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Dysregulation of glutamate homeostasis is a well-established core feature of
neuropsychiatric disorders. Extracellular glutamate concentration is regulated by
glutamate transporter 1 (GLT-1). The discovery of a beta-lactam antibiotic, ceftriaxone
(CEF), as a safe compound with unique ability to upregulate GLT-1 sparked the interest
in testing its efficacy as a novel therapeutic agent in animal models of neuropsychiatric
disorders with hyperglutamatergic states. Indeed, more than 100 preclinical studies
have shown the efficacy of CEF in attenuating the behavioral manifestations of
various hyperglutamatergic brain disorders such as ischemic stroke, amyotrophic
lateral sclerosis (ALS), seizure, Huntington’s disease, and various aspects of drug use
disorders. However, despite rich and promising preclinical data, only one large-scale
clinical trial testing the efficacy of CEF in patients with ALS is reported. Unfortunately,
in that study, there was no significant difference in survival between placebo- and CEF-
treated patients. In this review, we discussed the translational potential of preclinical
efficacy of CEF based on four different parameters: (1) initiation of CEF treatment in
relation to induction of the hyperglutamatergic state, (2) onset of response in preclinical
models in relation to onset of GLT-1 upregulation, (3) mechanisms of action of CEF
on GLT-1 expression and function, and (4) non-GLT-1-mediated mechanisms for CEF.
Our detailed review of the literature brings new insights into underlying molecular
mechanisms correlating the preclinical efficacy of CEF. We concluded here that CEF
may be clinically effective in selected cases in acute and transient hyperglutamatergic
states such as early drug withdrawal conditions.
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INTRODUCTION

Glutamate dysregulation is evident in preclinical models of neurological and psychiatric disorders
(Tsai et al., 1998; Campos et al., 2012; Stephens et al., 2014; Miladinovic et al., 2015).
Increased extracellular glutamate concentrations were observed in animals exposed to ethanol
(Das et al., 2015), ischemia (Ueda et al., 1992), and amyotrophic lateral sclerosis (ALS)
(Andreassen et al., 2001). There are several possible mechanisms involving the dysregulation of
glutamate homeostasis in neurological and psychiatric disorders. For instance, nicotine exposure
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increased extracellular glutamate concentrations by stimulation
of nicotinic acetylcholine receptors (nAChRs) (Konradsson-
Geuken et al., 2009). This increase in glutamate concentrations
might be associated with alterations in glutamate receptors
and transporters in pre- and post-synaptic neurons as well
as in astrocytes. Chronic ethanol consumption reduced the
expression of major glutamate transporters such as glutamate
transporter-1 (GLT-1 whose human homolog is excitatory
amino acid transporter 2, EAAT2), and increased extracellular
glutamate concentrations in the nucleus accumbens (NAc) of
male alcohol-preferring (P) rats (Das et al., 2015). Increase in
glutamate efflux from pre-synaptic neurons (Nishizawa, 2001)
and reversal of GLT-1 (Roettger and Lipton, 1996; Seki et al.,
1999) caused excitotoxicity in an ischemic stroke model. It has
been found that global ischemia increased extracellular glutamate
concentrations by inhibition of the nitric oxide pathway in rats
(Zhang et al., 1993).

It is important to note that the majority of extracellular
glutamate concentration is regulated mainly by GLT-1 (Danbolt,
2001). Thus, finding an upregulator of this transporter would
be clinically relevant. Indeed, Rothstein et al. screened more
than 1,000 FDA-approved compounds (Rothstein et al.,
2005) and found that mice treated with beta (β-)-lactam
antibiotics, specifically ceftriaxone (CEF), for 5 days increased the
transcription level of GLT-1 gene, which led to the upregulation
of GLT-1 protein. This effect was observed 48 h after drug
administration and persisted for at least 7 days. Furthermore,
CEF injection at 200 mg/kg/day (IP) for 5-7 days increased
GLT-1 expression and glutamate uptake in an animal model
of Parkinson’s disease, and this effect was observed for 4 and
7-14 days, respectively, after treatments in naïve rats (Chotibut
et al., 2014). In addition, the IP injection of CEF (200 mg/kg)
for 5-7 days upregulated GLT-1 in the hippocampus and spinal
cord, and this effect was observed 3 months after the last CEF
IP injection (Rothstein et al., 2005). The results of these studies
suggest that repeated CEF administration at adequate dose
upregulates GLT-1 in certain brain regions as early as 2 days,
and that the GLT-1 upregulation lasts for an extended period of
time up to 3 months.

Ceftriaxone has been reported extensively to attenuate
neurological and psychiatric manifestations in part by
upregulation of astrocytic glutamate transporters, including GLT-
1 and cystine/glutamate antiporter (xCT), in mesocorticolimbic
brain regions (Sari et al., 2011; Rao et al., 2015b; Zumkehr
et al., 2015; Guan et al., 2016; Krzyżanowska et al., 2017). It is
important to note that there are at least two GLT-1 isoforms,
GLT-1a and GLT-1b (Berger et al., 2005). We reported in
a previous study from Sari’s laboratory that CEF treatment
upregulated both GLT-1a and GLT-1b in the prefrontal cortex
and nucleus accumbens (Alhaddad et al., 2014a). It is well-known
that GLT-1b is mainly expressed in astrocytes, and that GLT-1a is
predominantly located in astrocytes and neurons (Berger et al.,
2005; Holmseth et al., 2009). Although, the majority of GLT-1
is expressed in astrocytes, which are upregulated with CEF
treatment, we believe that upregulation of neuronal GLT-1 by
CEF treatment also plays a critical role in regulating extracellular
glutamate or hyperglutamatergic state. As such, studies are

warranted to translate successful preclinical results of CEF into
proof-of-concept pilot studies. It is also warranted to investigate
the correlation between the induction time of hyperglutamatergic
state associated with neuropsychiatric disorders and appropriate
time for initiating therapy. Furthermore, investigation of the
onset of action of this compound in upregulating GLT-1 and
xCT expression is important to establish a strategical plan for
the duration of treatment. In addition to activation of GLT-1
and xCT, studies from Sari’s laboratory also showed that CEF’s
attenuation of ethanol-seeking behavior is driven by upregulated
equilibrative nucleoside transporter type-1 (ENT-1) (Sari et al.,
2013b) and water channel aquaporin-4 (AQP-4) (Lee et al.,
2013). In addition, studies have shown that CEF induced
neuroprotection and attenuated proinflammatory cytokines in a
rat model of traumatic brain injury (Wei et al., 2012; Zhao et al.,
2020) and neuropathic pain (Amin et al., 2012).

We argue here that the translational block may stem from the
fact that in the majority of these studies, CEF was administered
prior to the induction of acute hyperglutamatergic state and,
hence, prior to the onset of glutamate-induced excitotoxicity.
This “prophylactic approach” made it possible for CEF to
offset the increase of synaptic glutamate as soon as it takes
place. This scenario is quite different from initiating CEF
treatment in humans with refractory psychiatric or neurological
diseases where chronic hyperglutamatergic states have already
caused neuronal toxicity, and neuronal damage may not benefit
from upregulation of glutamate transporter. In this review, we
discussed the potential therapeutic effects of CEF, administered
prior to or post induction of neurological disorders, on
attenuating the dysregulated glutamatergic system of preclinical
models of neurological and psychiatric disorders. We also
discussed here the applicability of translating the pre-clinical data
into humans and characteristics of using CEF in proof-of-concept
clinical trials to test its efficacy in attenuating manifestations of
certain neuropsychiatric disorders.

GLUTAMATERGIC SYSTEM UNDER
PHYSIOLOGICAL CONDITIONS

Glutamate is a major excitatory neurotransmitter in the central
nervous system. It serves as an important intermediate in
energy metabolism (Massucci et al., 2013), and it is a precursor
for gamma-aminobutyric acid (GABA) and glutamine (White,
1981; Hertz, 2013). Glutamate involves the glutamate/cystine
antiporter system to regulate glutathione production (Shih et al.,
2006). Moreover, energy production was found to be regulated
by glutamate by metabolism of amino acids to carbohydrates
through tricarboxylic acid (TCA) cycle (Schousboe et al., 2014).
It is important to note that neuronal glutamate is synthesized
primarily from either glutamine (by glutaminase) or from
α-ketoglutarate (by glutamate dehydrogenase) (Onetti et al.,
2009; Rowley et al., 2012). Vesicular glutamate transporter
(vGLUT) uptakes the synthesized glutamate into vesicles
in pre-synaptic glutamatergic neurons, and the packaged
glutamate is released upon stimulation into the synaptic cleft
(Benarroch, 2010). Glutamate can bind to and activate a
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variety of metabotropic (mGluRs) and ionotropic glutamate
receptors (iGluRs) (Niswender and Conn, 2010; Traynelis et al.,
2010). The α-amino-3-hydroxy-5-methylisoxazole-4-propionic
acid (AMPA) receptor, N-methyl-d-aspartate (NMDA) receptor,
and kainic acid receptors are iGluRs located mainly in post-
synaptic neurons. Studies reported that extracellular Glu uptake
is mediated through the family of excitatory amino acid
transporters (EAATs) expressed mainly in astrocytes (Danbolt,
2001) and, to a lesser extent, in neurons (Rothstein et al., 1994).
Importantly, high synaptic glutamate concentrations can lead to
excitotoxicity, and it is essential to keep glutamate concentration
below the toxic level by modulating EAATs (Liang et al., 2008).

Most of the synaptic glutamate is removed into astrocytes by
GLT-1 (EAAT2), and the astrocytic glutamate is converted via the
glutamine synthetase (GS) enzyme into glutamine (Hertz, 2013),
which is transported into pre-synaptic glutamatergic neurons and
converted back to glutamate by the glutaminase (GA) enzyme.
Glutamine is also transported into GABAergic neurons where it
is converted into glutamate, which is biosynthesized to GABA by
glutamic acid decarboxylase through TCA cycle (Bak et al., 2006;
Hertz, 2013; Figure 1). This glutamate/glutamine/GABA cycle
in glutamatergic or GABAergic systems has been found to be
dysregulated in preclinical models (Rappeneau et al., 2016) and
humans with neurological disorders (El-Ansary and Al-Ayadhi,
2014; Ford et al., 2017).

Dopaminergic neurons also express inotropic glutamate
receptors (iGluRs), and blocking these receptors can lead
to decrease in dopamine release (Desce et al., 1992; Fu

et al., 2000). Conversely, glutamatergic neurons express
dopamine receptors, which are stimulated by dopamine, to
produce downstream signaling and intracellular postsynaptic
effects (Yin and Lovinger, 2006). This indicates that the
glutamatergic system has a variety of actions and functions,
and that dysregulation of this system can affect other
systems such as dopaminergic and GABAergic systems.
In addition, glutamate/cystine antiporter (xCT) is another
astrocytic glutamate transporter that is suggested to have
neuroprotective effects by increasing the level of astrocytic
glutathione (Seib et al., 2011).

ROLE OF GLUTAMATE TRANSPORTERS
IN GLUTAMATE HOMEOSTASIS

Synaptic glutamate concentration is mainly regulated by
astrocytic glutamate transporters in the mesocorticolimbic
system. It was found that the GLT-1 in astrocytes plays a
role in neuroprotection against neuro-excitotoxicity, and that
neuronal GLT-1 is essential for glutamate uptake (Danbolt,
2001; Petr et al., 2015). This is in agreement with another
study demonstrating that extracellular glutamate concentrations
were decreased in synGLT-1 KO synaptosomes, indicating that
glutamate homeostasis is regulated by GLT-1 (McNair et al.,
2019). Moreover, it was reported that a hippocampal injury
develops because of loss of neuronal GLT-1 (Rimmele et al.,
2021). Importantly, GLT-1 is more highly localized in the

FIGURE 1 | Glutamate-glutamine cycle. Glutamate (Glu) is released from presynpatic glutamatergic neuronal vesicles to the synaptic cleft where it exerts its action
by transient binding to glutamatergic receptors (AMPS, kinate, and NMDA). Dissociated glutamate is picked up by astrocytic glutamate transpoter (GLT-1) where it
undergoes one of the following fates: (1) gets converted by the glutamine synthetase (GS) enzyme to glutamine (Gln), (2) enters the TCA cycle as alpha ketoglutarate
(alpha-KG) by the glutamate dehydrogenase enzyme, or (3) gets released in the perisynaptic space in exchange for cystine. Astrocytic Gln is shuttled to neurons
where it gets converted to Glu by the phosphate-activated glutaminase (GA) enzyme. Neuronal Glu can also be generated through TCA cycle alpha-KG by the
glutamate dehydrogenase enzyme. Neuronal Glu gets packaged into vesicles ready for release into the synapse during neuronal firing.
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forebrain than in the cerebellum (Holmseth et al., 2012). This was
supported by studies that found a decrease in GLT-1 expression
in the forebrain of preclinical models of neurological disorders
(Ketheeswaranathan et al., 2011; Petr et al., 2013; Goodwani et al.,
2015; Hakami et al., 2016). Downregulation of GLT-1 in the brain
of ethanol exposed rats was associated with increase in synaptic
glutamate level, which further indicates the role of GLT-1 in
uptake of the majority of extracellular glutamate levels (Das et al.,
2015). Moreover, studies suggested that upregulation of GLT-
1 could be a potential therapeutic strategy to attenuate ethanol
dependence and withdrawal and brain ischemia (Abulseoud
et al., 2014; Das et al., 2015; Hu et al., 2015; Alasmari et al.,
2016).

Additionally, glutamate is released from astrocytes through
xCT and regulates glutamate neurotransmission by activating
metabotropic glutamate receptor 2/3 (mGluR2/3) (Moran et al.,
2005). The activity of xCT has been found to be correlated
with the tone of glutamate on pre-synaptic mGluR2/3 (Preedy,
2016). This receptor controls the release of glutamate from
pre-synaptic glutamate neurons through negative feedback
cascade (Moussawi and Kalivas, 2010). Studies found that
stimulating mGluR2/3 reduced nicotine-, ethanol-, and
methamphetamine-seeking behaviors (Crawford et al., 2013;
Justinova et al., 2016; Windisch and Czachowski, 2018).
Alternatively, xCT transports cystine into astrocytes, is converted
to cysteine, and leads to biosynthesis of glutathione (GSH)
in astrocytes (Shih et al., 2003). Increase in extracellular
glutamate level induces inhibition of cysteine uptake, reducing
the biosynthesis of GSH, which leads to oxidative stress
(Murphy et al., 1989). Therefore, astrocytic glutamate
transporters, including GLT-1 and xCT, play a substantial
role in regulating glutamate levels as well as the functional
integrity of neurons.

GLUTAMATE SIGNALING
DYSREGULATION IN ANIMAL MODELS
OF PSYCHIATRIC DISORDERS AND
NEUROLOGICAL DISEASES

Accumulation of glutamate in the synaptic cleft due to
excessive release or reduced uptake could be neurotoxic as a
consequence of the hyperglutamatergic state, and this involves
overstimulation of NMDA receptors causing calcium (Ca2+)
influx and activation of apoptotic genes (Nishizawa, 2001;
Guo et al., 2017; Sheets, 2017). Stimulation of Ca2+influx
has been found to increase the progression of neurological
diseases such as ischemic stroke and Alzheimer’s disease (Lopez
et al., 2008; Tang et al., 2015). Studies have reported that
the glutamate excitotoxicity observed in neurological disease
models has been found to be associated with overstimulation
of glutamate receptors in post-synaptic neurons such as NMDA
receptors and AMPA receptors and their signaling pathways
(Zhang et al., 2013).

The electrochemical gradient of Na+ and K+ is involved in the
transport of glutamate through astrocytic glutamate transporters

(Rose et al., 2009). In addition to Ca2+, glutamate can also
affect other signaling pathways such as Na+ and K+ channels,
which might be involved in the pathogenesis of neuropsychiatric
disorders including schizophrenia, seizure, and acute ischemia
(Lysko et al., 1994; Farber et al., 2002; Wang et al., 2004;
Inyushin et al., 2010). Blocking Na+ channels may prevent the
neurotoxicity induced by the NMDA blocker (Farber et al., 2002).

Additionally, the mammalian target of rapamycin (mTOR) is
connected to the glutamatergic system through mGluR1/5
(Stoppel et al., 2017). Activating the mGluR1/5-mTOR
signaling cascade by glutamate produced synaptic proteins
(PSD-95 and GluR subunits of AMPAR) (Dayas et al.,
2012). Studies have found that mTOR is involved in the
psychiatric disorder-induced hyperglutamatergic state such
as certain types of depression (Crino, 2016). mTOR is also
stimulated by another signaling pathway, extracellular signal-
regulated kinase (ERK) (Markworth and Cameron-Smith,
2011; Montana et al., 2014). Brain-derived neurotrophic
factor (BDNF) stimulates tropomyosin receptor kinase
B (TrkB) in post-synaptic neurons and is involved in
activating the ERK-mTOR signaling pathway (Hua et al.,
2016). These signaling systems of the glutamatergic system
have been found to be altered in preclinical models of
neurological disorders.

With regard to the NMDA- Ca2+ pathway, neuronal nitric
oxide synthase (nNOS) has been found to be stimulated by
intracellular Ca2+-calmodulin (Lee and Stull, 1998; Toda et al.,
2009). This enzyme produces nitric oxide (NO) in post-synaptic
neurons and is involved in stimulating soluble guanylate cyclase
(sGC) and consequently activating signaling pathways such as
cyclic guanylate and adenine monophosphate (cGMP or cAMP)
(Liddie et al., 2013). Stimulation of both cGMP and cAMP can
lead to increase in transcription of phosphorylated cyclic AMP
response element-binding protein (pCREB) (Gallo and Iadecola,
2011). This post-synaptic NO signaling pathway has also been
found in pre-synaptic neurons, since NO is transported into
pre-synaptic neurons through the retrograde messenger system,
and this can lead to further release of glutamate (Liddie et al.,
2013). Additionally, NO is also transported into astrocytes, blocks
the activity of the GS enzyme, and further increases glutamate
concentrations (Kosenko et al., 2003). Thus, dysregulation of the
NO system in the brain can cause glutamate accumulation and
release, which may lead to glutamate neuroexcitotoxicity. It is
important to note that nNOS activity was increased significantly
in ischemic stroke modles, which may lead to neuroexcitotoxicity
of glutamate in mesocorticolimbic areas (Eliasson et al., 1999).

EVIDENCE THAT
HYPERGLUTAMATERGIC STATE
CAUSES NEUROEXCITOTOXICITY

In the late 1960s and early 1970s, it was found that sustained
exposure to glutamate and other excitatory amino acids may
cause neuronal damage [for review refer to Choi (1988)].
The neurotoxicity observed in limbic seizure syndromes is
ultrastructurally indistinguishable from the neuroexcitotoxicity
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induced by increased extracellular glutamate, and it can be
blocked by NMDA receptor antagonists such as phencyclidine
and ketamine (Olney, 1986). Glutamate neuroexcitotoxicity
can be acute as in ischemic stroke or seizure or chronic as
in neurodegenerative disorders, including amyotrophic lateral
sclerosis, Alzheimer’s disease, and Huntington’s disease [for
review refer to Doble (1999); Lewerenz and Maher (2015)].
Rothstein et al. developed a model of slow toxicity in
cultured organotypic spinal cord slices. The model was based
on selective inhibition of GLT-1, which continuously raised
the concentration of glutamate in the culture media. This
resulted in slow degeneration of motor neurons over several
weeks. Motor neuron toxicity was selectively prevented by
non-N-methyl-D-aspartate glutamate receptor antagonists and
glutamate synthesis but not by N-methyl-D-aspartate receptor
antagonists (Rothstein et al., 1993). Similar results were obtained
in primary mouse cortical neurons, where the cell death resulting
from short-term application of glutamate could be divided
into NMDA-dependent and NMDA-independent phases. The
NMDA receptor-independent component is associated with
high extracellular glutamate and is inhibited by a variety of
reagents that block the oxidative stress associated with glutamate
neuroexcitotoxicity (Schubert and Piasecki, 2001). In addition,
application of excitotoxins such as glutamate, N-methyl-D-
aspartate (NMDA), and kainate (KA) to an organotypic slice
culture of chick embryo spinal cord (Brunet et al., 2009),
or blocking GLT-1 by threo hydroxyaspartate (THA) and
L-trans-pyrrolidine-2, 4-dicarboxylate (PDC) in an organotypic
rat lumbar spinal cord culture resulted in dose-dependent
slow progression of neurodegeneration of spinal motoneurons
(Matyja et al., 2005). It is important here to note that GLT-1 is
expressed in presynaptic terminals of glutamatergic neurons as
well as in astrocytes. Rimmele et al. (2021) provided evidence
that the GLT-1 expressed in presynaptic neuronal terminals
serves an important role in regulation of vulnerability to
excitotoxicity. Stimulus-evoked field extracellular postsynaptic
potentials recorded in the CA1 region of the hippocampus of
conditional GLT-1 knockout (KO) mouse lines were normal
in the astrocytic GLT-1 KO with elevated glutamate and
were reduced in the neuronal GLT-1 KO but with normal
glutamate accumulation.

Acute Hyperglutamatergic States in
Ischemic Stroke and Status Epilepticus
Patients with ischemic cerebral infarction showed significantly
elevated plasma and CSF glutamate concentrations within
24 h of symptom onset (Castillo et al., 1996). GLT-1 mRNA
expression was decreased significantly in the hippocampus,
cortex, and striatum in a mouse model of focal ischemic stroke
induced by middle cerebral artery occlusion (Ketheeswaranathan
et al., 2011). Furthermore, animal models of status epilepticus
induced by LiCl-pilocarpine administration showed NMDA-
mediated glutamatergic neuroexcitotoxicity in the CA1
hippocampal subfield, habenula, thalamus, and amygdala
that was successfully blocked by the NMDA receptor antagonist
ketamine (Loss et al., 2012).

Chronic Hyperglutamatergic States in
Certain Neurodegenerative Disorders
Amyotrophic Lateral Sclerosis
Infusion of NMDA receptor agonists directly onto the lumbar
spinal cord of 21-day old rats following posterior laminectomy
caused changes in dorsal horn neurons, while infusion of a
non-NMDA agonist, kainic acid, affected motor neurons, and
the observed changes in motor axons resemble the changes
described in the spinal cord of patients with ALS (Ikonomidou
et al., 1996). In addition, a transgenic superoxide dismutase 1
(SOD1) mutant rat model of ALS showed focal loss of GLT-1
in the ventral horn of the spinal cord prior to the onset of
motor neuron/axon degeneration (Howland et al., 2002), and
there is evidence for decreased brain tissue concentration of
glutamate and increased levels in the CSF of patients with
ALS [for review refer to Heath and Shaw (2002)]. Ceftriaxone
upregulated GLT-1, attenuated ALS manifestations in a mouse
model (Rothstein et al., 2005), increased system x(c)(-) and
glutathione levels in rat cortical and spinal astrocytes and
fibroblasts and hippocampal cell lines, and induced xCT
mRNA expression in stem cell-derived human motor neurons
(Lewerenz et al., 2009).

Alzheimer’s Disease
CSF glutamate levels are significantly increased in patients
with Alzheimer’s disease compared to healthy controls in
some (Pomara et al., 1992; Csernansky et al., 1996) but not
all studies (Martinez et al., 1993; Kuiper et al., 2000), and
a 3xTg-AD mouse model shows age-dependent progressive
reduction in hippocampal GLT-1 levels (Zumkehr et al., 2015).
Furthermore, Gray and Patel (1995) showed that adding
glutamate to a neuronal culture for 15 min resulted in dose-
dependent neuronal degeneration, and that the presence of
astrocytes decreased the excitotoxicity of glutamate in neurons
because of uptake of glutamate by astrocytes. The latter study
showed that incorporation of an NMDA receptor-mediated
Ca2+ ion channel blocker, MK-801, together with glutamate
completely inhibited the degeneration of cortical neurons (Gray
and Patel, 1995). Glutamate excitotoxicity is attributed, at
least in part, to destabilization of neuronal calcium regulation
by beta-amyloid proteins (Mattson et al., 1992; Kim et al.,
2000).

Brain beta-amyloid deposition in Alzheimer’s disease follows
a distinct spatial progression starting from the basal neocortex, to
the hippocampus, and then to the rest of the cortex (Raskin et al.,
2015). In addition, beta-amyloid interrupts effective glutamate
uptake by GLT-1 (Conway, 2020), and microinjection of beta-
amyloid fibrils into the hippocampal CA1 area of rats is associated
with reduction in GLT-1 (Wu et al., 2020). A recent study
conducted chemical exchange saturation transfer imaging of
glutamate (gluCEST) to characterize the distribution of the
gluCEST contrast in the whole brain and in large-scale networks
of mouse lemur primates as a model of Alzheimer’s disease (Garin
et al., 2022). This showed the detection of high gluCEST contrast
in the nucleus accumbens, septum, basal forebrain, and cortical
areas 24 and 25. Furthermore, the study was able to identify
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an age-related decrease in the gluCEST contrast in the nucleus
accumbens, septum, basal forebrain, globus pallidus, hypophysis,
cortical areas 24, 21, and 6, and in olfactory bulbs. An age-related
gluCEST contrast decrease was also detected in specific neuronal
networks such as fronto-temporal and evaluative limbic networks
(Garin et al., 2022).

Huntington’s Disease
Systemic administration of monosodium glutamate to immature
mice causes degeneration of certain neurons of retina and
brain (Coyle and Schwarcz, 1976) and GLT1mRNA decreased in
postmortem neostriatum of HD in correlation to disease severity
and loss of neurons with NMDA receptors in the neostriatum
of HD (Arzberger et al., 1997). However, GLT-1 expression
does not necessarily translate to accelerated glutamate uptake.
Wilkie et al. (2020) showed an activity-dependent increase in
extracellular glutamate accumulation in the HD hippocampus
that was not associated with reduced GLT-1 expression and
was not reduced by ceftriaxone administration. Furthermore,
ceftriaxone administration to wild-type mice increased GLT-1
expression in multiple brain regions but did not prevent the
activity-dependent slowing of glutamate clearance in the striatum
(Wilkie et al., 2021). Along the same lines, changes in GLT-
1 expression or function per se are unlikely to potentiate or
ameliorate the progression of HD. Petr et al. (2013) generated
a heterozygous null allele of GLT-1 that also carries the R6/2
transgene (double mutation) as a model for HD. The mice
showed no exacerbation of clinical manifestations (weight loss,
accelerating rotarod, climbing, and paw-clasping), and there was
no change in striatal glutamate uptake compared to the wild-
type mice. The further skepticism about impairment in glutamate
uptake as a core pathology of HD came from studies showing
that real-time measures of glutamate clearance in the striatum
of an R6/2 model of HD are normal or even accelerated despite
impaired synaptosomal glutamate uptake (Parsons et al., 2016).

Argument Against the Hypothesis That Glutamate
Transporter 1 Dysfunction Causes
Hyperglutamatergic State
Glutamate transporter 1 expression does not necessarily translate
to accelerated glutamate uptake. Activity-dependent increase in
extracellular glutamate accumulation in the HD hippocampus
was not associated with reduced GLT-1 expression and was
not reduced by CEF administration (Wilkie et al., 2020).
Furthermore, CEF administration to wild-type mice increased
GLT-1 expression in multiple brain regions but did not prevent
activity-dependent slowing of glutamate clearance in the striatum
(Wilkie et al., 2021).

Role of Extrasynaptic Glutamate in Excitotoxicity
N-methyl D-aspartate receptors (NMDARs) are located in
synaptic and extrasynaptic sites. Calcium influx through
synaptic NMDARs induced synaptic plasticity by induction
of cAMP response element-binding protein (CREB) activity
and brain-derived neurotrophic factor (BDNF) gene
expression, while calcium influx through extrasynaptic
NMDARs causes neuroexcitotoxicity (Hardingham et al.,

2002; Vanhoutte and Bading, 2003; Papouin et al., 2012;
Papouin and Oliet, 2014). Extracellular glutamate is regulated
by the glutamate/cystine antiporter system x(c), which
transports glutamate in exchange for cystine. Intracellular
cystine is transformed into the antioxidant glutathione.
Reduced activity of system x(c) can lead to neurotoxicity
because of reduced intracellular glutathione (Albrecht
et al., 2010). Inhibition of glutathione either directly by
exposing a hippocampal cell culture to L-trans-pyrrolidine-
2,4-dicarboxylate or indirectly by inhibiting GLT-1 by
threo-beta-benzyloxyaspartate increased neuronal death
more than by exposure to glutamate alone (Himi et al.,
2003). Interestingly, young mice lacking the specific xCT
subunit of system x(c)-(xCT(−/−)) had significantly lower
extracellular hippocampal glutamate concentrations associated
with spatial working memory deficit, but there was no reduction
in hippocampal glutathione content compared to wild-type
littermates (De Bundel et al., 2011).

REGULATION OF
HYPERGLUTAMATERGIC STATE WITH
CEFTRIAXONE

Based on the argument that hyperglutamatergic state contributes
to the development of several neurological and psychiatric
diseases, decrease in GLT-1 and xCT expression can lead to
hyperglutamatergic state, and upregulating these transporters by
the β-lactam antibiotic CEF, known to upregulate GLT-1 and
xCT, could be a potential pharmacological approach to attenuate
glutamate dysregulation (Rothstein et al., 2005; Sari et al., 2011;
Das et al., 2015). We discussed here the effectiveness of CEF in
attenuating the symptom severity and clinical manifestations of
neurological disorders and psychiatric diseases, which are caused
by hyperglutamatergic state.

Efficacy of Ceftriaxone in Preclinical
Models of Neurological Disorders
Effect of Ceftriaxone in Ischemic Stroke Animal
Model
Ceftriaxone, pre- (for 5 days) or post-treatment (for 5 days),
induced neuroprotection in part by upregulation of GLT-1
expression in brain ischemic male Wistar rats (Hu et al.,
2015). This effect was not observed in animals injected
with dihydrokainic acid (GLT-1 blocker) or antisense
oligodeoxynucleotides, which indicates that GLT-1 plays a
major role in neuronal damage associated with ischemic stroke.
Furthermore, one study reported loss in glutamate transport
activity and GLT-1 expression in CA1 hippocampal neurons
within few hours of induction of transient forebrain ischemia,
and CEF protected the CA1 neurons (Ouyang et al., 2007).
Repeated administration of CEF (200 mg/kg/day) for 5 days
prior to ischemia reduced the infarction volume in Sprague-
Dawley male rats (Chu et al., 2007). However, this study found
that post-treatment with CEF did not affect the level of infarction
volume. Furthermore, studies reported that focal cerebral
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ischemia increased glutamate levels and reduced the expression
of GLT-1 and xCT in the frontal cortex and hippocampus, and
that CEF (200 mg/kg/day) for 5 days pre-cerebral ischemia
attenuated these effects (Krzyżanowska et al., 2017). Together,
these findings indicate that pre-treatment with CEF at an
adequate dose (200 mg/kg/d) for 2-5 days prior to induction of
hyperglutamatergic state shows better ischemic recovery than
post-treatment. This observation highlights that CEF does not
reverse an already established neuronal damage induced by
prolonged hyperglutamatergic excitotoxicity state.

Mechanistically, CEF injection for 5 days pre-induction of
cerebral ischemia increased the mRNA and protein expression
of GLT-1 as well as glutamate uptake and GS enzyme activity
(Verma et al., 2010). This effect was associated with decrease
in infarction size and neuronal loss. This study suggests that
modulation of glutamate homeostasis by CEF may induce
neuroprotection in ischemic models. Moreover, a single injection
of CEF (200 mg/kg/day) was able to reduce the mortality rate,
infract size, and neuronal death in a stroke rat model (Thöne-
Reineke et al., 2008). This effect was associated with increase
in BDNF and TrkB expression in the brain, indicating the
involvement of the BDNF-TrkB pathway in the effectiveness of
CEF in ischemic stroke. However, there is evidence showing that
reversal of glutamate transporters, including GLT-1, is important
in causing excitotoxicity in ischemia. It has been shown in rat
hippocampal slices exposed to oxygen and glucose deprivation
as a model of acute ischemia that glutamate release is blocked by
pretreatment with two different competitive substrate analogues
of the Na(+)-dependent glutamate transporters (Roettger and
Lipton, 1996). In another model of acute ischemia induced by
bilateral carotid artery occlusion and controlled hypotension
in rats, ischemia-associated increase in striatal glutamate was
attenuated by acute infusion of GLT-1 blocker dihydrokainate
(Seki et al., 1999). We suggest that the effect is transitory on
modulating the release of glutamate by acute exposure to the
GLT-1 blocker in this ischemic model, and that chronic exposure
to CEF is the key for normalizing GLT-1 expression to regulate
glutamate homeostasis in the ischemic state.

Effect of Ceftriaxone on Animal Models of
Amyotrophic Lateral Sclerosis (ALS) and Multiple
Sclerosis
Rothstein et al. reported a significant reduction in the maximal
velocity of transport for high-affinity glutamate uptake in
synaptosomes collected from the spinal cord, motor cortex, and
somatosensory cortex of patients with ALS (Rothstein et al.,
1992). Furthermore, a study from the same laboratory reported
that β-lactam antibiotics upregulated GLT-1 protein expression
in a rodent lumbar spinal cord culture and activated the human
GLT-1 promoter in human fetal astrocytes transfected with the
GLT-1 promoter/luciferase reporter (Rothstein et al., 2005). In
addition, all β-lactam antibiotics activated the GLT-1 promoter
and protein expression in vivo, and CEF pretreatment was
protective in two different models, delayed disease onset and loss
of muscle strength, and increased survival in ALS mice (Rothstein
et al., 2005). This groundbreaking study prompted the initiation
of a large-scale, multi-center clinical study testing the efficacy of

CEF treatment in slowing the functional decline and improving
the overall survival of patients with ALS (Cudkowicz et al., 2014).
We will discuss this study in more details in section “Clinical
Studies Testing the Efficacy of Ceftriaxone”.

Regarding multiple sclerosis, one study reported that
CEF(200 mg/ kg/day) administered to an MOG peptide
immunization mouse model of MS either from the day
of immunization (permanent) or from the onset of motor
manifestations (therapeutic) (Melzer et al., 2008) showed
better motor outcomes than vehicle treatment. However, early
CEF administration (permanent) improved motor outcome
significantly better than late administration (therapeutic
treatment). It is important to note that CEF’s mechanism of
action could be attributed to attenuation of inflammation-
induced excitotoxicity associated with MS by slowing down the
production of pro-inflammatory mediators (IL-17 and interferon
gamma (IFNγ)) and proliferation of T cells (Melzer et al., 2008),
as we discuss later in section “Attenuation of Pro-inflammatory
Cytokines”.

Effect of Ceftriaxone in Animal Models of
Huntington’s Disease
Miller et al. (2008) demonstrated that treatment with CEF
(200 mg/kg/day) for 5 days reduced HD-associated behaviors
in mice. This effect was associated with increase in GLT-1
expression and decrease in extracellular glutamate concentration
as compared to a control HD mouse model. Moreover, another
study demonstrated a decrease in GLT-1 expression in the
striatum and cerebral cortex if an HD mouse model compared
to wild-type mice at the age of 13 weeks but not 9 weeks, and CEF
treatment (200 mg/kg/day) for 5 days restored GLT-1 expression
in both brain regions (Sari et al., 2010). Taken together, these data
suggest that HD is associated with decrease in GLT-1 expression
and increase in extracellular glutamate concentration in affected
brain regions including the striatum.

Effect of Ceftriaxone in Animal Models of Seizure
Studies have shown that CEF attenuated seizure by upregulating
GLT-1 expression. For instance, a significant reduction in GLT-
1 protein expression was found in the ipsilesional cortex 7 days
after traumatic brain injury in rats (Goodrich et al., 2013). This
study reported that CEF (200 mg/kg/day) for 7 days following the
injury increased GLT-1 expression and reduced the duration of
traumatic seizure. Additionally, incubation of CEF at 3, 5, 10, and
25 mM reduced cocaine-induced planarian seizure-like activity
in Dugesia dorotocephala (Rawls et al., 2010b). Furthermore,
CEF reduced the duration of seizure through non-glutamatergic
pathways. Post-treatment with CEF (200 mg/kg) twice daily for
3 days increased onset latency and decreased the duration of
pentylenetetrazole (PTZ)-induced seizure in rats (Hussein et al.,
2016). This effect was associated with decrease in connexin 43
expression, increase in GSH content, and increase in catalase
activity in the brain. In addition to post-treatment, pre-treatment
with CEF (200 mg/kg/day) for 6 days has been found to attenuate
generalized clonic-tonic convulsions induced by PTZ in mice
(Jelenkovic et al., 2008).
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Effect of Ceftriaxone on Cognitive Impairment
Ceftriaxone treatment significantly alleviated the cognitive
deficits measured by Morris water maze test and upregulated
GLT-1 protein expression in the hippocampus of APP/PS1
mice (Fan et al., 2018). Particularly, the activity of glutamine
synthetase (GS) and the protein expression of system N glutamine
transporter 1 (SN1), which are the key factors involved in
the glutamate-glutamine cycle, were significantly upregulated,
and inhibition of GLT-1 uptake activity by dihydrokainic acid,
an inhibitor of GLT-1, blocked CEF-induced improvement in
cognitive deficits, GS activity, and SN1 expression (Fan et al.,
2018). Furthermore, daily treatment with CEF (200 mg/kg) for
2 months has been reported to attenuate the accumulation of
pathological tau, and this effect was associated with increase in
GLT-1 expression in the hippocampus in a 3xTg-Alzheimer’s
disease mouse model (Zumkehr et al., 2015). Another study
suggested that CEF could improve the cognitive impairments
of APP/PS1 mice in the early stage of Alzheimer’s disease
by upregulating GLT-1 and Nglutamine transporter 1 (SN1)
expression and increasing the activity of the GS enzyme (Fan
et al., 2018). Moreover, studies showed that CEF attenuated the
impairments of cognitive function in a Parkinson’s disease (PD)
rat model (Ho et al., 2014; Hsu et al., 2015). For example, CEF
(200 mg/kg/day) for 14 days improved the cognitive function
and memory of a PD rat model (Ho et al., 2014). This effect
was associated with improvements in microglial activation or
degeneration of dopaminergic neurons in specific brain areas.
Furthermore, it has been demonstrated that CEF attenuated
cognitive dysfunction, hyperactivity of glutamatergic neurons,
and hippocampal CA1 neuronal loss in a PD rat model. This
study found a significant increase in GLT-1 expression in
the striatum and hippocampus following treatment with CEF
(Hsu et al., 2015). Furthermore, it has been demonstrated that
administration of CEF at a lower dose (100 mg/kg, IP) for
27 days improved cognitive function and increased neurogenesis
in the brains of a rat model of dementia with Lewy bodies
(DLBs) (Ho et al., 2019). Taken together, it seems that CEF
treatment associated with cognitive function improvement in
animal models of different cognitive impairments is reported
after extended treatment (14-60 days) and other mechanisms
of action might be involved besides GLT-1 upregulation such
as increase in the activity of the GS enzyme, increase in
neurogenesis, and decrease in microglial activation.

Efficacy of Ceftriaxone in Animal Models of Pain
Disorders
Visceral Pain, Hyperalgesia, and Allodynia
Dysregulation of GLT-1 has been observed in animal models
of visceral pain (Lin et al., 2009). Ceftriaxone treatment
(200 mg/kg/day) for 1 week decreased the response of visceral
nociceptive in mice (Lin et al., 2009; Ackerman et al., 2015).
In addition to attenuation of visceral pain, it has been found
that CEF upregulated GLT-1 expression in the spinal cord
(Ackerman et al., 2016). Thus, astrocytic glutamate transporters
could be pharmacologically targeted to attenuate visceral pain.
Moreover, tactile allodynia and visceral hyperalgesia have been
found in female Wistar-Kyoto rats 3, 5, 8, and 10 days after

induction of stress, and this effect was correlated with reduced
GLT-1 expression in the spinal cord (Ackerman et al., 2015).
Downregulation of GLT-1 by dihydrokainate also induced a
similar effect. This effect was attenuated by upregulation of GLT-
1 in the spinal cord following treatment with CEF (200 mg/kg
IP) for 5 days (Ackerman et al., 2015). Furthermore, a study
evaluated the effects of CEF (200 mg/kg IP) treatment for
7 days on nicotine (1 or 2.5 mg/kg sc) antinociception and its
tolerance in rats by tail flick assay. In that study, CEF-treated
rats displayed an enhanced antinociceptive response to nicotine
and did not develop tolerance to nicotine’s analgesic effects
(Schroeder et al., 2011).

Neuropathic Pain
In addition to visceral pain, hyperalgesia, and allodynia, CEF
treatment was reported to attenuate hyperalgesia in neuropathic
pain models by upregulation of glutamate transporters (Hu et al.,
2015). Chronic constrictive injury (CCI) induced a neuropathy
characterized by mechanical allodynia and hyperalgesia (Hu
et al., 2015). This study also found that CCI downregulated
GLT-1 expression in the spinal dorsal horn. CEF treatment
(200 mg/kg/day IP) for 7 days showed the ability to reduce
mechanical allodynia and thermal hyperalgesia induced by
CCI by upregulating GLT-1 (Hu et al., 2015). Furthermore,
treatment with CEF (100 mg/kg IP) alone or in combination
with pioglitazone prevented neuropathic pain and biochemical,
mitochondrial, and cellular alterations in the spinal cord of
ligated spinal nerves in rats (Pottabathini et al., 2016). In addition,
CEF treatment (200 mg/kg/day) for 7 days caused a significant
attenuation of cold-induced tactile allodynia in oxaliplatin-
treated mice without inducing adverse motor effects on the mice
(Salat et al., 2019). Therefore, GLT-1 could be pharmacologically
targeted to attenuate neuropathic pain.

Morphine Allodynia and Analgesia Tolerance
A study reported that the analgesic effect of morphine is
mediated in part by the modulatory action of GLT-1 (Rawls
et al., 2010c). This study found that CEF treatments (50, 100,
and 200 mg/kg) 15 min before each morphine injection twice
daily for 7 days attenuated morphine-induced tolerance, and this
effect was abolished following the administration of a GLT-1
inhibitor, dihydrokainate. These observations confirm that GLT-
1 signaling pathways could be targeted to attenuate tolerance
induced by morphine. Furthermore, a study from the same group
provided additional findings that showed pre-treatment with
CEF (200 mg/kg/day) for 7 days reduced hyperthermia induced
by morphine exposure (Rawls et al., 2007).

Efficacy of Ceftriaxone in Preclinical
Models of Psychiatric Disorders
Depression
Recent studies indicate that GLT-1 is involved in the development
of depression-like symptoms in animal models (John et al., 2015;
Rappeneau et al., 2016; Ding et al., 2017). For instance, blockage
of GLT-1 in the central amygdala was found to be associated with
depressive manifestations in rats (John et al., 2015). A marked
disruption in the glutamate-glutamine system has been observed
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in male and female rat models of depression (Rappeneau
et al., 2016). CEF-treated animals (200 mg/kg/d) for 14-18 days
also showed a marked decrement in immobility in the forced
swim and tail suspension tests. Even though not statistically
significant, a similar trend was noted in novelty-suppressed
feeding (Mineur et al., 2007). Moreover, CEF (200 mg/kg/d) for
5 days before transient occlusion of common carotid arteries to
induce transient brain ischemia in pregnant rats attenuated the
development of postpartum depression by preventing the loss of
GLT-1 expression in the mPFC (Guan et al., 2016). Similarly, CEF
(200 mg/kg/d) for 5 days significantly increased GLT-1 expression
and normalized the firing of lateral habenula (LHb) neurons
and alleviated a depression-like behavior in ethanol-withdrawn
rats (Kang et al., 2018). These studies lend more evidence to
the concept that repeated CEF administration before initiating
a stressor or brain change that is associated with depressive-
like behaviors is associated with upregulation of GLT-1 and
attenuation of behavioral manifestations.

Substance Use Disorders
Cocaine
Changes in astrocytic GLT-1 and glutamatergic receptor
expression have been observed in animals exposed to cocaine
(Hammad et al., 2017a,b). Thus, repeated cocaine administration
reduced the expression of GLT-1 and xCT in the NAc (Hammad
et al., 2017b). Additionally, reinstatement of cocaine was
associated with reduction in GLT-1 and xCT expression in the
NAc core and shell (Hammad et al., 2017a).

The effect of CEF pretreatment in cocaine intake remains
controversial. While CEF 200 mg/kg/d for 3 days prior to first
cocaine exposure blocked the ability of mice to acquire cocaine
in a conditioned place preference (CPP) paradigm (Ward et al.,
2011), another study reported that CEF 200 mg/kg/d for 5 days
prior to first cocaine exposure did not affect the acquisition of
cocaine self-administration (Sondheimer and Knackstedt, 2011).
In contrast, several studies document the efficacy of CEF in
preventing cocaine relapse. We have shown that the presentation
of cues (light and tone) previously associated with cocaine self-
administration reinstated lever pressing in rats treated with
vehicle, whereas CEF (100 or 200 but not 50 mg/kg/d × 5 days
during extension) blocked this response (Sari et al., 2009).
Similar results were reported by Kalivas’ laboratory where CEF
200 mg/kg/day × 7 days during extinction prevented both cue-
and cocaine-induced reinstatement of drug-seeking (Knackstedt
et al., 2010), and that the reinstatement-blocking effect lasted
for weeks after the CEF treatment ceased (Sondheimer and
Knackstedt, 2011). In addition, CEF (200mg/kg/day) attenuated
cue-induced cocaine-seeking behavior only in rats exposed to
long (45 days) withdrawal periods, with greater effect on the
extended-access condition (6 h/day) compared to those with
short withdrawal (2 days) and limited access (2 h/day) (Fischer
et al., 2013). In addition, CEF may attenuate cue extinction only
when such extinction occurs in the same context as cocaine
self-administration. However, when cue extinction is conducted
outside the drug-associated context, it does not reduce the risk of
relapse alone (Bechard and Knackstedt, 2019).

The efficacy of CEF in blocking cocaine reinstatement is
attributed to upregulation of GLT-1 and xCT levels (Sari et al.,

2009; Knackstedt et al., 2010) in the PFC and NAc. A recent study
suggested that upregulating both GLT-1 and xCT is required.
Intra-NAcxCT knockdown prevented the effects of CEF on
attenuating reinstatement and upregulating GLT-1 and resulted
in increased surface expression of AMPA receptors; intra-NAc
GLT-1 knockdown prevented the effects of CEF on attenuating
reinstatement and upregulating xCT expression without affecting
AMPA receptor expression (LaCrosse et al., 2017). In addition,
intra-NAc administration of the mGlu2/3 receptor antagonist
during cue- and cocaine-primed reinstatement tests prevented
the effects of CEF on attenuating reinstatement, suggesting
that CEF also works by activating mGlu 2/3 receptors (Logan
et al., 2020) and preventing NAc core glutamate efflux likely
by reducing activity in prelimbic NAc core-projecting neurons
(Bechard et al., 2021). We suggest here that there is a different
pattern where initiating CEF prior to cocaine administration
does not seem to block the acquisition of cocaine self-
administration. However, it prevented cocaine preference in
the CPP paradigm. Alternatively, CEF administration after
animals received cocaine prevented relapse in some but not
all conditions. This variability in response could be attributed
to non-glutamatergic mechanisms of cocaine such as its effect
on inhibiting acetylcholine receptor-controlled ion flux in
sympathetic neuronal cell lines (Karpen et al., 1982).

Opiate
Astrocytic GLT-1 has been found to be modulated by morphine
or morphine-like compounds in mesocorticolimbic brain regions
(Ozawa et al., 2001; Fujio et al., 2005; Tai et al., 2007; Alshehri
et al., 2018). Alteration of astrocytic GLT-1 protein expression
has been observed with opioid dependence, withdrawal, and
reinstatement (Ozawa et al., 2001; Xu et al., 2003; Alshehri et al.,
2018). Therefore, astrocytic GLT-1 activity might be sensitive to
morphine or morphine-like compounds. CEF at different doses
ranging from 50 to 200 mg/kg/d administered for 4-7 days before
morphine administration reduced the efficacy of morphine in
causing hyperthermia in rats (Rawls et al., 2007) and decreased
the development of tolerance to the antinociceptive effect of
morphine (Habibi-Asl et al., 2014). Moreover, CEF inhibited
naloxone-precipitated withdrawal manifestations (Rawls et al.,
2010a; Habibi-Asl et al., 2014), reduced hydrocodone-induced
reinstatement (Alshehri et al., 2018), and prevented cue-induced
heroin-seeking (Shen et al., 2014). In addition to normalizing
GLT-1, CEF restored glutamate uptake and prevented synaptic
glutamate spillover in the NAc (Shen et al., 2014) and normalized
xCT expression in NAc and the hippocampus (Alshehri et al.,
2018). These studies suggest that CEF administration before
exposure to opiates attenuated certain manifestations of opiate
use such as hyperthermia and tolerance to the antinociceptive
effect, and CEF administration after exposure to opiate reduced
naloxone-precipitated withdrawal and prevented drug- and cue-
triggered relapse in reinstatement animal models.

Ethanol
Ethanol self-administration has been found to increase
extracellular glutamate concentration in the NAc (Gass
et al., 2011). Studies from Sari’s laboratory showed that chronic
consumption of ethanol (5 weeks) reduced the expression
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of GLT-1 in central reward brain regions including the NAc,
amygdala, and hippocampus (Aal-Aaboda et al., 2015; Goodwani
et al., 2015). Several studies, including those from Sari’s
laboratory, have investigated the effects of ethanol exposure on
extracellular glutamate concentration in the NAc (Melendez
et al., 2005; Ding et al., 2013; Das et al., 2015). These studies
reported that ethanol exposure increased extracellular glutamate
concentration in the NAc. Interestingly, chronic intermittent
inhalation of ethanol vapor has been reported to increase
extracellular glutamate concentration in the NAc in mice (Griffin
et al., 2015). However, continuous ethanol exposure decreased
glutamate uptake in the NAc (Melendez et al., 2005; Das et al.,
2015). This effect was associated with significant reduction of
GLT-1 and xCT expression in the NAc in rats (Alhaddad et al.,
2014a,b; Hakami et al., 2016). It is important to note that ethanol
exposure induced the downregulation of GLT-1 expression in the
NAc, amygdala, and hippocampus but not in the PFC [for review
refer to Alasmari et al. (2018)] (Table 1).

CEF (100-200 mg/kg) for 5-7 days after established ethanol
intake reduced daily the ethanol consumption of adult and
adolescent alcohol P rats (Sari et al., 2011, 2013a,b; Rao and
Sari, 2014a; Das et al., 2015; Rao et al., 2015b) and Sprague-
Dawley rats (Stennett et al., 2017). In addition, CEF treatments
reduced the ethanol intake of type 1 equilibrative nucleoside
transporter (ENT1) knockout mice (Lee et al., 2013), but not
male C57BL/6 J mice (Griffin et al., 2021), and reduced or
abolished all manifestations of ethanol withdrawal in both
alcohol P rats and Wistar rats (Abulseoud et al., 2014) when
administered at 100 mg/kg twice daily for 2 days at the
onset of cessation of high-dose ethanol intake. Similarly, CEF
resulted in recovery of exploratory behavioral patterns in a
zebrafish ethanol withdrawal model (Agostini et al., 2020). In

addition, CEF attenuated cue-primed reinstatement of ethanol-
seeking in male Sprague-Dawley rats (Weiland et al., 2015),
attenuated relapse-like ethanol-drinking behavior in alcohol P
rats (Qrunfleh et al., 2013; Alhaddad et al., 2014a; Rao and
Sari, 2014b), and prevented withdrawal-induced escalation of
ethanol intake (Abulseoud et al., 2014). Mechanistically, CEF
increased GLT-1 in most (Sari et al., 2013b; Abulseoud et al., 2014;
Alhaddad et al., 2014a; Das et al., 2015; Rao et al., 2015b) but not
all studies (Stennett et al., 2017; Griffin et al., 2021). Nuclear factor
kappa-B (NFkB) has been found as one of the main signaling
pathways involved in modulation of GLT-1 expression (Rao et al.,
2015b). Chronic ethanol drinking reduced NFkB expression, and
this effect was associated with reduction in GLT-1 expression
(Alhaddad et al., 2014b). CEF enhanced the phosphorylation
of Akt and nuclear translocation of nuclear NFκB in the NAc
and PFC and normalized ethanol-induced increase in BDNF
in NAc shell (Alhaddad et al., 2020). Furthermore, CEF also
increased xCT (Alhaddad et al., 2014a; Rao and Sari, 2014a;
Rao et al., 2015b; Stennett et al., 2017), ENT1, and aquaporin
4 (AQP4) expression in the striatum (Lee et al., 2013), PCF,
and NAc core (Qrunfleh et al., 2013; Sari et al., 2013a) and
the activity of the NAc GS enzyme but not in the PFC (Das
et al., 2015). In addition, CEF normalized withdrawal-induced
increase in reactive species (Agostini et al., 2020) as well as
the hyperactivity of lateral habenula neurons in slices from
withdrawn rats (Kang et al., 2018). Together, there is a rich body
of literature showing that repeated CEF administration for 5-
7 days several weeks after initiating ethanol drinking decreased
ethanol drinking and prevented a relapse-like behavior. In our
withdrawal study (Abulseoud et al., 2014), CEF was administered
for only 2 days at the onset of cessation of high-dose ethanol
intake, and this short treatment interval was enough to abolish

TABLE 1 | Effects of ethanol, MS-153, and β-lactam antibiotics on GLT-1 and NFkB expression in the nucleus accumbens (NAc), prefrontal cortex (PFC), amygdala
(AMG), hippocampus (HIPP), and striatum (STR).

Ethanol MS-153 β-lactam antibiotics

GLT-1 NFkB GLT-1 NFkB GLT-1 NFkB

NAc
Alhaddad et al.,

2014b, Goodwani
et al., 2015

Alhaddad et al.,
2014b

Alhaddad et al.,
2014b

Alhaddad et al.,
2014b

Rao et al., 2015a Rao et al., 2015b

PFC
Alhaddad et al.,

2014b
Alhaddad et al.,

2014b
Alhaddad et al.,

2014b
Alhaddad et al.,

2014b
Rao et al., 2015a Rao et al., 2015b

AMG
Aal-Aaboda et al.,

2015

—————–
Aal-Aaboda et al.,

2015

—————–
Rao and Sari,

2014a,b

—————–

HIPP
Aal-Aaboda et al.,

2015; Alshehri
et al., 2017

—————–
Aal-Aaboda et al.,

2015

—————–
Alshehri et al.,

2017

—————–

STR
Alshehri et al., 2017

—————– —————– —————–
Alshehri et al.,

2017

—————–
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ethanol withdrawal manifestations in two different strains of rats
and reduce post-withdrawal ethanol consumption.

Amphetamine and Methamphetamine
Studies from Abulseoud and Sari’s laboratories reported that
exposure to methamphetamine (METH) reduced the expression
of GLT-1 in mesocorticolimbic brain regions (Abulseoud
et al., 2012; Althobaiti et al., 2016, 2018). CEF treatment
(200 mg/kg/day) for 7 days attenuated METH preference in
a CPP paradigm at least in part by upregulation of GLT-1
expression (Abulseoud et al., 2012). Recently, Sari’s laboratory
showed that upregulation of astrocytic glutamate transporters
was found to reduce METH reinstatement in alcohol P rats
(Althobaiti et al., 2018). CEF (200 mg/kg/day) was also found
to restore the reduction of GLT-1 and xCT expression in
the NAc caused by repeated exposure to high-dose METH
of Wistar rats (Althobaiti et al., 2016). Furthermore, CEF
(200 mg/kg/day) administered after daily extinction sessions
reduced amphetamine-induced drug-seeking under enriched
conditions and standard conditions but not in rats kept
under isolated conditions (Garcia et al., 2019). Moreover, CEF
attenuated amphetamine-induced hyperactivity and behavioral
sensitization (Rasmussen et al., 2011) as well as the development
of physical dependence and abstinence-induced withdrawal from
amphetamine and METH using a planarian model (Rawls et al.,
2008). In addition to its effect on reducing tissue glutamate
and glutamine content, METH induces a significant depletion
of dopamine and 5-HT in the NAc and PFC. Importantly,
CEF treatment restores dopamine tissue content in the NAc
(Althobaiti et al., 2018). Together, these studies demonstrate that
CEF pretreatment for several days reduced preference and relapse
to METH and attenuated amphetamine-induced hyperactivity
and behavioral sensitization but not under isolation conditions
and prevented withdrawal manifestations in a planarian model.

Cannabis
A body of evidence indicates that the endocannabinoid system
interacts with the glutamatergic system in animals that have
developed cannabis dependence. This is supported by findings
showing that endocannabinoid controls the function of NMDA
receptors (Sánchez-Blázquez et al., 2014; Rodríguez-Muñoz et al.,
2016). In addition, exposure to a cannabinoid receptor 1 (CB1
receptor) agonist (CP 55,940) was associated with reduction
in GLT-1 expression in the mesocorticolimbic system (Hakami
et al., 2018). Ampicillin, a β lactam antibiotic (200 mg/kg/day),
treatment attenuated reinstatement to CP 55,940 by upregulation
of GLT-1 (Hakami et al., 2018). Furthermore, it has been
found that CEF (100-200 mg/kg) significantly ameliorated the
development of tolerance to the analgesic and hypothermic
effects of a CB1 receptor agonist (WIN 55,212-2) without
affecting its cataleptic action (Gunduz et al., 2011). We suggest
here that with only two studies on CB1 agonists, not on THC
itself, it is difficult to know whether CEF impacts the complex
array of cannabis use-associated behaviors.

Nicotine
Chronic exposure to nicotine has been found to alter the
expression of glutamatergic receptors and transporters as well

as glutamate release (Wang et al., 2007; Knackstedt et al.,
2009; Alasmari et al., 2017). Furthermore, chronic nicotine
self-administration has been found to upregulate iGluRs in
mesocorticolimbic brain regions (Wang et al., 2007; Kenny
et al., 2009). Moreover, exposure to nicotine stimulated the
release of glutamate in the PFC, and this effect was reduced
by a nAChR antagonist, which indicates the modulatory role of
nAChRs in nicotine-increased glutamate release (Konradsson-
Geuken et al., 2009). Downregulation of GLT-1 expression in
the striatum and xCT in the striatum and hippocampus has
been found in mice exposed to e-cigarette vapors containing
nicotine for 6 months (Alasmari et al., 2017). This effect was
further supported by a study that showed that nicotine self-
administration for 21 days reduced GLT-1 and xCT expression
in the NAc (Knackstedt et al., 2009).

Importantly, CEF treatment (200 mg/kg/day) for 5 days
decreased nicotine-seeking behavior, and this effect was
associated with upregulation of GLT-1 expression in the NAc
and PFC (Sari et al., 2016). CEF treatment (200 mg/kg/day)
twice daily for 4 days reduced reinstatement to nicotine in
mice using the CPP paradigm (Alajaji et al., 2013). We have
shown that short-term nicotine abstinence is associated
with reduced glutamate concentration in the dACC in
humans (Abulseoud et al., 2020), and that CEF decreased
nicotine withdrawal manifestations in rats (Alajaji et al.,
2013) and attenuated nicotine preference using the CPP
paradigm (Philogene-Khalid et al., 2017). To the best of
our knowledge, there are only few studies that report the
efficacy of CEF pretreatment in reducing nicotine-seeking
behavior, preference in CPP, and withdrawal manifestations.
However, as we mentioned in the cannabis section above,
these studies used nicotine and not nicotine in cigarettes,
and it is difficult to know whether CEF impacts nicotine
cigarette addiction.

FACTORS RELATED TO THE EFFICACY
OF CEFTRIAXONE IN PRECLINICAL
MODELS

As we navigate through the extensive literature documenting
the preclinical efficacy of CEF, several questions come to mind.
The current working hypothesis entails that CEF upregulates
GLT-1 to offset the increase in synaptic glutamate and prevent
neuronal toxicity and this glutamatergic fine-tuning leads to
attenuation of altered behaviors.In order to fit this model, we may
need to explore the temporal relationship among induction of
hyperglutamatergic state, CEF-induced GLT-1-upregulation, and
elicited behavioral effects.

Initiation of Ceftriaxone Before the
Induction or Early During
Hyperglutamatergic State
To the best of our knowledge, almost all studies that tested
the efficacy of CEF in neurological disorders have administered
CEF prior to the induction or early in the course of the
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disease models. The small number of studies that used post-
treatment administration had negative result outcomes (Chu
et al., 2007). (Chu et al., 2007) showed that post-treatment
with CEF did not affect the level of infarction volume in rats.
Similarly, earl yCEF treatment (from the day of immunization)
improved the motor outcome significantly better than late
administration (from the onset of motor manifestations) of
an MOG peptide immunization mouse model of MS (Melzer
et al., 2008). Furthermore, in genetic animal models of cognitive
impairment such as the APP/PS1 mouse model of Alzheimer’s
disease, CEF improved cognitive impairment if administered in
the early stage (Fan et al., 2018).

A similar argument has been made by Kong et al. (2012):
adding vitamin E early in the course of ALS in an SOD1
model (at 30 days) to CEF and minocycline (both started at
90 days) improves survival significantly. Along the same line,
Keller et al. (2011) have shown that an SOD1 mutant mouse
model of ALS treated with minocycline late at 90 days or
at 105 days show no significant survival difference compared
to control group (144 and 141 days vs. 137 days). However,
minocycline-treated animals early at 75 days show better survival
compared to control group (147 days vs. 138 days). Therefore, the
question of whether early CEF treatment (at time of diagnosis)
or pretreatment (high-risk individuals) could attenuate ALS
manifestations remains to be answered.

In substance use disorder models, however, the concept of
initiating CEF treatment before initiating the hyperglutamatergic
state seems less clear. For example, pretreatment with CEF
for 5 days prior to first cocaine exposure did not affect
the acquisition of cocaine self-administration, while CEF
administration after weeks or months of establishing consistent
high-ethanol or nicotine consumption patterns shows efficacy
in reducing several behavioral manifestations including daily
voluntary ethanol drinking or nicotine-seeking behavior (Sari
et al., 2011, 2013a,b; Lee et al., 2013; Rao and Sari, 2014a;
Das et al., 2015; Rao et al., 2015b; Alasmari et al., 2017;
Stennett et al., 2017). This apparent inconsistency could
be attributed to the complexity of behavioral disorders,
specifically drug addiction, in comparison to structural or motor
neurological diseases.

The Temporal Relationship Between the
Upregulation of GLT-1 and the Behavioral
Effects of Ceftriaxone
Behavioral effects of CEF have been elicited within 4-7 days
in the majoirty of studies with few exceptions: first acute
hyperglutamatergic states such as alcohol withdrawal (Abulseoud
et al., 2014), hypoxic-ischemic encephalopathy (Lai et al., 2011),
and PTZ-induced seizures (Hussein et al., 2016). Here, CEF
works within the first few (Tsai et al., 1998; Campos et al., 2012;
Stephens et al., 2014) days. Second, chronic hyperglutamatergic
conditions such as cognitive impairment or depression require
longer treatment durations. For example, 2 weeks of CEF
administration was needed to show an improvement in cognitive
function and memory in a PD rat model (Ho et al., 2014),
or to reduce depression-like behaviors (i.e., immobility in the

forced swim and tail suspension tests) (Rappeneau et al., 2016).
Similarly, in a rat model with DLBs, CEF was administered
for 4 weeks to elicit an improvement in cognitive function
(Ho et al., 2019), and in an 3xTg-Alzheimer’s disease mouse
model (Zumkehr et al., 2015). In addition, attenuation of
the accumulation of pathological tau in the hippocampus was
observed after 8 weeks of CEF treatment in the 3xTg-Alzheimer’s
disease mouse model (Zumkehr et al., 2015).

Numerous studies have shown that CEF upregulates GLT-1
mRNA, protein expression, and activity measured as early as 2
(Rao et al., 2015b), 5 (Ackerman et al., 2015; Hu et al., 2015;
Sari et al., 2016; Kang et al., 2018), or 7 days post CEF treatment
(Abulseoud et al., 2012; Goodrich et al., 2013; Hu et al., 2015).
The upregulation of GLT-1 has been suggested to induce the
behavioral effects of CEF. However, GLT-1 upregulation is not
the sole mechanism.

The Effect of Pharmacokinetics and
Pharmacodynamics Changes on
Ceftriaxone Efficacy
For CEF to upregulate GLT1, it needs to achieve a brain tissue
concentration of 10 to 100 µmol/L in a tissue culture (Thone-
Reineke et al., 2008) or 1 µmol/L in the CSF (Zhao et al.,
2014). Incubation of primary astrocytes with CEF at different
doses showed significant increase in Glu uptake and GLT1
protein expression at both 10 and 100µmol/L after 2 days
of incubation as compared to vehicle (NaCl) (Thone-Reineke
et al., 2008). Ceftriaxone administered by continuous intravenous
(IV) infusion at 18 mg/h resulted in striatal and CSF CEF
concentrations of 0.8 ± 0.17 and 0.7 ± 0.15 µg/ml, respectively
(Granero et al., 1995). Similar results were reported in a large
multicenter ALS trial. CSF CEF concentrations were measured
in a cohort of subjects (n = 66) and found to be maintained above
the target threshold of 1 µmol/l (0.55 µg/ml) (Zhao et al., 2014).
However, several factors affect the ability of CEF in achieving
this brain tissue concentration such as expression or inhibition
of P-glycoprotein (P-gp). P-gp is an efflux transporter encoded
by the ABCB1 gene, and it is located in endothelial cells of the
blood brain barrier (BBB). CEF is a substrate for P-gp and P-gp
inhibitors such as cyclosporin A and verapamil may enhance
the brain concentration of CFF (Shan et al., 2022). Drugs of
abuse also affect P-gp expression. We have recently shown that
prolonged exposure to ethanol and cocaine alters the expression
of P-gp mRNA and protein levels in the NAc and mPFC in alcohol
P rats (Hammad et al., 2019). Furthermore, human P-gp was
significantly inhibited in a concentration-dependent manner by
buprenorphine, methadone, and THC (Tournier et al., 2010).
As such, higher brain CEF concentration is expected in animal
models of dependence during the drug administration phase
compared to the withdrawal or the abstinence phase. Moreover,
brain CEF concentration in clinical trials may be influenced by
several other factors such as age (Balant et al., 1985; Wang et al.,
2020), route of administration (Borner et al., 1985; Albarellos
et al., 2007), frequency of dosing (Leegwater et al., 2020), and
presence of comorbid medical conditions that could impact
clearance or protein-binding state.
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In adults, 90-95% of CEF is bound to plasma protein and
only a free CEF fraction is pharmacologically active (Hayton
and Stoeckel, 1986; Kovar et al., 1997). The free CEF fraction
was found to be higher in ICU patients compared to healthy
volunteers (Schleibinger et al., 2015). However, in patients with
critical conditions, CEF clearance is also increased by 100%
and volume of distribution by 90%, leading to variable and,
in certain cases, suboptimal plasma CEF concentrations (Joynt
et al., 2001). Since protein-binding is saturable, continuous CEF
infusion was found to be more effective than intermittent (q12 h
or q 24 h) infusion in patients with critical conditions (Leegwater
et al., 2020). Similarly, the route of CEF administration
may also impact plasma and CSF concentrations and, hence,
its efficacy in upregulating GLT1. Peak serum concentration
after intramuscular and subcutaneous CEF administrations
was not significantly different in cats (54.4 ± 12.9 and
42.35 ± 17.6 µg/ml, respectively) (Albarellos et al., 2007).
However, in healthy volunteers, intravenous administration
resulted in higher peak plasma CEF concentration [0 min after
2 g intravenous = 258 ± 40 mg/l) than subcutaneous route
(37.1± 5.6 mg/L after 138± 49 min following 2 g subcutaneous)
(Borner et al., 1985).

Overall, future clinical trial design should take these factors
into consideration, specifically concomitant medications that
could facilitate or impede CEF penetration into brain tissue.

Ceftriaxone Upregulates GLT-1 by
Protein Phosphorylation,
Thermodynamic Factors, and
Intracellular Trafficking
Since NFkB, Akt, and other signaling pathways are involved in
the modulation of GLT-1 expression (Rao et al., 2015b), CEF
works by enhancing the phosphorylation of Akt and NFκB in
key brain regions such as the NAc and PFC (Alhaddad et al.,
2020). Moreover, CEF increases BDNF and TrkB expression
(Thöne-Reineke et al., 2008). It is important to note that studies
found that CEF and other β-lactam antibiotics upregulated
GLT-1 and xCT expression in the NAc and PFC and reduced
ethanol-drinking behavior, and that the effects were associated
with alterations of phosphoAKT (pAKT), nuclear factor kappa
B (NFKB), and an inhibitor of kappa B (IκBα) (Rao et al.,
2015a,b). For instance, CEF treatment for 2 and 5 days increased
the expression of pAKT and NFKB and reduced the expression
of IκBα in the NAc and PFC of P rats exposed to ethanol
drinking for 5 weeks (Rao et al., 2015b). These signaling pathways
are suggested to be part of some of the main mechanistic
pathways involved in the upregulatory effects of CEF on GLT-
1expression in mesocorticolimbic brain regions. Importantly,
5-week ethanol drinking reduced the expression of pAKT and
NFKB and increased IκBα expression in the PFC of male P rats
(Alhaddad et al., 2014b). This suggests that CEF restores these
signaling pathways and consequently reduces ethanol-drinking
behavior. There might be other signaling pathways involving
CEF-induced upregulation of GLT-1. Studies are warranted to
investigate other potential signaling pathways involving CEF
effects on the upregulation of GLT-1.

OTHER PHARMACOLOGICAL ACTIONS
OF CEFTRIAXONE IN THE CENTRAL
NERVOUS SYSTEM

Ceftriaxone normalizes xCT expression in the NAc and
hippocampus (Sari et al., 2009; Knackstedt et al., 2010; Althobaiti
et al., 2016; Alshehri et al., 2018) and activates mGlu 2/3
receptors in NAc core (Logan et al., 2020). It also enhances
the activity of the GS enzyme (Verma et al., 2010; Fan
et al., 2018), decreases microglial activation (Ho et al., 2014),
reduces the production of pro-inflammatory mediators such
as interleukin 17 and interferon gamma, and attenuates the
proliferation of T cells (Melzer et al., 2008). Furthermore, CEF
increases neurogenesis (Ho et al., 2019) and improves neuronal
integrity through different mechanisms including enhancement
of content and activity of antioxidants such as GSH and catalase,
respectively (Hussein et al., 2016). These effects are observed in
dopaminergic neurons (Ho et al., 2014), where CEF treatment
restores dopamine tissue content in the NAc (Althobaiti et al.,
2018). In addition, CEF normalizes the firing of LHb neurons
(Kang et al., 2018).

Upregulation of Water Channel
Aquaporin-4
It has been found that Aquaporin-4 (AQP-4) is involved in
learning and memory, expression of GLT-1, and synaptic
plasticity (Li et al., 2012; Szu and Binder, 2016). Moreover,
chronic CEF exposure has been reported to improve
hippocampal memory and synaptic plasticity in AQP-4 knockout
mice by upregulation of GLT-1 expression (Yang et al., 2013).

Upregulation of Equilibrative Nucleoside
Transporter Type 1
In addition to GLT-1, studies from Sari’s laboratory found that
CEF also upregulated Equilibrative Nucleoside Transporter Type
1 (ENT1) in mesocorticolimbic brain regions (Sari et al., 2013b).
ENT1 has been found to regulate ethanol-drinking behavior
through NMDAR signaling pathways (Choi et al., 2004; Nam
et al., 2011). Sari’s laboratory previously found that ethanol
drinking for 5 weeks increased the activity of ENT1 in NAc shell
and NAc core (Sari et al., 2013b). Furthermore, CEF treatment
(100 mg/kg IP) for 5 days reduced ethanol-drinking behavior
starting from day 2 to day 5 of drug treatment. It is important
to note that 3 days after last CEF injection, ENT1 activity has
been found to be decreased in both NAc shell and NAc core. This
indicates that CEF was effective in restoring ENT1 activity in the
mesocorticolimbic system following chronic exposure to ethanol.

Attenuation of Pro-inflammatory
Cytokines
Studies have suggested that the neuro-inflammation associated
with multiple sclerosis might lead to high level of extracellular
glutamate concentrations in part by reduction in the expression
of GLT-1, glutamine synthetase activity, and glutamate
dehydrogenase activity (Werner et al., 2001). This suggests
that pro-inflammatory cytokines (tumor necrosis factor-alpha,
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TNF-α, IFNγ, and IL) might be involved in dysregulation of
the glutamatergic system. It is important to note that TNF-α
increased glutaminase mRNA expression and stimulated the
release of glutamate, which might cause neuroexcitotoxicity
(Takeuchi et al., 2006). Ceftriaxone was effective in reducing
the production of these cytokines in the brain (Chu et al., 2007;
Melzer et al., 2008).

It has been found that pre-treatment with CEF (200 mg/kg IP)
for 5 days reduced the ischemia-increased mRNA expression of
pro-inflammatory cytokines including Fas, FasL,IL-6, and TNF-α
(Chu et al., 2007). In addition, attenuation in pro-inflammatory
cytokines (IL-17 and IFNγ) concentrations has been observed
in dendritic cells incubated with myelin oligodendrocyte
glycoprotein following exposure to 500 mM of CEF for 3 days
(Melzer et al., 2008). These data were further supported by a
study that reported CEF (200 mg/kg IV) improved traumatic
brain injury-induced cognitive dysfunction and cerebral edema
in part by reduction in the concentrations of pro-inflammatory
mediators (IFNγ, TNF-α, and IL-1β) in the brain (Wei et al.,
2012). In addition, CEF was suggested to bind to these
mediators directly to reduce their activities (Brooks et al., 2001,
2003).

Reduction of Oxidative Stress
Ceftriaxone has been found to attenuate oxidative stress,
consequently leading to neuroprotection against over-
activation of certain glutamate receptors, which may lead
to excitotoxicity and, consequently, neuronal injury (Amin
et al., 2014). Reactive oxygen species (ROS) have been found in
mesocorticolimbic brain regions undergoing neurodegeneration
in a pre-clinical neurological model [for review refer to Zuo
and Motherwell (2013); Huang et al. (2016); Manoharan
et al. (2016)]. Although superoxide dismutase enzyme (an
antioxidant enzyme) activity was not changed following
treatment with CEF (Rothstein et al., 2005), apoptosis and
oxidative stress were attenuated after 3 or 7 days of CEF
treatments (200 mg/kg IP) (Amin et al., 2014). Oxidative
stress has been found to affect the activity of glutamate
uptake in astrocytes (Hayashi et al., 2002). Moreover, it has
been found that inhibition of glutamate transport function
generated oxidative stress radicals, which reduced the
ability of the hippocampus to produce antioxidant effects
(Nagatomo et al., 2007). Furthermore, it has been reported
that treatment with CEF (200 mg/kg IP) ameliorated the
memory impairment that was caused by hypobaric hypoxia,
and this effect was associated in part by upregulation of GLT-1
in rats (Hota et al., 2008). Importantly, 14-day hypobaric
hypoxia induced an oxidative stress characterized by increase
in hippocampal LDH enzyme activity, decrease in level of
reduced glutathione, and increase in lipid peroxidation, and
these effects were attenuated by CEF treatment. This study
showed that CEF restored GLT-1 levels in the hippocampus
in this hypobaric hypoxia. These findings suggest that
CEF has neuroprotective effects indirectly in part by
upregulating glutamatergic transporters, and consequently,
attenuating the hyperglutamatergic state and stimulating
glutathione pathways.

CLINICAL STUDIES TESTING THE
EFFICACY OF CEFTRIAXONE

Despite the rich and promising preclinical data showing the
efficacy of CEF in attenuating disease manifestations in various
neuropsychiatric disorders, to the best of our knowledge, there
are less studies on clinical trials that tested the efficacy of
CEF. Indeed, the efficacy of CEF in attenuating the progression
of motor manifestations was shown in patients with ALS
(Cudkowicz et al., 2014), and another study tested its efficacy in
reducing post nerve decompressive surgery pain (Macaluso et al.,
2013). The search at the clinical trials registration website1 shows
four more proposed studies: (1) A Glutamate Transporter GLT-1
in the Treatment of Bipolar Disorder (ID# 2007/ NCT00512616,
sponsored by NIMH, withdrawn), (2) CEF in the Management of
Bipolar Depression (ID#2007/NCT00566111, sponsored by Yale,
terminated), (3) A Placebo-Controlled Efficacy Study for CEF
for Refractory Psychosis (ID#2008/NCT00591318, sponsored by
Research Foundation for Mental Hygiene, unknown status), and
(4) Efficacy and Safety of CEF for Mild to Moderate Parkinson’s
Dementia (ID# 2018/NCT03413384, sponsored by BrainX Corp.
in Taiwan, recruiting). The reasons these trials were withdrawn
or terminated are not clear.

To the best of our knowledge, only one clinical trial tested the
efficacy of CEF in attenuating functional decline [measured by
Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised,
ALSFRS-R] and improvement of survival in patients with ALS
(Cudkowicz et al., 2014). This large-scale, multi-site, double-
blind, randomized, placebo-controlled study had three stages;
one and two examined the pharmacokinetics and safety of CEF
in patients with ALS, and stage 3 included 66 participants from
stages 1 and 2 and 448 new participants that were randomly
allocated (2:1) to CEF (n = 340; 2 or 4 g per day) or placebo
(n = 173). Among participants randomized to receive CEF, 46%
(156/340) remained in the study for 14.2 ± 11.7 months while
41% (71/173) of participants on placebo remained in the study
for 12.3 ± 9.2 months. No significant difference between the two
groups were found. During stages 1 and 2, functional decline
(ALSFRS-R) was 0.51 ± 0.24 (95% CI: 0.0196, 0.9956) units per
month slower in participants taking 4 g CEF vs. those taking
placebo (p = 0.041). In stage 3, there was no significant effect on
functional decline (p = 0.23). Follow-up for survival was >95%
complete; 50% of the participants survived during the study. Log-
rank tests showed no significant differences in survival between
the two groups (p = 0.41).

Despite this negative result, the study provides important
safety information for extended IV administration. Aside from
gall stones, side effect profile is tolerable. Clearly, it could have
been helpful to know the status of GLT-1 and extracellular
glutamate concentration before and after CEF treatment.
Multimodal imaging by proton (1H-MRS) and carbon 13 (13C)
spectroscopy and developing specific GLT-1 PET ligands are
needed to explore glutamate-glutamine cycle dynamics and GLT-
1 activity before and after CEF treatment in healthy individuals
and in patients with ALS and other neuropsychiatric disorders.

1www.clinicaltrials.gov
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CONCLUSION AND CLOSING REMARKS

Several studies from our laboratories and others showed
the efficacy of CEF in attenuating behavioral manifestations
of various hyperglutamatergic disorders in preclinical
models. CEF has upregulatory effects on GLT-1 leading
to decrease in extracellular glutamate concentration that
can be excitotoxic. This may consequently reduce oxidative
stress and, possibly, neuroinflammation. Although several
studies showed the efficacy of CEF in reducing the
hyperglutamatergic state in animal models of drugs of
abuse, CEF was less effective in clinical trials involving
certain patients with ALS who may suffer from the
hyperglutamatergic state (Macaluso et al., 2013; Cudkowicz et al.,
2014).

To the best of our knowledge, there is no evidence in
humans showing that CEF can modulate the hyperglutamatergic
state. We suggest that an MR proton and 13C spectroscopy
imaging study on human volunteers is needed to determine
the changes in glutamate concentrations in key affected
brain regions. We also suggest developing specific PET-
ligands for GLT-1 to examine the effect of CEF on GLT-1
upregulation in humans. Importantly, we suggest identifying
and characterizing new beta-lactams that are devoid of
antimicrobial properties to upregulate GLT-1 and attenuate

the hyperglutamatergic state. Currently, there is existence
of a new beta-lactam, MC-100093 that shows promising
results in attenuating cocaine-seeking behavior, and this
effect is mediated by upregulation of GLT-1 expression
in reward brain regions such as the nucleus accumbens
(Knackstedt and Schwendt, 2016).

Overall, CEF may have some potential as a therapeutic agent
for many neuropsychiatric disorders, but more preclinical and
clinical studies are warranted.
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