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Abstract

Background: The successful determination and analysis of phenotypes plays a key role in the diagnostic process,
the evaluation of risk factors and the recruitment of participants for clinical and epidemiological studies. The
development of computable phenotype algorithms to solve these tasks is a challenging problem, caused by various
reasons. Firstly, the term ‘phenotype’ has no generally agreed definition and its meaning depends on context.
Secondly, the phenotypes are most commonly specified as non-computable descriptive documents. Recent
attempts have shown that ontologies are a suitable way to handle phenotypes and that they can support clinical
research and decision making.
The SMITH Consortium is dedicated to rapidly establish an integrative medical informatics framework to provide
physicians with the best available data and knowledge and enable innovative use of healthcare data for research
and treatment optimisation. In the context of a methodological use case ‘phenotype pipeline’ (PheP), a technology
to automatically generate phenotype classifications and annotations based on electronic health records (EHR) is
developed. A large series of phenotype algorithms will be implemented. This implies that for each algorithm a
classification scheme and its input variables have to be defined. Furthermore, a phenotype engine is required to
evaluate and execute developed algorithms.

Results: In this article, we present a Core Ontology of Phenotypes (COP) and the software Phenotype Manager
(PhenoMan), which implements a novel ontology-based method to model, classify and compute phenotypes from
already available data. Our solution includes an enhanced iterative reasoning process combining classification tasks
with mathematical calculations at runtime. The ontology as well as the reasoning method were successfully
evaluated with selected phenotypes including SOFA score, socio-economic status, body surface area and WHO BMI
classification based on available medical data.

Conclusions: We developed a novel ontology-based method to model phenotypes of living beings with the aim
of automated phenotype reasoning based on available data. This new approach can be used in clinical context,
e.g., for supporting the diagnostic process, evaluating risk factors, and recruiting appropriate participants for clinical
and epidemiological studies.

Keywords: Phenotype definition, Phenotype classification, Phenotype calculation, Phenotype ontology, Phenotype
reasoning
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Background
Despite its long ago introduction in 1909 by Wilhelm
Johannsen, the term ‘phenotype’ still has no generally
agreed definition [1]. Usually, a phenotype is consid-
ered as an observable characteristic or trait of an or-
ganism, such as its morphology, function, behaviour
or its biochemical and physiological properties [1–3].
Scheuermann et al. define a phenotype as a (combin-
ation of) bodily feature(s) (physical components, bod-
ily qualities or bodily processes) of an organism
determined by the interaction of its genetic make-up
and environment [4]. From the medical perspective,
clinical (clinically abnormal) and disease phenotypes
(clinical phenotype characterising a single disease) are
considered. According to Scheuermann et al., a dis-
ease phenotype can exist without being observed. Ob-
served bodily features that could be of clinical
relevance are called ‘Sign’( “… observed in a physical
examination and is deemed by the clinician to be of
clinical significance”) or ‘Symptom’ ( “… observed by
the patient and is hypothesized by the patient to be a
realization of a disease”) [4].
Correct determination of phenotypes plays a key

role for diagnosis of diseases, evaluation of risk fac-
tors and recruitment of patients for clinical and epi-
demiological studies [5, 6]. One challenge is to
translate phenotype algorithms, which “are most com-
monly represented as non-computable descriptive
documents and knowledge artifacts” [7], into
machine-readable form. This paper focuses on devel-
oping a general phenotype representation model that
can be used for data-driven phenotype computing,
i.e., software-supported determination of phenotypes
based on the data of an organism. The model to be
developed must support both the biological and the
medical views of the phenotype notion. Recent at-
tempts have shown that ontologies are suitable to
handle phenotypes and that they can support clinical
research and decision making [8–10].
There is a large ongoing initiative in Germany, the so

called German Medical Informatics Initiative (MII) [11,
12] that aims at making clinical data available for re-
search. Most German university hospitals participate in
one of four funded consortia. Smart Medical Informa-
tion Technology for Healthcare (SMITH) is one of these
consortia [13]. Within the ongoing SMITH project, a
phenotyping pipeline (PheP) will be established to sys-
tematically develop, evaluate and execute validated algo-
rithms and models for classifying and annotating patient
care data. These annotations and derivatives will be pro-
vided for triggering alerts and actions, data sharing and
deep analyses of patient care and outcomes. The general
design and concept of the SMITH phenotyping pipeline
is presented in [14].

In this article, we propose a novel ontology-based
method to model and compute phenotypes. Our ap-
proach provides an extended reasoning combining
phenotypic data to derive complex phenotypes based on
calculations and classifications.

Methods
Phenotypes can be derived from available data that may
have been measured (quantitative data) or observed and
qualitatively described (categorical data). The data can,
for example, come from Electronic Health Records
(EHR) (clinical data) or from a research database of a
clinical/epidemiological study (research data). In SMIT
H, the required EHR data will be integrated into a cen-
tral Health Data Storage (HDS) at each site. The inte-
grated data is homogeneously represented in each HDS
using HL7 FHIR [15] and can be queried utilising FHIR
Search [16] (Fig. 1). Structured data from different
source systems in hospitals as well as unstructured doc-
uments will be extracted, transformed and loaded into
the HDS. Natural Language Processing (NLP) techniques
are used to extract and transform relevant data from un-
structured EHR documents into structured form. In
SMITH and the German Medical Informatics Initiative,
the software tool ART-DECOR [17] is used to specify an
overarching global schema, the so-called core data set
[18]. The core data subsumes the minimal set of data el-
ements that each site (i.e., University Hospital) needs to
provide in a harmonised manner. In this way, data ele-
ments are specified based on HL7 templates, their re-
spective value sets, referenced terminologies, exemplified
use scenarios and data. These specifications are the basis
for the ontology-based phenotype representation in our
approach.

Fig. 1 Integration of the PhenoMan. The Metadata Manager models
basic data elements using ART-DECOR. The Phenotype Designer
imports the ART-DECOR specification and develops phenotype
models (PheSO) utilising the PhenoMan Editor. The PhenoMan
requests required input data from the FHIR Server, computes
phenotypes and writes the results back to the FHIR Server
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HL7 FHIR and FHIR Search
Healthcare records are increasingly digitised. The
EHR must be discoverable and understandable. The
patient data must be structured and standardised to
support machine-based processing and automated
clinical decision making. The FHIR (Fast Healthcare
Interoperability Resources) specification is a HL7
standard for modelling and exchanging healthcare in-
formation [15]. FHIR provides a base set of resource
types representing relevant clinical concepts that can
be used to store and exchange data in order to solve
a wide range of healthcare related problems. For each
resource type, the corresponding information contents
and structure are specified. The resources can be
used either by themselves or combined to complex
documents representing a coherent set of healthcare
information [15]. The FHIR resource types include,
inter alia, ‘Patient’ (“Demographics and other adminis-
trative information about an individual or animal re-
ceiving care or other health-related services.”),
‘Observation’ (“Measurements and simple assertions
made about a patient, device or other subject.”) and
‘Condition’ (“A clinical condition, problem, diagnosis,
or other event, situation, issue, or clinical concept that
has risen to a level of concern.”) [15].
The FHIR Search Framework [16] is part of the

HL7 FHIR standard and provides a range of opera-
tions and parameters (series of name = value pairs) to
search for existing FHIR resources in the underlying
repository. In the simplest case, a search is executed
by performing a GET operation in the RESTful
framework:
GET [base-url]/[resource-type]?name = value&...{&_

format = [mime-type]}}.
e.g., GET [base-url]/Patient?gender =male.
For numeric parameter types (number, date or quan-

tity), a value range can be defined using a prefix to the
parameter value (e.g., gt = greater than, le = less or
equal).
The ‘&’ (AND) operator between single search criteria

is used to search for the intersection of resources that
match all criteria specified by each individual search par-
ameter (e.g., Patient?gender = male&birthdate = gt1970).
To search for resources with one of the specified param-
eter values (OR), the values must be separated by a
comma (e.g., Observation?code= http://loinc.org/3141-9,
http://snomed.info/sct/27113001, i.e., weight code from
LOINC or SNOMED).
The following query contains AND combinations of sin-

gle criteria (code AND value-quantity) as well as OR link-
ing of code values and can be used to search for weight
observations where the weight is greater than 75 kg:
Observation?code= http://loinc.org/3141-9, http://

snomed.info/sct/27113001&value-quantity=gt75//kg.

ART-DECOR
ART-DECOR is an open-source tool suite that supports
the creation and maintenance of HL7 templates, value
sets, scenarios and datasets [17]. To specify and hier-
archically structure required data elements (items, con-
cepts, variables) we use the Dataset Editor of ART-
DECOR. Data elements can possess several attributes,
such as name, description (in different languages) and
value domain (including data type, unit and possible
value set) (Fig. 2a).
One of the most important components of a data

element is its terminology associations. A termin-
ology association defines the binding of dataset con-
cepts to relevant terminology [17]. To associate a
data element with a terminology concept, the corre-
sponding code (including the URI or ID of the ter-
minology) must be specified. For instance, the
concept ‘Fasting glucose [Mass/volume] in Serum or
Plasma’ from LOINC (URI: ‘http://loinc.org’) has the
code ‘1558–6’ (Fig. 2a).
Furthermore, additional properties of data elements

can be defined as key-value pairs. We use this function-
ality to specify the mapping between the data element
and the corresponding FHIR resource type (e.g., for fast-
ing glucose, key: ‘FHIR’, value: ‘Observation’) required
for phenotype computing. Depending on the resource
type, different FHIR Search parameters must be used to
query the relevant FHIR resources. Moreover, the differ-
ent structure of the resulting resources must be consid-
ered to extract required data.
The resulting dataset specification is available in XML

or JSON and can be parsed by our software.

Ontological architecture
Our objective was to design the PhenoMan software
according to the three-ontology method [19]. This
method is based on interactions of three different
kinds of ontologies: a task ontology (TO), a domain
ontology (DO) and a top-level ontology (TLO). The
TO serves as the conceptual model for the software,
the DO provides the domain-specific knowledge,
whereas the TLO integrates the TO and the DO and
is used as foundation of them.
In our case, the Core Ontology of Phenotypes (COP,

see section 'Core Ontology of Phenotypes (COP)') func-
tions as a TO. It describes the general structure of valid
phenotype specifications and thus enables the Pheno-
Man to create such specifications and to use them for
phenotype computing. Concrete phenotype specifica-
tions (domain-specific knowledge) are represented in
Phenotype Specification Ontologies (PheSO, see section
'Phenotype Specification Ontologies (PheSO)') playing
the role of domain ontologies (DO) in our architecture.
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For the foundation of the TO we used the General
Formal Ontology (GFO) [20] as TLO. GFO has already
been successfully applied for a foundation of phenotype-
related notions. For instance, a novel approach to repre-
sent complex phenotypes in OWL was proposed im-
proving the consistency and expressiveness of formal
phenotype descriptions [10]. Another pillar of GFO for a
grounding of phenotypes is the foundational ontology of
properties, attributives and data (GFO-Data [21])

providing an extensive classification of properties (and
attributives). In the current paper, we especially refer-
ence the property notion of GFO (including distinction
between single and composite properties [22]) in our
phenotype representation model supporting data-driven
phenotype computing.
One of the advantages of the three-ontology method is

that the software only needs to implement the access to
entities (classes, properties) of the TO (COP), whereas

Fig. 2 Mapping between ART-DECOR, PheSO, FHIR Subscription and FHIR Observation entities. a Specification of the data element ‘fasting
glucose’ in ART-DECOR. b Annotations of the corresponding class Fasting_Glucose after importing the ART-DECOR specification into the PheSO. c
Subscription generated for the class Fasting_Glucose. The criteria (FHIR Search query) is encoded. The original URL part is Observation?code=
http://loinc.org/1558-6. d Observation of fasting glucose provided by FHIR Server. The observation code, value, date and the referenced patient
are specified. (The same colour of the border indicates the mapping between the entities)
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the entities of the corresponding DO (PheSO) are proc-
essed dynamically. The PhenoMan uses the COP as an
interface to access the PheSO entities.
Additional requirements for the ontological modelling

were:

– Developing in OWL (using OWL API [23], HermiT
[24] and Openllet [25])

– Modelling all attributes and relations that are
relevant for reasoning as object or data properties

– Modelling all attributes and relations that are not
relevant for reasoning as annotations

– Usage of general class axioms (based on ‘subclass
of’) instead of equivalence classes if only one
direction (‘is-a’ relation) is relevant for reasoning.

Software design
We defined the following main requirements for the
overall system (Fig. 1):

– The system must support a phenotype specification
providing a GUI tool (see section 'Specification of
phenotypes').

– The phenotype specifications must be saved in a
standardised ontology (see sections 'Core Ontology
of Phenotypes (COP)' and 'Phenotype Specification
Ontologies (PheSO)').

– The system must be able to correctly compute
phenotypes based on a phenotype specification
(ontology) and input data (see section 'Classification
and calculation of phenotypes').

– The system must support an additional
implementation of mapping components for
accessing required data and metadata repositories.
Example components for metadata import from
ART-DECOR as well as for interaction with FHIR
servers (e.g., SMITH HDS) must be implemented
(see sections 'Data procurement' and 'Transmission
of inferred phenotype classes to the FHIR Server').

The PhenoMan accesses the FHIR Server, extracts
phenotype-specific data, computes the specified pheno-
types and writes the results back to the FHIR Server. For
this purpose, the PhenoMan provides an API and acts as
a web service (using Dropwizard [26]) (Fig. 1). The Phe-
noMan is implemented in Java using OWL API [23] and
two reasoners, HermiT [24] and Openllet [25]. For cal-
culations we utilize the Java Expression Evaluator (Eva-
lEx) [27], but the integration of other libraries (e.g., for
executing R scripts) or rule systems (e.g., SWIRL or

Drools) is also possible. The EvalEx enables evaluating
mathematical and Boolean (inter alia, Boolean operators
and IF-THEN-ELSE structures) expressions and sup-
ports defining custom functions and operators.
The PhenoMan Editor1 is a desktop app, which is also

developed with Java and bundled with the PhenoMan
API. It offers a graphical user interface based on Java
Swing to specify attributes of phenotype classes and cat-
egories using appropriate form fields. On saving, form
content is transmitted to the PhenoMan API and written
into the ontology. The editor can be executed on a local
machine with a Java runtime environment 8 or higher
and was developed with the aim of rapidly defining
phenotype models.

Evaluation
An evaluation of our approach was designed and con-
ducted. The main objectives of the evaluation were to
prove:

1. Correct functioning of all software components
2. Faultless communication of the software with the

FHIR Server
3. Correctness of all provided phenotype specifications
4. Correct functioning of the overall system by

comparison with a corresponding SPSS
implementation of selected phenotypes.

We evaluated the PhenoMan at different levels. Firstly,
we tested all functionalities of the PhenoMan API (espe-
cially read/write in the ontology and computing pheno-
types) and the communication of the PhenoMan Service
with the FHIR Server by a set of static JUnit tests using
fixtures (i.e., example PheSOs and patient data).
Secondly, each phenotype specification is shipped with

a structured representation (spreadsheet) of test data (in-
put and output), such that the respective phenotype al-
gorithm can be automatically tested. The criterion for a
successful execution of the JUnit tests was a match be-
tween the results calculated by PhenoMan based on pro-
vided input data and the corresponding output data.
Finally, we selected some test case algorithms/deriva-

tives (such as socio-economic status [28], body mass
index [29], waist circumference and waist-hip ratio [30])
from the LIFE Adult study [31] running at the LIFE Re-
search Centre for Civilization Diseases, University of
Leipzig. There, derivatives are usually implemented by
epidemiologists, statisticians and other researchers using
the statistics software SPSS [32] and R or are database
(SQL) queries and functions, which are automatically ex-
ecuted at night based on daily captured data. The result-
ing data are directly stored within the LIFE research
database in tabular form. More details about partici-
pants, their invitation and consenting as well as

1Source code and releases of the PhenoMan Editor are available on
GitHub under the GPL-3.0 license: https://github.com/Onto-Med/Phe-
noMan-Editor
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examinations, interviews, questionnaires and taken spe-
cimen can be found in [31]. We reproduced selected
SPSS derivatives using the PhenoMan and developed
parameterised JUnit tests to comparatively evaluate the
accuracy of the PhenoMan against the corresponding
SPSS implementation at the LIFE Research Centre. The
criterion for a successful comparison was a match be-
tween the results calculated by PhenoMan and SPSS
software for each dataset. The performance of our ap-
proach is not a critical issue in our use case (the pheno-
type computing could run overnight).
This evaluation included data of thousands of LIFE

participants.

Results
Core Ontology of Phenotypes (COP)
We developed the Core Ontology of Phenotypes
(COP, Fig. 3) to model, classify and calculate pheno-
types based on instance data sets (e.g., of a patient).
In this article, we consider a phenotype as a
dependent individual (in the sense of General Formal
Ontology, GFO [20]), for example, the weight of a
specific person. Hereinafter, abstract instantiable en-
tities that are instantiated by phenotypes are called
phenotype classes. For instance, the abstract property
‘weight’ possesses individual weights as instances. We
distinguish between single and composite properties,
and correspondingly, between single and composite
phenotypes. A composite property is defined as a
property that has single properties as parts [22].
Based on the definitions of single and composite
properties [22], we define single phenotypes as single
properties (e.g., age, weight, height) and composite
phenotypes as composite properties (e.g., height and
weight, BMI, SOFA score [33]) of an organism or of
one of its subsystems. Properties of an organism are
considered as all documentable information about it,
whereby the modeller is left to decide what is rele-
vant to the current situation. These can be, for ex-
ample, observable characteristics or traits of an
organism [1–3] or possible manifestations of clinical
phenotypes, such as signs, symptoms or dispositions
[4]. The corresponding data can be modelled using
the FHIR Observation or Condition resources.
Composite phenotypes are divided into combined

and derived phenotypes. A combined phenotype is
only a combination of corresponding phenotypes (e.g.,

a combination of height and weight), whereas a de-
rived phenotype is an additional property (e.g., BMI)
derived from the corresponding phenotypes (height
and weight). In the framework of GFO we modelled
properties using the class gfo: Property. In the present
article, composite phenotype classes are modelled
using a Boolean expression based on has_part relation
(e.g., weight and height: has_part some height and
has_part some weight). Derived phenotype classes
additionally define a calculation rule/mathematical
formula (e.g., BMI = weight [kg] / height [m]2). Fur-
thermore, combined phenotype classes can associate
certain conditions with specific predefined values
(scores), which can be used, e.g., in further formulas.
For example, if bilirubin value is greater than 12 mg/
dL, then the value 4 is used for the calculation of the
SOFA score [33].
Additionally, we distinguish between restricted and

non-restricted phenotype classes, depending on whether
their extensions (set of instances) are restricted to a cer-
tain range of individual phenotypes by defined condi-
tions or all instances are allowed. For example, the
phenotype class ‘age’ is instantiated by the ages of all liv-
ing beings (non-restricted), whereas the phenotype class
‘young age’ is instantiated by the ages of the young ones,
e.g., if the age is below 30 years (restricted).

Phenotype Specification Ontologies (PheSO)
We consider a phenotype algorithm as a sequence of in-
structions (1) to classify phenotypes (single or compos-
ite) in phenotype classes or (2) to derive additional
properties (derived phenotypes) from the phenotypes of
an organism. Phenotype algorithms can be implemented,
for example, using a programming language or a statis-
tics software (e.g., SPSS or R). Our approach is to separ-
ate the specification of phenotypes (models) from the
implementation of corresponding algorithms. The COP
provides a basic model to specify phenotypes in a stan-
dardised way, while the PhenoMan implements the gen-
eral approach, common for all COP-based specifications.
It is not our aim to completely model the EHR. Instead,
our approach can support the modelling and calculation
of selected phenotypes in a user-friendly standardised
manner.
Phenotypes are modelled in Phenotype Specification

Ontologies (PheSO) using the COP. The phenotype clas-
ses and axioms (classification and calculation rules) con-
tained in the PheSO are used by PhenoMan to execute
the corresponding phenotype algorithm. PheSOs are em-
bedded in the COP in such a way that the classes of the
PheSO are subclasses of the COP classes. Every PheSO
subclass of the COP classes cop: Single_Phenotype, cop:
Combined_Phenotype or cop: Derived_Phenotype is a
phenotype class and is instantiated by phenotypes. The

Fig. 3 Core Ontology of Phenotypes (COP)

Uciteli et al. Journal of Biomedical Semantics           (2020) 11:15 Page 6 of 17



direct subclasses are non-restricted (e.g., Fasting_Glu-
cose, Fig. 4a), while the subclasses of the non-restricted
phenotype classes are restricted (e.g., Fasting_Glucose_
ABNORMAL, i.e., fasting glucose is greater equal 125
mg/dL, Fig. 4a3).
Phenotype classes possess various common attributes

(e.g., labels, descriptions and codes of external concepts).
Other attributes vary depending on the type of the
phenotype class. The following are examples of such
attributes:

– Non-restricted single phenotype (NSiP) class: unit of
measure and optional aggregate function.

– Restricted single (RSiP) and derived phenotype
(RDeP) class: restriction.

– Restricted combined phenotype (RCoP) class:
Boolean expression (based on RSiP, RCoP and RDeP
classes) and optional score value.

– Non-restricted derived phenotype (NDeP) class:
mathematical formula and Boolean expression
consisting of AND-linked variables used in the for-
mula (NSiP and non-restricted combined phenotype

(NCoP) classes). If a NCoP class is used as a vari-
able, the RCoP classes (subclasses) of the NCoP class
must have score values that should be used in the
formula.

Simple attributes of the phenotype classes are defined
as annotations. The logical relations between phenotype
classes as well as range restrictions are represented in
OWL by anonymous equivalent classes or general class
axioms based on property restrictions.

Phenotype Manager (PhenoMan)
We developed the software Phenotype Manager (Pheno-
Man), which implements a multistage reasoning ap-
proach combining standard reasoners (e.g., Pellet or
HermiT) and mathematical calculations. This section
briefly outlines the main functionality of our solution.

Specification of phenotypes
The PhenoMan Editor is an interactive user interface for
managing and developing PheSOs. The user is able to
create a new PheSO or to load an existing ontology. The

Fig. 4 Parts of the T2DM PheSO in Protégé. Middle: Phenotype classes (a Single, b Derived, c Combined). Left: Example annotations of the
phenotype classes. Right: Anonymous equivalent classes and general class axioms
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PhenoMan Editor provides appropriate forms to browse,
create and edit categories and phenotype classes of the
ontology. Value range restrictions, for example, are de-
fined by selecting a comparison operator and entering
the corresponding values (Fig. 5). Boolean expressions
are built by drag-and-dropping the phenotype classes
from the left side into the expression form field and en-
tering relevant operators (Fig. 6). After submission, the
form data is transmitted to the PhenoMan API and is
stored in the actual PheSO.
Furthermore, an ART-DECOR specification (XML)

of relevant data elements can be imported in the
PheSO. For each data element, a NSiP class is gener-
ated. All relevant attributes (name, codes, FHIR re-
source type, data type, unit, etc.) specified in ART-

DECOR are defined as annotations of corresponding
classes (Fig. 2a, b).

Data procurement
After starting the PhenoMan Service, FHIR subscriptions
(rest-hooks) [34] are generated and transmitted to the
FHIR Server. The structure of the subscription resource
is very simple. The main parts of the resource are the
criteria and the channel. The FHIR Server uses the cri-
teria (FHIR Search query) to determine resources for
which notifications have to be generated. When re-
sources are identified (after creating or updating) meet-
ing the criteria, a notification is sent to the address
(‘endpoint’) specified in the section ‘channel’.

Fig. 5 Specification of the class Fasting_Glucose_ABNORMAL with the PhenoMan Editor form. We left out some of the metadata fields for
better visibility

Fig. 6 Specification of the class T2DM_Case_3 with the PhenoMan Editor form
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In the configuration file of the PhenoMan, a directory
containing all available phenotype specifications (Phe-
SOs) as well as the address (URL) of the PhenoMan ser-
vice (including the PheSO name) are defined. For each
NSiP class of each available PheSO (in the defined direc-
tory) a subscription is created. To generate the subscrip-
tion criteria (FHIR Search query), the PhenoMan uses
the resource type and codes specified in the correspond-
ing NSiP class as annotations (Fig. 2b, c). The ‘endpoint’
attribute is automatically filled with the URL of the Phe-
noMan service defined in the configuration file. The
remaining parts of the subscription resource (‘status’,
‘type’ and ‘payload’) take default values (‘active’, ‘rest-
hook’ and ‘application/json’) (Fig. 2c).
After receiving a notification (including the

complete resource, Fig. 2d), the PhenoMan Service re-
quests further resources (for all other NSiP classes of
the corresponding PheSO) using FHIR Search. The
generated FHIR Search queries are primarily based
upon the codes specified for the NSiP classes (simi-
larly to subscription criteria), contain a reference to
the patient and can additionally support possible ag-
gregate functions.

Classification and calculation of phenotypes
After receiving required resources, the PhenoMan starts
inferring phenotypes.
First, the relevant information is extracted from re-

ceived resources and inserted into the ontology. On the
one hand, the individual properties (single phenotypes)
are inserted as instances of the direct subclasses of cop:
Single_Phenotype and the values are modelled as prop-
erty assertions based on the has_value relation. On the
other hand, a composite phenotype is defined as an in-
stance of the class cop: Composite_Phenotype, which
combines all the single phenotype instances using prop-
erty assertions based on has_part relation. Then, our
multistage reasoning algorithm is executed. The algo-
rithm consists of the following steps:

1. Classification step. A standard reasoner classifies the
existing instances (assignment to classes).
a. Single phenotype instances are classified in RSiP

classes based on property restrictions.
b. The composite phenotype instance is classified

in RCoP classes based on the specified Boolean
expression and inferred RSiP, RCoP and RDeP
classes.

c. The composite phenotype instance is classified
in NDeP classes based on the specified Boolean
expression and corresponding NSiP and NCoP
classes. In this case, all variable values required
for calculating formulas are present.

d. Available instances of NDeP classes
(representing calculated values) are classified in
RDeP classes based on property restrictions.

2. If no new NDeP classes get an instance, the
execution of the algorithm stops. All inferred
phenotypes (inferred classes including metadata and
calculated values) are returned.

3. Calculation step. The formula of each NDeP class
having an instance is calculated based on variable
values (values of the corresponding single
phenotype instances or scores of the inferred RCoP
classes). A new instance of the NDeP class
representing the calculated value is created and
associated with the composite phenotype instance
(using has_part).
The algorithm goes back to step 1.

In the case of complex phenotypes, the classification
and calculation steps can be executed several times (in a
loop). That is the case if a NDeP class has subclasses,
i.e., RDeP classes, which are in turn used in combined
phenotypes. Both steps are repeated until all formulas
are calculated and all phenotypes are classified.
The PhenoMan supports 4 primitive data types xsd:

decimal, xsd:string, xsd:boolean and xsd:date. All other
complex data types (e.g., FHIR code or quantity) are
mapped to the primitive data types (e.g., code to xsd:
string and quantity to xsd:decimal with additional unit
attribute, Fig. 2a, b). Furthermore, the PhenoMan pro-
vides, inter alia, aggregate functions, Boolean, date and
measurement unit arithmetic, integration of external ter-
minologies as well as reading and writing FHIR
resources.

Transmission of inferred phenotype classes to the FHIR
Server
PhenoMan returns all inferred combined and derived
phenotype classes as Observation resources and trans-
mits them to the FHIR Server. The generated resources
can have a numeric or a code data type. Numeric obser-
vations are used for storing numeric values (i.e., calcu-
lated values of derived phenotypes or score values of
combined phenotypes), whereas the code observations
are intended for concepts of a terminology or a value
set. The specified codes of the non-restricted phenotype
classes are utilised in the resulting resources to complete
the ‘code’ attribute. The calculated values, scores or
codes of the inferred restricted phenotype classes are
used in ‘valueQuantity’ or ‘valueCodeableConcept’ attri-
butes (Fig. 7).

Export capabilities
The PhenoMan can export the complete PheSO or gen-
erate reasoner reports (structured descriptions of all
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Fig. 7 T2DM case 3 Observation. For the Patient/103, an Observation resource was generated including the code (t2dm_case_calculated), the
value (t2dm_case_3) and the observation method (generated by PhenoMan)

Fig. 8 T2DM case 1 reasoner report. Left: Phenotype class types from the COP (single, combined, derived). Middle: Non-restricted classes of the
PheSO (the NSiP classes contain the current input value, the NDeP classes the calculated value). Right: Restricted classes inferred by PhenoMan
based on the input data
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inferred phenotypes) in Excel format. A tabular rea-
soner report contains three columns: ‘Type’, ‘Non-re-
stricted’ and ‘Restricted’. In the first column the type
(single, combined or derived) of the inferred pheno-
type is presented. In the next two columns, the speci-
fied or derived information about the resulting
phenotypes (restricted and non-restricted) is displayed
(Fig. 8).
Additionally, the PhenoMan can generate the graphical

representation of combined phenotype classes in the
form of decision tree (or flowchart) diagrams. The Phe-
noMan translates the Boolean expressions of every RCoP
class into disjunctive normal form and considers each
conjunction as a possible path of the tree. Then, the
paths are grouped on shared nodes and form a tree
structure (Fig. 9).

Example
We illustrate our approach by means of an example al-
gorithm for determining Type 2 Diabetes Mellitus
(T2DM) cases presented by PheKB.org [37]. The T2DM
algorithm requires the following data elements to be ex-
tracted from the EHR:

� Counts of T1DM and T2DM diagnoses (identified
by ICD-9 billing codes),

� The earliest dates of T1DM and T2DM medications
(identified by RxNorm codes),

� Laboratory values (fasting blood glucose, random
blood glucose and hemoglobin A1c, identified by
LOINC codes) as well as

� Physician-entered diagnoses (derived from
encounter or problem list sources only).

Modelling of single data elements using ART-DECOR
As a first step, required data elements (items, concepts,
variables, single phenotype classes) representing single
patient characteristics relevant for determining the
T2DM (T1DM and T2DM diagnoses, T1DM and
T2DM medications, fasting blood glucose, random blood
glucose, hemoglobin A1c as well as physician-entered
diagnoses) must be modelled using ART-DECOR. La-
bels, descriptions, codes from external terminologies,
data types, units, etc. are specified. Additionally, every
data element must be associated (as property) with a
FHIR resource type in order to ensure the correct search
and extraction of the instance values from the respective
resource. Laboratory values are represented in FHIR as
Observations, while diagnoses are usually specified using
the Condition resource. The Fig. 2a shows the filled
form of fasting glucose in ART-DECOR.
The resulting specification is provided by ART_

DECOR as a XML or JSON file.

Modelling of phenotypes using PhenoMan Editor
The user imports the ART-DECOR specification in
the ontology (PheSO) utilizing the PhenoMan Editor.
For each data element, a NSiP class (Fasting_Glucose,
HBA1c, Random_Glucose, T1DM_Diagnosis, T2DM_
Diagnosis, T1DM_Medication, T2DM_Medication and
T2DM_Diagnosis_by_Physician) including relevant an-
notations is generated (Fig. 4a, a1, a2).
Furthermore, aggregate functions (e.g., COUNT, FIRS

T, LAST, MIN, MAX) can be defined for NSiP classes.
For instance, the T2DM algorithm does not require to
process the complete data of all diagnosis resources, it is
sufficient to count the resources. Therefore, the function
COUNT is defined for the class T2DM_Diagnosis (Fig.

Fig. 9 T2DM decision tree. The tree was generated by PhenoMan in GraphML format and was processed using an automatic layout [35] of the
yEd Graph Editor [36]. Nonetheless, it is also possible to generate the complete tree as image in PNG format
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4a2). The both medication classes (T1DM_Medication
and T2DM_Medication) are associated with the function
FIRST, because only the earliest date of medications is
relevant for the algorithm.
Next, the RSiP classes (Fasting_Glucose_ABNORMAL,

Random_Glucose_ABNORMAL and HBA1c_ABNORMAL)
for value range restrictions are defined as subclasses
of the NSiP classes (Fig. 4a, a3, Fig. 5). For every
RSiP class, the anonymous equivalent class is created
that represents the corresponding restriction. The re-
strictions of other NSiP classes (e.g., T2DM_Diagnosis
or T2DM_Diagnosis_by_Physician) are based on the
counts of the corresponding resources (e.g., T2DM_
Diagnosis_NO: if the count of T2DM_Diagnosis = 0 or
T2DM_Diagnosis_by_Physician_YES: if the count of
T2DM_Diagnosis_by_Physician > = 2, Fig. 4a4).
Mathematical calculations are modelled using NDeP

classes. The formula ‘GT($T1DM_Medication, $T2DM_
Medication)’ (‘GT’ stands for Greater Than) defined for
the class T2DM_precedes_T1DM_Medication expresses
a comparison of the T1DM and T2DM medication dates
(Fig. 4b, b1). The dollar sign in the variable name indi-
cates that not the medication value itself but the entry
date of the medication is used in the formula. The for-
mula returns − 1, 0 or 1 depending on whether the first
operand is less than, equal to or greater than the second
operand. The value − 1 is also returned if one of the op-
erands is missing. The RDeP class T2DM_precedes_
T1DM_Medication_YES and the corresponding restric-
tion are specified similarly to RSiP classes (Fig. 4b, b2).
The next step is to model the abnormal lab, i.e., if ei-

ther random glucose or fasting glucose or HBA1c is ab-
normal. For this purpose, we define the non-restricted
combined phenotype (NCoP) class Abnormal_Lab and
the RCoP class Abnormal_Lab_YES with the corre-
sponding Boolean restriction (disjunction) formalised as
general class axiom (Fig. 4c, c1).
Finally, the T2DM case selection rules are modelled

using the NCoP class T2DM_Case as well as the five
RCoP classes (one for each case type) including Boolean
restrictions (Fig. 4c, c2, Fig. 6). For instance, case 1 occurs
when the T1DM diagnosis is missing but a T2DM diagno-
sis as well as both medications (T1DM and T2DM) are
present and the first T2DM medication precedes the first
T1DM medication. The abnormal lab, the presence of a
T2DM diagnosis and the absence of T1DM diagnosis and
both medications indicate the case 3.
The resulting ontology and additional material (graph-

ical and tabular representation, reasoner reports) are
publicly available [38].

Execution of the PhenoMan Service
The PheSO (OWL file) created by the PhenoMan Editor
is saved in the directory specified in the configuration

file. After starting the PhenoMan Service, subscriptions
for each NSiP class of the T2DM PheSO are created.
The subscription for the NSiP class Fasting_Glucose, for
example, is intended to identify Observation resources
with the LOINC code ‘1558–6’ (criteria) (Fig. 2c). After
receiving a fasting glucose resource, other required re-
sources are queried. The query for T2DM diagnosis, for
instance, includes the additional FHIR Search parameter
_summary = count to express the aggregate function
COUNT:
Condition?code=http://hl7.org/fhir/sid/icd-9-cm/250.

00, http://hl7.org/fhir/sid/icd-9-cm/250.02&subject=Pa-
tient/103&_summary=count.
In this case, the server returns a bundle with only the

number of resources matching the query. To realise the
function FIRST, the combination of _sort (sorting by
date) and _count (_count = 1) is used. The following
T2DM medication query returns only the first resource
matching the criteria:
MedicationStatement?code=http://www.nlm.nih.gov/

research/umls/rxnorm/25789, http://www.nlm.nih.gov/
research/umls/rxnorm/10633&subject=Patient/103
&_sort=effective&_count=1
(Some codes were omitted in both queries).
As soon as all required FHIR resources are present,

the PhenoMan starts the phenotype computing. Sup-
pose, the input resource set consists of only a fasting
glucose (Fig. 2d) and a T2DM diagnosis resource. In this
case, the single phenotype instances of the classes Fast-
ing_Glucose and T2DM_Diagnosis are created and the
values are modelled as property assertions based on the
has_value relation (e.g., ‘has_value 130’ for Fasting_Glu-
cose and ‘has_value 1’ for T2DM_Diagnosis (due to the
COUNT function)). Then, a composite phenotype in-
stance is defined, which combines both single phenotype
instances using property assertions based on has_part re-
lation. In the first step (classification step), a standard
reasoner classifies the single phenotype instances in re-
stricted classes. In our example, the instance of Fasting_
Glucose is classified in the class Fasting_Glucose_AB-
NORMAL (i.e., the fasting glucose value is > = 125 mg/
dL, Fig. 4a, a3) and the instance of T2DM_Diagnosis in
the class T2DM_Diagnosis_YES (because the count of
the T2DM diagnoses is > 0, Fig. 4a, a4). Next, the com-
posite phenotype instance is classified in the RCoP clas-
ses Abnormal_Lab_YES (because the fasting glucose is
abnormal, Fig. 4c, c1) and T2DM_Case_3 (because all
conditions of the corresponding Boolean expression are
fulfilled, Fig. 4c, c2). In this case, further phenotypes can
not be derived or calculated.
Let us consider another example. Suppose, the input

data set contains a T2DM diagnosis, a T1DM and a
T2DM medication (T2DM precedes T1DM medication).
The classification step is similar to the first example.
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The corresponding single phenotype instances are classi-
fied in the classes T1DM_Diagnosis_NO, T2DM_Diag-
nosis_YES, T1DM_Medication_YES and T2DM_
Medication_YES. In the next step (calculation step), the
formula of the NDeP class T2DM_precedes_T1DM_
Medication (Fig. 4b, b1) can be calculated by PhenoMan.
It inserts the variable values (the dates of the both medi-
cations) in the formula and starts the calculation. After
the calculation step, the classification step must be per-
formed again. The calculated instance of T2DM_pre-
cedes_T1DM_Medication is classified in the class
T2DM_precedes_T1DM_Medication_YES (because the
formula returns 1, Fig. 4b, b2). Then, the composite
phenotype instance is classified in the RCoP class
T2DM_Case_1 (Fig. 4c, c2) and the PhenoMan finishes
the calculation.
Finally, the PhenoMan generates the Observation re-

source for the resulting T2DM case and transmits it to
the FHIR Server. In our example, we encode the possible
T2DM cases using a code system (https://www.smith.
care/phenoman/t2dm_case_selection_algorithm), one
code identifying the observation (t2dm_case_calculated)
and five codes for possible values (t2dm_case_1, t2dm_
case_2, t2dm_case_3, t2dm_case_4 and t2dm_case_5).
The resulting Observation resource for case 3 is illus-
trated in Fig. 7.
Additionally, we can generate a tabular reasoner report

or a decision tree diagram.
An example reasoner report for case 1 is shown in Fig. 8.
The class T2DM_Case and its subclasses (T2DM_

Case_1, T2DM_Case_2, etc.) are very suitable for the
representation as a decision tree. The decision tree gen-
erated by PhenoMan (Fig. 9) looks similar to the flow-
chart specified by PheKB.org [37].

Evaluation results
The evaluation has demonstrated that all components of
our solution function correctly. All JUnit tests were suc-
cessful and showed no difference between specified and
calculated results. The comparison between the Pheno-
Man and the SPSS calculation has also succeeded. Al-
though the performance of our approach is not a critical
issue in our use case, we measured the execution time of
the PhenoMan. The calculation of the socio-economic
status (complex algorithm requiring multiple reasoner
runs), for example, takes approximately 0.5 s per dataset.
This performance is completely sufficient for our use
case.
In summary, PhenoMan correctly computes pheno-

types based on valid phenotype specifications (PheSO)
and input data. Additionally, validating phenotype speci-
fications (PheSOs) before deploying them in a product-
ive environment is an extremely useful feature of the
PhenoMan.

Related work
We developed a novel approach to support onto-
logical modelling and reasoning of phenotypes. In
contrast to [8, 9], our solution serves to determine
and to classify phenotypes based on instance data
(e.g., EHR). Moreover, the proposed reasoning process
includes calculation of mathematical formulas at
runtime.
Very similar to our approach, Fernández-Breis et al.

[39] propose to take advantage of the best features of
EHR standards and ontologies. The authors developed
methods allowing a direct use of EHR data for the iden-
tification of patient cohorts leveraging current EHR stan-
dards and semantic web technologies. In [39], openEHR
[40] archetypes were used as EHR standard. An onto-
logical infrastructure was designed including different
ontologies for representing domain entities (colorectal-
domain), the rules for determining the risk level and the
data. The mappings between the phenotyping archetype
and the colorectal-domain ontology were defined and
are automatically executed on the archetyped data in-
stances to generate the OWL dataset. The data is then
transformed into OWL, where the classification is
performed.
Papež et al. [41] evaluated OWL/RDF for enabling

computable representations of EHR-driven phenotyping
algorithms. A proof-of-concept application using the
OWL API and the HermiT reasoner was developed. The
phenotype algorithms are specified based on a rudimen-
tary core ontology without the possibility to model and
execute mathematical calculations. The authors utilised
a simple diabetes phenotype algorithm as an example
and validated their approach against a selected set of de-
siderata proposed by Mo et al. [7]. The evaluation
showed that OWL/RDF is potentially sufficient to store
phenotyping algorithms, as it is versatile enough to meet
most of the desiderata.
We use HL7 FHIR as a standard for exchanging

healthcare information in the SMITH infrastructure. But
the main difference to the both ontological approaches
described above lies in our three-level ontological archi-
tecture. The COP is founded by GFO and provides a
framework for developing PheSOs. In this way, each par-
ticular phenotype model specified as a PheSO has the
same standardised structure and can be executed by
PhenoMan in the same manner. A further advantage of
our solution is that the PhenoMan supports classifica-
tion as well as calculation tasks and works directly with
FHIR format, so that no further transformations are re-
quired. The mapping between EHR data and ontology is
performed by PhenoMan automatically using termin-
ology associations, which are defined for each data elem-
ent in ART-DECOR (and imported into ontology) as
well as in FHIR resources (e.g., Observation).
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The main objective of SHARPn [42] is to develop
methods and modular open-source resources for enab-
ling secondary use of EHR data for high-throughput
phenotyping. The phenotype algorithms are specified
based on Quality Data Model (QDM) [43] and repre-
sented in the HL7 Health Quality Measures Format
(HQMF or eMeasure) [44]. According to the authors,
there are two main challenges. Firstly, data elements in
an EHR may not be represented in a format consistent
with the QDM. Secondly, an EHR typically does not na-
tively have the capability to automatically consume and
execute eMeasure logic. To address these challenges, a
translator tool was developed that converts QDM-
defined phenotyping algorithm criteria into executable
Drools rules scripts.
The Phenotype Execution and Modeling Architecture

(PhEMA) [45] is an open-source infrastructure for
standards-based authoring, sharing, and execution of
phenotyping algorithms. Similarly to SHARPn, PhEMA
uses QDM and HQMF to model phenotype definitions.
Phenotyping algorithms are represented using the
PhEMA Authoring Tool (PhAT), are exported from the
PhAT into executable KNIME [46] workflows and are
executed against data warehouses or data repositories.
In contrast to the rule- or workflow-based description

of phenotyping algorithms, we use an ontology-based
one. Our approach is rather generic and enables a stan-
dardised and structured modelling as well as the reuse
of phenotyping algorithms and their parts (e.g., concepts
and restrictions). Furthermore, the PhenoMan is com-
patible with the native representation of EHR data (HL7
FHIR) in the SMITH infrastructure and does not need
an additional import of the data into a data warehouse.
In [47] a FHIR-compatible model was designed to sup-

port capture of cancer clinical data. Our approach allows
the modelling of different phenotypes based on a core
ontology (COP) and is independent of the EHR repre-
sentation standards. The interpretation of FHIR data
and the mapping to specified phenotypes using termin-
ology associations are provided by PhenoMan.
A method to enable automated transformation of clin-

ical data into OWL ontologies is presented in [48]. The
developed system generates OWL representations of
openEHR archetypes and automatically transforms
openEHR data to OWL individuals. In our approach, the
phenotypes are directly modelled in the ontology and
are automatically mapped to the EHR data. Moreover,
our solution supports classification as well as calculation
of phenotypes.
As described in section ‘Phenotype Specification On-

tologies’, phenotypes can possess links to concepts of ex-
ternal ontologies. For instance, they may be annotated
with concepts of anatomic structures (e.g., Foundational
Model of Anatomy [49]), or situations, respective

processes, where phenotypes are observed (e.g., electro-
cardiographic monitoring). The linkage is similar to the
Entity-Quality method [50] (entity: anatomic structure
or process, quality: phenotype) and may improve com-
parison of COP across multiple domains.
Hoehndorf et al. [9] proposed the PhenomeNET for

incorporation of phenotype ontologies from different
species. PhenomeNET can predict orthologous genes
with common pathways and common related diseases.
Apart from the different interpretation of the term
‘phenotype’, the main focus of our attempt is to deduce
complex phenotypes from a set of basic phenotypes of
an individual.
The Human Phenotype Ontology (HPO) [8] associates

phenotypic abnormalities with underlying diseases and
participating genes, whereas COP can contain all sorts
of properties of an organism (including non-
abnormalities). Currently, COP does not offer weights
for phenotype-disease relations, like HPO does to sort
diseases for a phenotype set by relevance. We will inves-
tigate ways to add this functionality to COP in future.

Discussion
Mo et al. [7] propose 10 desired characteristics for a
flexible, computable phenotype representation model. In
this section, we discuss our implementation of the pro-
posed desiderata.

Structure clinical data into queryable forms
In the SMITH project, the patient data is structured and
integrated in a Health Data Storage (HDS) according to
HL7 FHIR. FHIR Search is used as a query language.
PhenoMan supports querying and writing FHIR re-
sources to populate the PheSO respectively to write the
inferred phenotypes back to the server. Additionally, we
investigate the future application scenarios of more ex-
pressive query languages, such as FHIRPath [51] and
Clinical Quality Language (CQL) [52].

Recommend a common data model, but also support
customization for the variability and availability of EHR
data among sites
HL7 FHIR is used as a common EHR data model. The
FHIR specification supports adaptation to particular
contexts of use by means of profiling [53].

Support both human-readable and computable
phenotype representations
The PheSOs are computable representations of pheno-
type models. They are implemented in OWL and can be
edited using the PhenoMan Editor or common ontology
editors such as Protégé. The PhenoMan interprets Phe-
SOs based on the COP and infers specified phenotypes.
Additionally, the PhenoMan provides human-readable
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representations in graphic (diagrams) or tabular (spread-
sheets) form.

Implement set operations and relational algebra
The ontological representation supports intersection,
union and negation operations as well as existential and
universal quantifiers in accordance with OWL DL. To
extend the expression possibilities, First-Order Logic can
be considered in the future work.

Represent phenotype criteria with structured rules
Our multistage reasoning approach supports structured
specification of phenotype models from single pheno-
types (non-restricted and restricted) through combined
phenotypes (Boolean expressions) to derived phenotypes
(mathematical calculations). The PhenoMan iteratively
processes the individual steps (classification and calcula-
tion rules) in the proper order until all specified pheno-
types are inferred. It supports Boolean operations
(conjunction, disjunction and negation), specification of
value ranges (as intervals or enumerations) and aggre-
gate functions (for multiple values of single phenotypes
as well as for values calculated based on different
datasets).

Support defining temporal relations between events
All FHIR resource types processed by PhenoMan possess
one or more date attributes. The relevant date attributes
were implemented and associated with the correspond-
ing resource types. When the PhenoMan receives re-
sources from the FHIR Server, the dates of the resources
are considered and can be used as variable values in for-
mulas of NDeP classes (the dollar sign in the variable
name indicates the resource date as variable value, Fig.
4b1).

Use standardised terminologies, ontologies, and facilitate
reuse of value sets
In the SMITH project, the metadata (catalogue of items,
data elements) is specified using the software ART-
DECOR [17]. ART-DECOR is very suitable to specify
terminology associations (e.g., LOINC, SNOMED, ICD,
RxNorm) and value sets. The PhenoMan integrates the
metadata from ART-DECOR and uses the specified ter-
minology associations and value sets (codes) to query
the HDS and to write the inferred phenotypes.

Define representations for text searching and natural
language processing
In SMITH, a NLP module is upstream that extracts and
transforms relevant data from unstructured EHR docu-
ments into structured form. The structured data is then
integrated in the HDS, so that the PhenoMan can work
only with structured data.

Provide interfaces for external software algorithms
We use the Java Expression Evaluator (EvalEx) [27] for
mathematical calculations, but the integration of other
libraries (e.g., for executing R scripts) or rule systems
(e.g., SWIRL or Drools) is also possible and will be eval-
uated in future work.

Maintain backward compatibility
Our ontological phenotype representation model is ro-
bust to changes in EHR data, used terminologies and
standards. If, for instance, in our T2DM example both
ICD9 and ICD10 must be supported, the missing codes
(ICD10) have to be completed in the corresponding
PheSO. Additionally, we develop a component to specify
and automatically integrate required code mappings into
the ontology. The changes in the EHR data model have
no impact on the phenotype specifications (PheSOs).
The PhenoMan contains a FHIR mapping module
implementing all required functionalities to extract rele-
vant information from FHIR resources. Supported re-
source types are offered for selection during the
phenotype specification and are saved in the correspond-
ing PheSO. If the EHR data model changes, it is only ne-
cessary to re-implement the mapping module. The
switch from FHIR r3 to r4 has already been done.

Conclusion
We developed a novel ontology-based method to model
phenotypes of living beings with the aim of automated
phenotype reasoning based on instance data (e.g., patient
data from EHR). Our solution includes an enhanced it-
erative reasoning process combining classification tasks
with mathematical calculations at runtime. This new ap-
proach can be used in clinical context, e.g., for support-
ing the diagnostic process, evaluating risk factors or
recruiting appropriate participants for clinical or epi-
demiological studies. About 20 phenotype models have
already been specified and the ontology as well as the
reasoning method were successfully evaluated.
Our approach has currently the following limitations:

1. only structured data can be considered (a NLP mod-
ule is upstream); 2. mathematical calculations are only
possible for individual data sets (no statistical evalua-
tions over multiple data sets).
An integration of more complex algorithms into the

reasoning process is possible and has to be investigated
in respect of accessing external libraries (e.g., R scripts).
The current formalism will be extended in the future to
optimise the implementation of selected desiderata
expounded by Mo et al. [7].
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