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Abstract: SARS CoV-2 pandemic is still considered a global health disaster, and newly emerged
variants keep growing. A number of promising vaccines have been recently developed as a pro-
tective measure; however, cost-effective treatments are also of great importance to support this
critical situation. Previously, betulinic acid has shown promising antiviral activity against SARS
CoV via targeting its main protease. Herein, we investigated the inhibitory potential of this com-
pound together with three other triterpene congeners (i.e., ursolic acid, maslinic acid, and betulin)
derived from olive leaves against the viral main protease (Mpro) of the currently widespread SARS
CoV-2. Interestingly, betulinic, ursolic, and maslinic acids showed significant inhibitory activity
(IC50 = 3.22–14.55 µM), while betulin was far less active (IC50 = 89.67 µM). A comprehensive in-silico
analysis (i.e., ensemble docking, molecular dynamic simulation, and binding-free energy calculation)
was then performed to describe the binding mode of these compounds with the enzyme catalytic
active site and determine the main essential structural features required for their inhibitory activity.
Results presented in this communication indicated that this class of compounds could be considered
as a promising lead scaffold for developing cost-effective anti-SARS CoV-2 therapeutics.

Keywords: triterpenes; olive leaves; SARS CoV-2; COVID-19; main protease; in-silico; molecular
dynamic simulation

1. Introduction

Severe acute respiratory syndrome caused by the enveloped virus coronavirus-2 (SARS
CoV-2) is still a worldwide health disaster despite the recently introduced vaccines [1,2].
Hence, finding a cost-effective treatment is an urgent demand to support vaccines in
controlling this rapidly evolving disease.

The viral main protease (Mpro) is able to recognize and cleave specific amino acid
sequences in the viral polyprotein replication complex (1ab). In addition, it is a highly
conserved protein among coronaviruses [3], and thus it is considered an attractive target
for the development of effective and specific therapeutics [4,5].

Generally, Mpros of coronaviruses occur in a dimeric form (Figure 1C), and their
catalytic activity significantly decreases if this conserved dimerization is inhibited by
mutations [6,7]. Each individual monomer consists of three domains (domains I, II, and
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III), where the catalytic binding pocket occurs between domains I and II, while domain
III is responsible for the enzyme dimerization [7,8] (Figure 1A,B). The enzyme active
site contains a conserved HIS-41-CYS-145 catalytic dyad that is required for the protein
cleavage. Hence, any modifications in these catalytic residues will eventually lead to a
complete loss of the enzyme catalytic activity [9]. Several covalent inhibitors (i.e., covalent
bond formation with CYS-145) have been developed [10], while non-covalent competitive
inhibitors are much less investigated [11].
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Being an essential pipeline for drug development, natural products have offered
several anti-SARS CoV potential candidates that were able to target Mpro. For example,
betulinic acid, a plant-derived triterpene, exhibited promising inhibitory activity against
the SARS CoV Mpro (IC50 10 µM) [12]. Generally speaking, this class of natural products,
in addition to plant-derived sterols, have shown good potential as antiviral agents [13].

Consequently, herein we investigated the efficacy of four olive-derived triterpenes,
including betulinic acid against the Mpro of the currently widespread SARS CoV-2. Em-
ploying a number of in-silico experiments (docking and molecular dynamic simulation),
we illustrated the main structural elements required for the Mpro inhibitory activity of this
class of compounds, hence, offering a potential lead scaffold for further development and
optimization to help in finding potential cost-effective therapeutics for COVID-19.

2. Results and Discussion

As a part of our continuous effort of finding natural products-based anti-SARS-CoV-2
therapeutics, we investigated four olive-derived triterpenes for their inhibitory activity
against the viral Mpro. Our rationale in the present communication was based on the
previous findings of Wen and his co-workers [12], when they identified betulinic acid
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(lupan-type triterpene) as a potential SARS-CoV Mpro inhibitor (IC50 = 10 µM). Additionally,
they highlighted that the presence of a hydroxyl group at C-3 as an H-bond donor is
essential for the in vitro inhibitory activity (Figure 2). Hence, we tested betulinic acid
together with three other olive-derived triterpene congeners (i.e., betulin, ursolic acid, and
maslinic acid) against SARS CoV-2 Mpro to check if they are still promising scaffolds for
the development of Mpro inhibitors against the newly emerged viral strain. Interestingly,
we found that the lupine-type triterpene betulinic acid was still able to exert considerable
inhibitory activity against the SARS CoV-2 Mpro (IC50 = 14.55 ± 1.3 µM), while betulin was
far less active (IC50 = 89.67 ± 2.4 µM). These findings indicated that the C-17 carboxylate
moiety is of particular importance for the inhibitory activity of this class of compounds
(Figures 2 and 3). Betulonic acid has been tested in a previous study on SARS CoV Mpro by
Wen and his co-workers [12] and was found inactive. Although we did not test it against
SARS CoV-2 Mpro in this study, we evaluated its binding mode and dynamic behavior just
like the other tested congeners to extract the essential structural features required for the
inhibitory activity of this class of compounds.
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On the other hand, the tested ursane-type triterpenes, and ursolic and maslinic acids
exhibited more promising inhibitory activities (IC50 = 12.57± 0.28 and 3.22± 0.26 µM, respec-
tively) compared to the SARS CoV-2 Mpro positive standard GC376 (IC50 = 0.51± 0.08 µM). It
was evident that the presence of an additional hydroxyl group at C-2 significantly increased
the inhibitory activity of this type of compounds (Figures 2 and 3).

To explain these in vitro results at a molecular level, we docked all of the tested
compounds against the crystal structure of SARS CoV-2 Mpro (PDB: 6LU7) [10]. For this
purpose, an ensemble docking protocol was used, taken into consideration the active site
flexibility [8]. The top-ranking poses of each compound were convergent and represented a
common ligand orientation (Orientation-A) (Figure 4) and were likely the most correct one
as it was stable over a short run of molecular dynamic simulations (25 ns long). There was
another orientation (Orientation-B, Figure S1A–D) of the docked compound represented
by other lower-ranking poses. However, they were significantly less stable over the same
period of MDS (Figure S1E).
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As shown in Figure 3, which represents the top-ranking pose (Orientation-A), the C-17
carboxylate groups of betulonic, ursolic, and maslinic acids were able to form a salt bridge
with HIS-41 (i.e., one of the Mpro catalytic dyad). In addition, the C-17 hydroxyl group of
betulin was also involved in H-bonding with HIS-41. Concerning C-3-hydroxyl groups of
the four compounds, they were involved as H-Bond donors with SER-144 in case of ursolic
and maslinic acids, and as both H-bond donors and acceptors with PHE-140 main chain
in the case of betulinic acid and betulin. If this C-3 hydroxyl group became oxidized and
converted to a ketone (in the case of betulonic acid), it would no longer be able to contribute
to any H-bondings, as the oxygen would lose its hydrogen and become oriented away
from PHE-140 main chain. There were also a number of hydrophobic interactions between
the compounds’ hydrocarbon bodies and LEU-27, MET-94, MET-165, and PHE-140, which
supported the activity.
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To further evaluate this binding orientation, we subjected those docking poses to
longer MDS experiments (150 ns) and extracted the binding free energy (∆G) of each
compound (using the FEP method). As illustrated in Figure 3F, betulinic and ursolic acids
were clustered together in the RMSD chart showing low conformational changes over the
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course of MDS (RMSDs ~ 2.42 Å). Maslinic acid showed lower conformational changes
(RMSD ~ 0.95 Å), indicating that the second C-2 hydroxyl group further stabilized the
whole molecule inside the enzyme’s active site. Trajectories’ analysis revealed that the
interactions between C-17 carboxylate and HIS-41, and between C-3 hydroxyl group and
either SER-144 or PHE-140 remained intact throughout the course of MDS (89% and 71%
interaction time, respectively). Thus, these two types of interaction obviously played a
significant role in making these compounds able to achieve stable binding with the Mpro’s
active site.

Regarding both betulin and betulonic acid, they showed significant fluctuations at
the beginning of MDS till 70 ns, when betulonic acid started to leave the binding pocket
from the C-3 side, and at 80.8 ns, the whole molecule became outside except for the
carboxylate moiety. Similarly, betulin’s conformational changes were further increased
until 110.4 ns, when the C-17 hydroxyl group was utterly detached and started to leave the
binding pocket.

The calculated ∆Gs of each compound reflected their corresponding stability in-
side the Mpro active site. ∆Gs of betulinic and ursolic acids were convergent (−8.1 and
−8.2 kcal/mol, respectively), while that of maslinic acid was lower (−9.3 kcal/mol). On
the other hand, both betulin and betulonic acid became much higher ∆Gs (−4.1 and
−2.2 kcal/mol).

From the previous structural and dynamic information, it could be concluded that
the presence of a C-17 carboxylate moiety together with ß- hydroxyl group at C-3 were
essential structural features for this class of compounds to achieve a stable binding and, in
turn, significant inhibition of Mpro activity (Figures 2 and 3).

Recently, a number of other natural products have shown interesting inhibitory activity
against SARS CoV-2 Mpro catalytic activity, particularly flavonoids [14–16]. For example,
baicalein has exhibited potent micromolar inhibition (IC50 = 0.94 µM), and its crystal
structure with Mpro indicated that its main molecular interactions were with GLY-143 and
GLU-166 [15]. Surprisingly, this non-covalent competitive inhibitor was more potent than
covalent peptidomimetics ones, such as molecule 5 h (IC50 = 4.2 µM) [17].

Olive leaves are a rich source of bioactive phenolics and triterpenes that have demon-
strated a wide range of biological activities, including antiviral activities [18]. Previously,
ursolic acid was reported to exhibit broad-spectrum antiviral potential [19,20]. Moreover,
maslinic acid has shown in vitro inhibitory activity against HIV [21]. As discussed in the
present study, triterpenoids, particularly those recovered from olive leaves, could be con-
sidered promising anti-SARS-CoV-2 leads that can suppress its Mpro catalytic activity, and
we believe that the structural information presented here would support the development
of potent and specific SARS CoV-2 Mpro inhibitors.

3. Materials and Methods
3.1. Isolation of Compounds

All triterpenes used in this study were isolated from the dried leaves of olive (i.e.,
Olea europaea) according to previously reported protocols [18,22]. Briefly, the dried leaves
were washed thoroughly and then successively extracted with n-hexane:EtOAc (50:50).
The produced extract was dried and then subjected to silica gel chromatographic column
using CH2Cl2:MeOH (80:20) as a mobile phase to afford these four triterpenes. Structural
characterization of these triterpenes was achieved using NMR spectrometry and compari-
son with authentic standards. To ensure the maximum purity during the in vitro testing,
these triterpenes were purchased from Sigma Aldrich, St. Louis, Missouri, USA.

3.2. Ensemble Docking

AutoDock Vina docking software was employed in all docking experiments [23].
Triterpenes analogues were docked against the SARS CoV-2′s Mpro (PDB code: 6LU7) [10].
The enzyme’s active site was determined according to its co-crystalized ligand. To account
for the active site’s flexibility, we used their MDS-derived conformers sampled every 10 ns
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for docking experiments (i.e., ensemble docking) [8]. Subsequently, we ranked top hits
according to their average calculated binding energies. Docking poses were analyzed and
visualized by Pymol software [23].

3.3. Molecular Dynamic Simulation

MDS experiments were carried out by Desmond v.2.2 [24,25] software that uses Mae-
stro software [26] as a graphical user interface. Protein and protein–ligand systems were
established by System Builder option, where they were enclosed inside an orthorhombic
box of TIP3P waters together with 0.15 M of Na+ and Cl- ions plus 20 Å solvent buffer.
Afterwards, these prepared systems were energy minimized and equilibrated for 10 ns.

Desmond software automatically parameterizes inputted ligands during the system
building step according to OPLS force field. For simulations carried out by NAMD [27],
the parameters and topologies of the ligands were calculated either using Charmm27 force
field by Ligand Reader & Modeler (http://www.charmm-gui.org/?doc=input/ligandrm,
accessed on 15 February 2021) online software [28] or by the VMD plugin Force Field
Toolkit (ffTK) [29]. Thereafter, the generated parameters and topology files were loaded
to VMD so that it can readily read the protein-ligand complexes without errors and then
conduct the simulation step.

Binding free energy calculations (∆G) were performed via the free energy perturba-
tion (FEP) technique. We first prepared all input files and script NAMD by the online-
based CHARMM-GUI Free Energy Calculator (http://www.charmm-gui.org/input/fec,
accessed on 15 February 2021) [28]. Afterwards, these inputs were loaded to NAMD for
simulations, where the equilibration was achieved in NPT ensemble at 300 K and 1 atm
(1.01325 bar) by Langevin piston pressure (for ”Complex” and ”Ligand”) in the presence
of TIP3P water model. For each compound, 10 ns FEP simulations were done (5 ns for
equilibration + 5 ns for production) where the last 5 ns (i.e., the production step) of the free
energy values were obtained for the final free energy values [28,29]. We did this simulation
for the ligand alone, for the free protein alone, and for the complexed system (i.e., the
enzyme bound to the ligand) to finally extract the ∆G. Finally, all the generated trajectories
were visualized and analyzed by VMD software [29].

3.4. In Vitro Enzyme Assay

In vitro enzyme inhibition assays were carried out using SARS-CoV-2 main protease
assay kit (Catalog #: 79955-1, BPS Bioscience, Inc., Allentown, PA, USA) and in accordance
with the manufacturer’s protocol. GC376 was used as a reference standard inhibitor.

The produced fluorescence due to the protease cleavage of the substrate was observed
at 460 and 360 nm for emission and excitation wavelength, respectively, using a Tecan
Spark microplate reader (Switzerland). Briefly, 10 µL of test compounds of different
concentrations were added into a 96-well plate followed by pipetting 30 µL of the diluted
protease 15 µg/mL. The mixtures were incubated for 30 min at room temperature, and
then 10 µL of the substrate was dissolved in the reaction buffer and added to reach a 50-µL
final volume and 40-µM final concentration. The reaction mixture was then incubated
for 4 h at 20 ◦C followed by measuring the produced fluorescence using a TECAN spark
microplate-reading fluorimeter.

4. Conclusions

Plant-derived natural compounds remain a prolific source for discovering efficient
drug candidates for a lot of serious health-related diseases. The COVID-19 pandemic is
a serious issue that has been affecting the globe since the end of 2019. Even with few
vaccines available, there is still a necessity for the discovery of promising antiviral agents.
In this communication, we have highlighted the importance of plat-derived triterpenes
as a promising structural motif for developing SARS-CoV-2 main protease inhibitors.
Promisingly, maslinic acid exhibited almost half the inhibitory potential compared to the
synthetic positive standard used for this screening (i.e., GC376, IC50 = 0.51 µM). We hope

http://www.charmm-gui.org/?doc=input/ligandrm
http://www.charmm-gui.org/input/fec
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to screen a wider range of this structural class based on the structure–activity relationship
pinpointed in this research to find safer and more potent inhibitor in the near future.

Supplementary Materials: The following are available online, Orientation-B of binding of maslinic
acid, ursolic acid, betulin, and betulinic acid inside the Mpro active site (A–D, respectively). RMSDs
of these compounds along with the apoprotein over 25 ns MDS (E).
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