/ 0.715/ 0.656/ 0.635/ 0.707/ 0.771/ 0.671/ 26.038

***/
& PreEval &
Anesthesia 0.623/ 0.715/ 0.655/ 0.634/ 0.695/ 0.768/ 0.609/ 32.834

***/
& Operation &

History 0.621 0.715 0.654 0.633 0.688 0.768 0.571 39.371 ***

& Text

F: F ratio, computed from the ANOVA table. (*** p < 0.001). Degrees of Freedom (d f ): 6 (between classifiers), 203 (within classifiers).
Critical value F_crit of the test: 2.14345288.

We also employed two feature selection algorithms: Recursive Feature Elimination
(RFE) and K-best. We set the number of selected features to K = 30, and its F1 scores are
depicted in Figure 3 as a surface chart, where ‘kbest’ and ‘rfe’ indicate the K-best algorithm
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and the RFE algorithm, respectively. The RF model with the RFE algorithm had the best
F1 score of 0.672 among the models. Table 7 shows the list of selected features by the
two feature selection algorithms. As we performed three independent experiments, the
list contains only features that appeared in at least two experiments. The two algorithms
selected quite different features, but they commonly picked many features from two
feature groups: Operation and Anesthesia. It is interesting that from the Text feature group,
the ‘T3’ values of the thyroid gland function test (TFT) were commonly chosen by the two
algorithms. This is consistent with the recent work [37] that found that low ‘T3’ values
are associated with poor prognosis; although the target patients of this work are different,
we can say that the feature selection algorithms picked reasonable features from the Text
feature group. Another interesting point is that ‘hasText’ feature was picked by the K-
best algorithm, where this feature simply indicates whether the preanesthetic assessment
document has content or not. This can be explained that the clinicians usually write the
preanesthetic assessment when there are any important issues regarding the patients so
that ‘hasText’ could be an indicator of important issues.

Table 7. Selected features from different feature groups.

RFE

Demographic age, weight, height, BMI
Electrolyte Na(pre), K(pre), Cl(pre), Na(post), K(post), Cl(post)

PreEval EF, PFT1, PFT2, PFT3, PFT4, PFT5, BUN, Ca, P, Alb
Anesthesia Method, ASA3
Operation anesthesia time, operation time, crystal, colloid

History HbA1c
Text TFT values (fT4, T3)

K-best

Demographic -
Electrolyte is missing?: Na(pre), K(pre), Cl(pre)

PreEval -
Anesthesia Method, ASA3, ASA4, EM
Operation anesthesia time, operation time, crystal, colloid

History angina pectoris, congestive heart failure, valvular heart disease, GERD,
chronic kidney injury, thyroid disease

Text EKG, DM, HTN, Cancer, TFT values (T3), LV systolic dysfunction,
COPD, Angina, hasText

Figure 3. F1 scores using feature selection algorithms, where the vertical axis indicates scores.

4. Discussion

We found that the best feature group is Operation by experimental results. This is
consistent with existing studies on predictors of postoperative cardiac events in patients un-
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dergoing non-cardiac surgery. For example, Myung Hwan Bae et al. investigated whether
surgical parameters have prognostic value with respect to the development of a postoper-
ative cardiac event [38]. They concluded that the surgical parameters, including surgery
time and blood transfusion during surgery, were found to be independent predictors of
postoperative MACE in patients undergoing non-cardiac surgery. Although their experi-
ments included only 4.9% of renal insufficiency (defined as serum creatinine ≥2 mg/dL),
this is consistent with our study that the Operation feature group is the most important for
prediction of postoperative MACE in ESRD patients.

Regarding the prediction model, one might argue that it is not very useful if it is
not sensitive enough to MACE cases. Figure 4 shows the precision and recall values of
the MACE class (i.e., label ‘1’) using the random forest (RF) model. We found that the RF
model has a precision of 0.803 and a recall of 0.794, with the best feature combination of
Demographic&Electrolyte&PreEval&Anesthesia&Operation. With this result, we might say
that our prediction model is enough to inform physicians of the potential risk so that the
patients will be provided with more appropriate therapy. As there is still plenty of room for
improvement, we will keep investigating various methods to obtain better performance.

Figure 4. The radar chart of precision and recall of MACE class using random forest for feature group
combinations.

There are two ways of applying the results of this study to operations. First, the best
model of this study (i.e., random forest) is installed onto a computer within the surgery
room, where the model provides information about potential MACE right after the end
of surgery. Physicians are provided with this information so that the patient will have
better suited therapy. Of course, the information is just a predicted result (i.e., probability
of potential MACE), so the appropriate medical decisions must be made by the physicians.
Second, clinicians carefully check the features that we found important. For example,
according to the experimental results, we found that Operation features are the most
important and other particular features (e.g., anesthesia method, TFT T3) are informative
to the prediction of postoperative MACE.

Although we achieved an F1 score of 0.797 and found some important features for
the prediction of postoperative MACE, this study is limited because of the small data
size. We are continually collecting more data, and plan to gather data from other sources
(i.e., other hospitals); we believe that data collected from different sources will help to
verify the generalization of our future model. We also expect that more data will improve
the performance (i.e., greater F1 score) of data-driven prediction models.
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5. Conclusions

In this paper, we applied various machine learning models to predict postoperative
MACE in ESRD patients undergoing general anesthesia. We found that the random forest
(RF) model gives the best F1 score of 0.797 with a particular combination of feature groups.
We believe that our work will be helpful for physicians to make better medical decisions
based on the information provided by our model. We will continue collecting data and
investigate how to design a more effective prediction model. As some features extracted
from preanesthetic assessment documents turned out to be promising, we will investigate
how to use language models to extract more informative features from documents.
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