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Abstract: The seven-transmembrane protein, Smoothened (SMO), has shown to be critical for the
hedgehog (HH) signal transduction on the cell membrane (and the cilium in vertebrates). SMO is
subjected to multiple types of post-translational regulations, including phosphorylation, ubiquiti-
nation, and sumoylation, which alter SMO intracellular trafficking and cell surface accumulation.
Recently, SMO is also shown to be regulated by small molecules, such as oxysterol, cholesterol, and
phospholipid. The activity of SMO must be very well balanced by these different mechanisms in vivo
because the malfunction of SMO will not only cause developmental defects in early stages, but also
induce cancers in late stages. Here, we discuss the activation and inactivation of SMO by different
mechanisms to better understand how SMO is regulated by the graded HH signaling activity that
eventually governs distinct development outcomes.

Keywords: hedgehog signaling; smoothened; phosphorylation; ubiquitination; cholesterol;
phospholipid

1. Introduction

Hedgehog (HH) was initially discovered in Drosophila as a segment polarity gene
involved in embryo patterning, and HH signaling pathways were shown to be very im-
portant in both embryonic development and post-developmental tissue homeostasis [1–3].
Aberrant HH signaling is implicated in many human disorders, including several types of
cancers [4–7]. The HH signal is transduced by a signaling cascade that is highly conserved
among different species. In Drosophila, at the plasma membrane, the HH receptor system
includes the receptor complex patched (PTC)-interference HH (IHOG) and the signal trans-
ducer Smoothened (SMO) [8–10]. Binding of HH to PTC-IHOG relieves PTC inhibition on
SMO, allowing SMO to block the partial degradation of the cubitus interruptus (Ci)/GLI
family of zinc finger transcription factors and thereby induce the expression of HH target
genes, such as decapentaplegic (dpp), ptc, and engrailed (en) [2,11] (Figure 1).

SMO, an atypical G protein-coupled receptor (GPCR), belongs to the family of Frizzled
seven transmembrane proteins. SMO has three functional domains, an extracellular domain
(ECD) containing a cysteine-rich domain (CRD), heptahelical transmembrane domains
(TMDs), and a cytosolic tail at the C-terminus. The alignment of SMO sequences among
species [12] indicated that the CRD and TMDs are highly conserved, with some diversity of
amino acids in the C-terminal cytoplasmic tail (C-tail). It has also been shown that the CRD
of SMO is critical for HH signaling in both Drosophila and vertebrates, and SMO lacking
the CRD failed to accumulate on the plasma membrane or to the primary cilium [13,14].
The C-tail of SMO is otherwise critically regulated by phosphorylation that promotes the
dimerization of the C-tail, thus the activation of SMO (see detailed discussion in below). The
Frizzled family members often bind to ligands for signal transduction; however, SMO does
not seem to have a ligand. SMO is subjected to various post-translational modifications,
including phosphorylation, ubiquitination, and sumoylation. Different animal models
have been used to study the mechanisms of SMO regulation as the mechanisms of SMO
regulation are highly conserved among species [1–3,15].
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however, SMO does not seem to have a ligand. SMO is subjected to various post-transla-
tional modifications, including phosphorylation, ubiquitination, and sumoylation. Differ-
ent animal models have been used to study the mechanisms of SMO regulation as the 
mechanisms of SMO regulation are highly conserved among species [1–3,15]. 

Over the past decades, many HH pathway components have been identified; how-
ever, it is still unclear how PTC inhibits SMO to block the activation of the HH pathway. 
It is unlikely that PTC inhibits SMO by direct association [16,17]. In addition, the inhibition 
occurs even when SMO is present in 50-fold molar excess of PTC, and substochiometric 
levels of PTC can repress SMO activation [17,18]. These findings suggest that the inhibi-
tion process is catalytic [17]. The involvement of small molecules, rather than a protein 
ligand, has been proposed: PTC may inhibit the production of positive regulators or pro-
mote the synthesis of inhibitory molecules [17]. The mechanisms of SMO regulation bring 
a lot interest in the SMO research field because abnormal SMO activation often results in 
basal cell carcinoma and medulloblastoma, and SMO has been an attractive therapeutic 
target [19,20], exemplified by the U.S. FDA-approved drugs, such as vismodegib, 
sonidegib, and glasdegib, for the treatment of cancers known to be driven by SMO activa-
tion [21–24]. Interestingly, SMO may acquire drug resistance through a single amino acid 
mutation [25,26]. Taken together, a better understanding of the mechanisms that drive 
SMO activation/inactivation will not only provide insights into fundamental developmen-
tal processes, but also lead to new diagnostic tools and therapeutic approaches. This re-
view will mainly focus on the regulation of Drosophila SMO; however, we also briefly dis-
cuss the differences between Drosophila and vertebrates. 

 
Figure 1. The highly conserved HH signaling pathway. Shown here is a scheme of the HH path-
way. (Left panel), in the absence of HH, PTC inhibits SMO. Ci/GLI is processed into a truncated 
repressor form that enters the nucleus to block target gene expression. (Right panel), the presence 
of HH relieves the inhibition of PTC on SMO, leading to dimmerization and cell surface accumula-
tion of SMO. Upon Hh stimulation, full-length Ci is activated to turn on target gene expression. 

2. SMO Phosphorylation, Dimerization, and Conformational Change 
SMO is subjected to G protein [27] and phosphorylation regulations that control the 

switch between on and off and, therefore, the different signaling states of SMO. HH in-
duces phosphorylation of SMO C-tail by multiple kinases, including protein kinase A 
(PKA) and casein kinase 1 (CK1) [28–30], casein kinase 2 (CK2) [31], G protein-coupled 
receptor kinase 2 (GPRK2) [32], and atypical PKC (aPKC) [33], which activate SMO by 
inducing differential phosphorylation [34], thus the gradual conformational change in the 
protein [34,35]. How numerous phosphorylation contribute to SMO activation? It is obvi-
ous that SMO adopts a differential phosphorylation mechanism in response to different 
levels of HH signaling activity [34]. In vertebrates, HH signal transduction depends on 

Figure 1. The highly conserved HH signaling pathway. Shown here is a scheme of the HH pathway.
(Left panel), in the absence of HH, PTC inhibits SMO. Ci/GLI is processed into a truncated repressor
form that enters the nucleus to block target gene expression. (Right panel), the presence of HH
relieves the inhibition of PTC on SMO, leading to dimmerization and cell surface accumulation of
SMO. Upon Hh stimulation, full-length Ci is activated to turn on target gene expression.

Over the past decades, many HH pathway components have been identified; however,
it is still unclear how PTC inhibits SMO to block the activation of the HH pathway. It is un-
likely that PTC inhibits SMO by direct association [16,17]. In addition, the inhibition occurs
even when SMO is present in 50-fold molar excess of PTC, and substochiometric levels of
PTC can repress SMO activation [17,18]. These findings suggest that the inhibition process
is catalytic [17]. The involvement of small molecules, rather than a protein ligand, has been
proposed: PTC may inhibit the production of positive regulators or promote the synthesis
of inhibitory molecules [17]. The mechanisms of SMO regulation bring a lot interest in the
SMO research field because abnormal SMO activation often results in basal cell carcinoma
and medulloblastoma, and SMO has been an attractive therapeutic target [19,20], exem-
plified by the U.S. FDA-approved drugs, such as vismodegib, sonidegib, and glasdegib,
for the treatment of cancers known to be driven by SMO activation [21–24]. Interestingly,
SMO may acquire drug resistance through a single amino acid mutation [25,26]. Taken
together, a better understanding of the mechanisms that drive SMO activation/inactivation
will not only provide insights into fundamental developmental processes, but also lead to
new diagnostic tools and therapeutic approaches. This review will mainly focus on the
regulation of Drosophila SMO; however, we also briefly discuss the differences between
Drosophila and vertebrates.

2. SMO Phosphorylation, Dimerization, and Conformational Change

SMO is subjected to G protein [27] and phosphorylation regulations that control
the switch between on and off and, therefore, the different signaling states of SMO. HH
induces phosphorylation of SMO C-tail by multiple kinases, including protein kinase A
(PKA) and casein kinase 1 (CK1) [28–30], casein kinase 2 (CK2) [31], G protein-coupled
receptor kinase 2 (GPRK2) [32], and atypical PKC (aPKC) [33], which activate SMO by
inducing differential phosphorylation [34], thus the gradual conformational change in
the protein [34,35]. How numerous phosphorylation contribute to SMO activation? It is
obvious that SMO adopts a differential phosphorylation mechanism in response to different
levels of HH signaling activity [34]. In vertebrates, HH signal transduction depends on the
primary cilium, and ciliary accumulation is required for SMO activation [36–39]. Similarly,
phosphorylation by multiple kinases promotes the ciliary localization of mammalian
SMO [40]. The phosphorylation of SMO has been reviewed [41,42]. Recent findings
further suggest that HH promotes the association of the kinases with SMO [43], although
the interaction can be dynamic. Which, out of SMO phosphorylation and cell surface
accumulation, comes first? SMO cell surface accumulation turns out to be dynamic and
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progressive because HH makes changes in SMO subcellular localization in order for SMO to
be associated with plasma membrane localized kinases [44], which is thought to account for
the high-threshold HH signaling activity. Of note, phosphorylation mediates the balance
between the transcriptional activator and repressor forms of Ci/GLI, which play dual roles
by two distinct forms [41]. Fused (FU) and Costal 2 (COS2) are regulators of HH signaling
downstream of SMO, and are also subjected to phosphorylation; however, we will not
discuss this aspect because we are focusing on the mechanisms of SMO regulation.

Dephosphorylation processes are also involved in SMO regulation. Early studies
identified protein phosphatase 2A (PP2A) as a positive regulator in HH signaling [45–47].
Later studies showed that protein phosphatase 4 (PP4) and PP2A were the phosphatases
involved in regulating dephosphorylation of SMO and Ci, respectively [48]. The other
independent study found that PP2A may also play a role in dephosphorylating SMO [49].
The phenotypes for the positive role of PP2A in HH signaling may mainly come from
its activity in regulating Ci. It is not surprising that SMO can be regulated by different
phosphotases that counteracts the kinases to phosohorylate SMO. A recent study showed
that the protein phosphatase V (PPV) destabilizes widerborst (WDB), a regulatory subunit
of PP2A, through competitive interaction with the catalytic subunit of PP2A, resulting
in Wdb ubiquitination and degradation [50]. It is not very clear whether SMO can be
regulated by specific phosphatases under different circumstances.

3. SMO Ubiquitination, Sumoylation, and Stability Control

What is the mechanism to counteract SMO activation by phosphorylation? Studies
using the Drosophila model have shown that ubiquitination promotes SMO degradation
through lysosome- and proteasome-mediated pathways [51,52] (Figure 2). The initial
experiments found that the inactivation of the ubiquitin-activating enzyme, UBA1, robustly
accumulate SMO in Drosophila wing, indicating the blockade of SMO degradation [51,52].
More efforts than expected have been implemented to identify the E3 ubiquitin-protein
ligase that specifically promotes SMO ubiquitination, likely because of the fact that SMO
has many lysine residues that can be ubiquitinated, especially those lysine residues in the
C-tail, or that multiple E3 ligases are involved. Studies have found that Smurf family E3
ubiquitin ligases target both SMO and PTC, and that HH promotes PTC ubiquitylation by
releasing the Smurf family of E3s from SMO [53]. CUL4-DDB1 E3 ubiquitin ligase complex
can also interact with and promote the ubiquitination in SMO C-tail [54]. Furthermore,
Herc4 has also been identified as a E3 ligase of SMO [55] (our unpublished observations).
To put SMO ubiquitination in the context of HH regulation, it has been shown that HH
signaling promotes the phosphorylation of DDB1 by PKA and the dissociation of CUL4-
DDB1 complex from SMO, resulting in the accumulation of SMO protein [54]. The other
major regulation of SMO ubiquitination is the deubiquitination process. It has been well
characterized that ubiquitin-specific protease 8 (USP8) promotes the removal of ubiquitin
from SMO, and that HH stimulation promotes the accessibility of the deubiquitinase to
SMO [51,52]. UCHL5 may also be involved in the deubiquitination process [56]. In these
studies, the deubiquitination of SMO promotes the cell surface accumulation and thus the
activation of SMO, suggesting that the removal of ubiquitin stabilizes SMO protein and
therefore activates SMO on the cell surface.

In vertebrate systems, the transmembrane proteins, i.e., multiple epidermal growth
factor-like domain 8 (MEGF8) and the RING family E3 ligase mahogunin ring finger 1
(MGRN1), form a receptor-like ubiquitin ligase complex on the cell membrane to promote
SMO ubiquitination, endocytosis, and subsequent degradation [57]. Mice with MEGF8
or MGRN1 mutation shows specific defects in heart, limb, and skeleton. The treatment
of the SMO inhibitor, vismodegib, can partially rescue the defects, suggesting that the
phenotypes are caused by SMO activation. It is possible that the vertebrates use additional
E3 ligase(s) to prevent SMO activation, and/or the vertebrates use different mechanisms
in different developmental tissues. It is possible that different E3 ligases are involved in
different aspects of SMO regulation in a vertebrate system, exemplified by a recent study
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in which the E3 ubiquitin ligase WWP1 specifically promotes the ubiquitination and the
ciliary dynamics of vertebrate SMO [58]. Further studies are expected to identify and
characterize the E3 ligases in vertebrate systems, similar to those E3 ligases involved in
Drosophila SMO regulation.
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to HH stimulation. Ubiquitination clearly shares the lysine residues that are sumoylated, 
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inhibit SMO ubiquitination, whereas the PKA inhibitor, H-89, or the CK1 inhibitor, CK1-
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Figure 2. SMO regulation in HH signaling. Shown here is a scheme of SMO regulation through different mechanisms.
In the absence of HH, unphosphorylated SMO is ubiquitinated and degraded through proteosomes and lysosomes. In
the presence of HH, SMO is phosphorylated by multiple kinases. Lysine residues in the C-tail of SMO are sumoylated to
counteract ubiquitination. Phosphorylation and dimmerization leads to the cell surface accumulation and activation of
SMO. Both PI(4)P and chelesterol can activate SMO upon HH stimulation.

SMO is also subjected to other post-translational modifications, such as sumoylation
(Figure 2). Recent studies have found that the small ubiquitin-related modifier (SUMO)
pathway components UBC9 (a SUMO-conjugating enzyme E2), PIAS (a SUMO-protein
ligase E3), and Smt3 (the SUMO isoform in Drosophila) exhibit positive effects on SMO
accumulation [59,60]. HH induces the sumoylation of SMO by dissociating the desumoyla-
tion enzyme ULP1 from SMO. Sumoylation, in parallel to phosphorylation, stabilizes SMO
and activates HH signaling. Furthermore, KRZ, the Drosophila β-arrestin 2, blocks SMO
sumoylation and prevents SMO accumulation. RNAi of KRZ decreases the interaction
between SMO and ULP1 [60], suggesting that KRZ regulates the sumoylation of SMO
through facilitating SMO-ULP1 interaction.

Phosphorylation by multiple kinases increases the level of SMO, whereas ubiquitina-
tion by different E3 ligases decreases the level of SMO. In addition, sumoylation stabilizes
SMO protein. All these mechanisms contribute to the stability control of SMO in response
to HH stimulation. Ubiquitination clearly shares the lysine residues that are sumoylated,
indicating that sumoylation counteracts ubiquitination to activate SMO. PKA and CK1
inhibit SMO ubiquitination, whereas the PKA inhibitor, H-89, or the CK1 inhibitor, CK1-7,
induce SMO ubiquitination. In addition, phospho-mimetic mutation of SMO exhibits a
remarkably low level of ubiquitination and a high level of stability [52]. These suggest that
phosphorylation counteracts ubiquitination of SMO and indicate that the levels of SMO
protein are sophisticatedly controlled in vivo so as to mediate different thresholds of HH
signaling activity.

There seems to be more mechanisms involved in SMO stability control. For example,
it has been shown that the hepatocyte growth factor-regulated tyrosine kinase substrate
(HRS) interacts with SMO and promotes SMO ubiquitination [61]. In addition, the endoso-
mal sorting complex required for transport complex-III (ESCRT-III) core subunits, VPS32
(also known as Shrub in Drosophila, SNF7 in yeast, and CHMP4 in mammal) and VPS20
(CHMP6 in mammals), intracellularly regulate SMO stability [62]. Surprisingly, SMO can
be activated in ESCRT-III, which does not rely on HH stimulation and is not inhibited by
PTC, indicating that SMO activation can occur in an HH- and PTC-independent manner
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when SMO protein is highly accumulated in specific compartment in the cell. Mechanis-
tically, a Krz-mediated pathway, operating in parallel to endocytosis, directs SMO to the
ESCRT-III/multivesicular body (MVB), leading to the high accumulation and activation
of SMO [62]. It was not the first time to show the ESCRT function in HH signaling. The
ESCRT machinery has been shown to regulate this secretion and, thus, the long-range HH
signaling activity [63], suggesting that the ultimate activation of HH signaling targets by
blocking the ESCRT-III are likely caused by different layers of regulation. It should also be
noted that Krz plays different roles in regulating SMO intracellular trafficking and stability
control, although β-arrestin 2 may function differently in vertebrate system.

4. SMO Regulation by Lipid-Based Modulators

It has been a puzzle whether SMO is activated by a protein ligand, or a ligand-
like molecule. Independent studies have found that HH induces the production of
phosphatidyl-inositol 4-phosphate (PI(4)P) in both Drosophila wing disc and cultured
cell [64,65] (Figure 2, right panel). Interestingly, PI(4)P directly interacts with SMO through
the arginine motifs in the C-tail and stimulates phosphorylation and dimerization of SMO,
which induces SMO cell surface/cilium accumulation [64]. The pleckstrin homology (PH)
domain of GPRK2 facilitates PI(4)P to activate SMO. It is speculated that the PTC sterol
sensing domain (SSD) attracts PI(4)P and, thus, inhibits SMO activation by PI(4)P [64]. In
another study using molecular dynamics simulation, phospholipids are shown to bind
SMO in the intracellular portion [66]. To support the notion that lipids play positive roles in
activating SMO and thus HH signaling, a study has found that HH activates phospholipase
A2 (PLA2) to promote the ciliary localization of SMO [67]. Together, these studies indicate
phospholipid may function as a signaling molecular between PTC and SMO; however, the
ligand-like property of these phospholipids may need further characterization, although
these phospholipids bind to the receptor inside the cell and, therefore, potentially to the
intracellular ligands.

Phospholipids may also play different roles in different tissue. Inositol polyphos-
phate 5-phosphatase E (INPP5E), functioning to remove the 5-phosphate from PI(4,5)P2,
PI(3,4,5)P3, and PI(3,5)P2, affects ciliary phosphatidylinositol trafficking and positively
regulates HH signaling [68,69]. Inactivation of INPP5E in primary cilia of neural stem cells
leads to the accumulation of PI(4,5)P2, resulting in the ciliary membrane accumulation
of Gpr161 [70], which plays a negative role in the HH signaling. A recent study further
characterized the role of INPP5E in HH signaling and demonstrated that the negative role
of INPP5E in HH signaling was through regulation of the active and repressor forms of
GLI proteins [71]. It might be possible that INPP5E regulates GLI processing in the neural
tube but regulates other aspects of the HH signal transduction in other tissues.

Extensive structural analyses have been performed to identify the possible extracellu-
lar ligand-like molecules that activate SMO. SMO contains a highly conserved extracellular
CRD, but unlike other GPCRs, no ligand-binding function has been identified. It has been
shown that SMO-mediated signal transduction is sensitive to sterols and oxysterol deriva-
tives of cholesterol [72–74], and possibly sensitive to glucocorticoid budesonide [75]. In
addition to the cysteins in the CRD, Drosophila Smo has other conserved cysteins (C218,
C238, and C242) in ECD; mutating these cysteins significantly decreases the activity of
SMO [75], suggesting that, in addition to the CRD, the cysteins in ECD play critical roles in
maintaining the conformation and the activity of SMO. From our systematic analysis of
recent data published [75,76] and data with different combinations of cysteine mutations
(our unpublished data), it is likely that some of the cysteins in the ECD (including the
CRD) play pivotal role(s) in SMO function (Figure 3). An interesting model has been
proposed, in which specific molecules bind to the CRD, or even to the ECD, to induce a
conformational change in the ECD, therefore, bringing the ECD to the TMDs and eventually
change to the conformation of the TMDs and regulation of SMO signaling activity [75].
Recent studies have also suggested a direct involvement of oxysterol in the activation of
HH signaling [74,77–79]; however, it is still unclear whether oxysterols are the endogenous
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SMO activator because of the significantly low physiological level than EC50 for HH path-
way activation [74]. Unlike vertebrate SMO, Drosophila SMO CRD does not interact with
oxysterols [80], raising the possibility of another endogenous ligand-like molecule to be
commonly involved.
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the AlphaFold protein structure database. Critical cysteins are indicated by red stars with the
positions numbered.

Exciting findings come from the recent structural studies, which suggest that choles-
terol directly interacts with SMO [81] and activates SMO through binding to the extracellu-
lar CRD [76,82,83]; therefore, increasing the accessibility of cholesterol at the membrane of
the cilium results in SMO activation [84]. However, an independent study indicates that
the CRD domain is not required for PTC-SMO communication, and that cholesterol within
the membrane bilayer is sufficient to activate SMO [85]. Cholesterol might also become
covalently attached to the CRD under specific circumstances [82]. These seemingly contra-
dictory models suggest important new lines of study to elucidate how cholesterol regulates
SMO under physiological conditions. The structural studies may again give suggestions on
how cholesterol regulates SMO. Another recent study indicates that SMO forms a π-cation
lock in transmembrane domains, which keeps the SMO protein inactive [86]. Upon HH
stimulation or an active mutation (e.g., SMOM2), the π-cation lock is broken, allowing
cholesterol; oxysterols, such as 20(S)-hydroxycholesterol [20(S)-OHC]; or cyclopamine to
bind SMO CRD and cause CRD reorientation, further leading to the 7-transmembrane
domain activation [86]. In support of this idea, the active form of SMO harbors a hydropho-
bic tunnel connecting the inner membrane leaflet with extracellular CRD domain [86], a
potential pathway for cholesterol trafficking between CRD and 7-transmembrane domain.
It waits for further investigation regarding how SMO CRD talks to the transmembrane
domain to shuffle cholesterol between these domains.

It might be possible for other cholesterol derivatives or even other types of molecules
to be involved in SMO activation. 24(S),25-epoxycholesterol (24(S),25-EC), a cilia oxys-
terol isolated form sea urchin embryo, interacts with and activates SMO [87]. Inhibi-
tion of the oxysterol biosynthesis enzyme, HSD11β2, by carbenoxolone (CNX, a deriva-
tive of the HSD11β2 inhibitor in licorice) or RNAi of the downstream enzyme Sterol
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27-hydroxylase (CYP27A1) reduces HH signaling. Homozygous deletion of HSD11β2
reduces tumor weight of HH pathway-associated medulloblastoma [87]. Independent stud-
ies have also identified endogenous sterol-like densities associated with PTC1, including
24(S),25-epoxycholesterol (24(S),25-EC), 24-keto-cholesterol (24k-C), 25-hydroxycholesterol
(25-OHC), and 24-hydroxycholesterol (24-OHC), which are characterized by mass spec-
trometry analysis [88,89]. Further cry-EM structure analysis indicates that 24(S),25-EC
specifically interacts with a ligand binding site at seven-transmembrane helices of SMO
during SMO–Gi coupling [90]. These studies suggest that 24(S),25-EC can function as
trafficking molecular between PTC and SMO. Taken together, multiple molecules could
be involved in SMO activation and subjected to PTC regulation. We expect that deeper
mechanistic studies will address the regulation under physiological conditions in different
types of tissues.

5. Perspectives

The question of how PTC inhibits SMO has been a long-standing puzzle. The involve-
ment of small molecules, rather than a protein ligand, has been proposed [17] (Figure 2, left
panel); however, the identity of these small molecules remain to be further characterized.
The involvement of cholesterol may not fully answer the question of how PTC inhibits
SMO because other molecules, such as phospholipids, are also involved. The biosynthesis
of cholesterol by a cholesterol-producing enzyme DHCR7 near the ciliary base controls
HH pathway activation [91]; however, it is unclear whether the endogenous cholesterol
biosynthesis regulates HH singling in other tissues or other species, and whether HH
signaling regulates the production of cholesterol. It is also unclear how PTC controls the
pools of cholesterol so as to regulate SMO. Recent studies of the structural biology of
SMO and PTC have made great contribution to the HH signaling field. Prediction of the
structures of various SMO interacting proteins and molecules using the AlphaFold [92]
may identify new mechanisms of SMO regulation. Although HH signaling depends on
primary cilia in vertebrates but not in Drosophila [93], we have been convinced that the
mechanisms of SMO regulation are largely conserved.
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