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Abstract: A Three-Way Catalyst (TWC) contains a cordierite ceramic monolith coated with a layer of
Al2O3, CexZr1−xO2 and platinoids mixture. Under standard operation, the platinoid concentration
decreases, exposing the remaining washcoat structure. After that particle release stage, the sintering
process follows where the crystalline CexZr1−xO2 solution is broken and begins to separate into
ZrO2 and CeO2 phases. ZrO2 is released to the environment as micro and nanoparticles, while a
small amount of CeO2 generates a new AlxCe1−xO2 composite. The main effect of Ce capture is the
growth in the size of the polycrystal structure from 86.13 ± 16.58 nm to 225.35 ± 69.51 nm. Moreover,
a transformation of cordierite to mullite was identified by XRD analysis. Raman spectra showed
that the oxygen vacancies (Vö) concentration decreased as CexZr1−xO2 phases separation occurred.

The SEM-EDS revealed the incorporation of new spurious elements and microfractures favouring
the detachment of the TWC support structure. The release of ultrafine particles is a consequence
of catalytic devices overusing. The emission of refractory micro to nanocrystals to the atmosphere
may represent an emerging public health issue underlining the importance of implementing strict
worldwide regulations on regular TWCs replacement.

Keywords: vehicle catalyst; washcoat loss; sintering nanoparticles; non-exhaust emissions; refractory
nanoparticles

1. Introduction

Automotive emissions constitute a significant source of air pollutants in urban en-
vironments [1]. Cars contribute to air pollution through (i) exhaust emissions from the
combustion of gasoline in the engine (toxic gases); and (ii) non-exhaust emissions released
from the wear of vehicle parts (particulate matter, PM) [2]. The PM is separated in PM10
(<10 µm), PM2.5 (<2.5 µm) and PM0.1 (<100 nm) according to its aerodynamic diameter.
Currently, global emissions regulations have been implemented to reduce toxic gases,
PM10 and PM2.5 from vehicles. For reducing traffic’s environmental impact, most gasoline
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engine vehicles incorporate a Three-Way Catalyst (TWC). This device converts automotive
exhaust emissions by promoting the oxidation of carbon monoxide (CO) and unburned
hydrocarbons (HC), as well as the reduction of nitrogen oxides (NOx) [3]. The first catalytic
converters (introduced in 1975) were known as a two-way catalysts since they reduced
CO and HC by oxidation reactions in the presence of Pt and Pd. Initially, NOx reduction
was processed by a mechanical system called exhaust gas recirculation. However, in 1980
the introduction of Rh featured the catalytic converter with the ability to reduce NOx [4].
The dispersion of platinoids over the surface of a cerium-oxide substrate increased the
performance of TWC. The specific selection of cerium was due to its vast oxygen storage
and discharge capacity. Each free O2 molecule creates a space in this oxide and produces
two Ce3+ (Ce4f) cations by distributing electrons to two Ce4+ cations (Ce4f0) [5]. But the
pure CeO2 demonstrated poor thermostability and clustering at high temperatures losing
its crucial oxygen storage and release characteristics [6]. One approach to overcoming these
disadvantages was introducing ZrO2 and Al2O3 as thermal stabiliser agents [7]. Currently,
TWC contains an active layer (washcoat) made of CexZr1−xO2-Al2O3 and platinoids on a
honeycomb cordierite structure (2MgO·2Al2O3·5SiO2) [8]. The synthetic cordierite (α-C)
exhibits a low thermal expansion and is resistant to cracking or thermal shocks during
rapid temperature transients. The melting point of α-C is 1470 ◦C, while the catalyst
reactions occur at an operating temperature between 300 and 1000 ◦C [9]. The overcomes
from chemical, thermal and mechanical stress conditions degrade the active catalytic
washcoat [10].

Despite the environmental benefits attributed to the TWC, some studies report the
release of Pt, Pd and Rh to the environment from this device [11,12]. Moreover, the vehicle’s
exhaust system is considered the primary source of those pollutants in urban areas [13],
including CeO2-ZrO2 micro and nanoparticles (NPs) [14]. However, neither the mechanism
of particle release nor the indicators related to transformations within TWC have been
addressed. Different methods have been proposed to elucidate and get experimental
insights on how a TWC ages [15–23]. Nevertheless, these works do not test the TWC under
actual conditions of use.

In this study, we physiochemically characterised two road-aged TWCs and compared
them versus a new catalyst to (i) determine the chemical variability associated with the
use, (ii) know the mineralogy related to thermodynamic changes, (iii) identify the wear
condition and particle size at different points along the longitudinal axis of the catalyst and,
(iv) analyse an exhaust pipe sample to examine the presence of materials associated with
the TWC. The obtained experimental data are the basis for understanding the degradation
and phase transformation processes of the washcoat and ceramic structures that impact
catalytic devices’ performance.

To our best knowledge, this research would be the first work to provide insights about
the processes and their effects generated on TWC with normal use conditions considering
the physical wear and the subsequent environmental release of refractory particles.

2. Materials and Methods

We studied samples from three TWCs of sedan-type commercial automobiles. Samples
were taken from A: brand-new (Nissan, Versa 2019), B: moderately used (Dodge, Atos
2014) and C: highly used TWC (Honda, Accord 2009). The mileages for B and C catalytic
devices were 74,500 and 125,000 mi, respectively. The used B-TWC was circulating in
Mexico City. In this city, vehicle emission regulations require the drivers to substitute the
catalytic converter when the efficiency of toxic gas conversion is insufficient to comply with
PROY-NOM-167-SEMARNAT-2016 guidelines [24]. On the other hand, the used C-TWC
corresponds to a car circulating in Hermosillo without TWC replacement regulations.

TWCs features two ceramic monoliths: the front (FM) and the rear (RM) parts [3]. The
FM directly receives the toxic gases from the engine, starting the gas conversions. The gases
then flow to a second stage in the RM before being expelled to the atmosphere. For the
physicochemical characterisation and analysis, four laminar sections were cut and labelled
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as FM1, FM2, RM1 and RM2, as depicted in Figure 1. From these blocks, sub-samples
consisting of 0.3 × 0.3 × 0.2 mm were carefully cut perpendicular to the honeycomb
structure of the ceramic monolith. A portion of the total TWC (monolith + washcoat) was
pulverised in a ball mill Retsch (Bioblock) model S100. We placed ~20–25 g of sample in
a high purity agate (SiO2) container with 250 mL capacity and 12 balls of Ø 2 cm. The
powder sample was accomplished in two cycles of 6 min at 500 rpm. At the end of the
second cycle, the particle size obtained was ≤45 µm. This size gives a larger surface area
for exposure to acid solutions, which allows for the more efficient digestion of the sample
for analysis. We had sub-samples of the washcoat after scraping the monolith surface
with a stainless-steel needle. Additionally, we collected dust from the highly used TWC
(most deteriorated) car exhaust pipe with a brush. In the last case, the sample amount was
insufficient for performing ICP-AES and X-ray diffraction or Raman spectroscopy due to
the intrinsic fluorescence. All the samples were stored in sealed bags.
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2.1. Chemical and Mineralogical Composition

The bulk elemental concentration of the total pulverised TWCs was obtained by the
certified commercial laboratory ALS Chemex Laboratories (Vancouver, BC, Canada). A
powdered sample (0.100 g) was added to a lithium metaborate/lithium tetraborate flux,
mixed well, and fused in a furnace at 1025 ◦C. The resulting melt was then dissolved in
an acid mixture containing nitric, hydrochloric and hydrofluoric acids. This solution was
analysed by ICP-AES (major elements) and ICP-MS (trace elements). Due to the potentially
high content of Ce and Zr, we followed different digestion and measurement methods:
0.4 g of each sample was dissolved with concentrated nitric acid for half an hour to measure
the Ce and Zr concentrations. After cooling, hydrochloric acid was added to produce aqua
regia, and the mixture was then digested for an additional 1.5 h. The resulting solution
was diluted to 100 mL with deionised water and then analysed by ICP-AES. Certified
blanks and standard materials were used for quality control. Precision (%) was calculated
after analysing the standard materials: AMIS0304, AMISO461, AMISO571, BCS-512 and
OREAS-101b. The accuracy obtained for all samples was in the range of 92% to 106%. The
LOD of major elements was 0.01% (SiO2, Al2O3, MgO, TiO2, BaO, P2O5, SrO2, K2O, CaO,
Na2O, MnO, Fe2O3) and 0.002% for Cr2O3. The LOD of trace elements were 0.01 ppm
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(Cs); 0.05 ppm (U and Th); 0.1 ppm (Ce, Ga, Hf, Nb and Ta); 0.2 ppm (Rb); 1 ppm (Sn and
W); 2 ppm (Zr); 5 ppm (V). The percent loss on ignition (LOI) was calculated from the
difference in a sample weight (1.0 g) when the sample is placed in an oven at 1000 ◦C for
one hour and cooled.

The mineralogical and chemical composition of TWC samples were studied with a
Raman microscope (Witec, alpha300 RA, Ulm, Germany). Washcoat samples were placed
on a calcium fluoride substrate (CaF2,13 mm Ø × 1.0 mm, Crystan Ltd., Poole, UK) with
a drop of deionised water (18.2 Ω·cm, Milli-Q, Millipore, Burlington, MA, USA), and
dried in a desiccator for 3 h. We used a frequency-doubled Nd: YAG laser excitation of
532 nm focused through a 50× objective. A spectral resolution of 3 cm−1 was achieved
for this experimental setup using a 600 gr/mm grating scattered the Raman light. The
measurements were taken with a 10 s accumulation time. The crystal structure of pulverised
samples (monolith + washcoat) was determined using an XRD system with Bruker D8
Advance equipment. The operating conditions were 40 kV/35 mA with a Cu radiation
source λ (Kα1) = 1.5406 at room temperature. The range of 2θ was 10–70◦, with a step
size of 0.02◦ in a time per step of 2 s. The software Diffrac-plus EVA, supported by the
International Centre for Diffraction Data (ICDD) database, was used for scan interpretation
and minerals identification.

2.2. Physical Wear and Particle Size

We used SEM-EDS to evaluate possible physical degradation and microfractures
of the TWC. In this sense, we analysed the small pieces and exhaust pipe dust with a
PhenomProX desktop SEM (Thermo Fisher Scientific, MA, USA). The samples were placed
on a carbon sticker in the SEM pin holder. We identified the characteristic chemical elements
by EDS analysis (Quantax 200 X-ray energy dispersive spectrometer, Bruker, GmbH, Berlin,
Germany). The size and morphology of the washcoat particles were analysed with a
transmission electron microscope (HITACHI 7700, Tokyo, Japan) operating at 100 kV.
About 50 mg of the washcoat dust were placed in 2 mL vials filled with isopropanol.
The samples were then subjected to ultrasound for 10 min, and a drop was deposited on
300 mesh copper grids for the TEM analysis.

2.3. Data and Statistical Analysis

Statistical analysis was performed with XLSTAT 2020.5.1. (New York, NY, USA). We
applied the principal component analysis (PCA) to identify the main chemical differences
among the studied TWCs. This method allows the reduction of dataset dimensionality
with minimal loss of information by transforming a large set of variables into a smaller one
(components). As a result, the technique better interprets chemical data and samples. PCA
can determine the relationship between metals and extract several independent factors
with similar geochemical patterns. The suitability of the dataset was assessed by the Kaiser-
Meyer-Olkin (KMO) measure and Bartlett’s test of sphericity. The KMO value was >0.62.
Factors were identified by the magnitude of factor loadings: A value >0.7 implies a strong
relationship, as previously reported by Vlasov et al. 2021 [25].

The raw data were processed in OriginPro 2017 (OriginLab, Northampton, MA,
USA) using the Savitzky-Golay method with a 20-point window. The baseline was then
subtracted with asymmetric least squares and normalised. Finally, the spectra were fitted
using a gaussian deconvolution to locate the Raman and XRD peaks.

3. Results
3.1. Chemical and Mineralogical Composition

The bulk composition of the monolith and refractory washcoat of the TWC is presented
in Figure 2. Zr, Hf, SrO, BaO and LOI values show a decreasing trend from the new to the
most used catalyst. Therefore, the diminution of Zr may be a marker for the detachment
of the washcoat. Barium oxide is commonly a stabiliser to help maintain the surface area
of �-Al2O3; its loss in the aged device may also contribute to the collapse of the surface
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area and further sintering of Ce-oxides [26]. We report the total TWC composition because
the LOI is relevant data since it reflects the content of volatiles in the new and used TWC.
The TWC reaches high temperatures (900–1100 ◦C) during regular operation, releasing
the volatile components. As a result, LOI is more significant in the A-TWC than in the
C-TWC, suggesting the decrease of hydrated oxides (HO). The release of volatile elements
may promote mineral phase transformations in the monolith, but we recommend further
studies to explore this effect.
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Ce content also diminishes in the moderately used device, but in sample C-TWC,
its concentration increases compared to B-TWC. This fact is related to the separation of
ZrO2 and CeO2 phases. The ZrO2 escapes from the CexZr1−xO2 solid solution while
CeO2 keeps trapped in the Al2O3 layer [14,27]. The addition of ZrO2 improves thermal
stability and inhibits the reaction of CeO2 with the alumina substrate [7]. Thus, the ZrO2
separates as nano- and microparticles [14], while the Ce is retained in the TWC, forming an
AlxCe1−xO2 composite (sample C-TWC) [7]. This information explains why Zr is found in
higher amounts in environmental samples when compared to Ce abundance in the same
samples [14]. In addition, SiO2, Al2O3 and MgO (cordierite components) increase in the
B-TWC sample. These compounds are concentrated after the partial release of the washcoat.
However, a significant decrease of Al2O3 is then observed in the C-TWC. Al2O3 is also a
central component of the washcoat, and the total Al2O3 loss impacts the bulk content, as is
depicted in Figure 2.
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PCA splits the geochemical signatures of the three studied TWC (Figure 3). Within the
obtained data set of the concentrations of metals, the first two principal components explain
73.31% of the variability. The first principal component (PC1) defined 46.41% of the total
variance, dominated by Ba-Hf-Zr-Sr-LOI Ce-Cs-Rb-V-SiO2-Fe2O3-CaO-MgO-Na2O-P2O5,
thus separating the brand new from the highly used catalytic converters, respectively.
PC1 represents the geochemical signature of the refractory washcoat and monolith. The
strongest correlative relationship of Zr, Hf and loss of ignition (LOI) in the brand new TWC
reflects the unmodified refractory washcoat. The chemical ageing incorporates elements in
oil additives deposited on the TWC. Typical poisons contain Ca, K, P, Mn, Pb and Zn [19].
Figure 3 shows highly used TWC with a complex geochemical signature defined by the
contaminating elements. The accumulation of poisoning chemicals on the catalyst surface
is one of the main reasons for its deactivation [28,29]. The C-TWC is the most deteriorated
of the studied samples. The robust association with multiple trace elements indicates
device poisoning and loss of the refractory washcoat after prolonged use.
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The second principal component (PC2) explains 26.90% of the total variance, rep-
resented by Ga-Nb-Sn-Ta-Th-Al2O3-K2O-TiO2-MnO. The chemistry of moderately used
TWC is described by PC2. The main changes in Al2O3 and Th contents are potentially
attributed to phase changes in the ceramic monolith and the partial loss of the refractory
washcoat. According to Christou et al. (2012) [28], the accumulation of these contaminants
on the monolith results in a significant loss in its surface area (50–67%) and pore volume
(40–69%). Additionally, the chemical change leads to new solid phases in the catalyst,
causing the structure to collapse and clog the pores [28]. The contribution of the third
principal component (PC3) is 8.4%, and it is dominated by U-W, possibly related to brand
differences. The fourth principal component (PC4) is attributed to Cr2O3 with 6.87% of
cumulative variance.

The Raman spectra of the washcoat exhibited a characteristic Ce0.2Zr0.8O2 spectrum
(Figure 4a). The peak at 465 cm−1 is attributed to the symmetric stretching mode of the
vibratory unit Ce-O [30]. Peaks at 145, 255 and 314 cm−1 are assigned to the Eg, A1g and
B1g vibrational modes resulting from the division of F2g (from cubic CeO2) [31]. The peak
splitting at 465 cm−1 is due to the distortion of cubic CeO2 crystals to a tetragonal structure
by doping with high concentrations of Zr (>20 mol% Zr) [31,32]. Notably, the distortion
of this crystal lattice produces oxygen vacancies (Vö) that are of vital importance for the
catalysis process (peak at 617 cm−1) [30]. Therefore, the intensity of this peak (IPK) is
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another marker for evaluating the catalytic properties of the material since the loss of
these vacancies significantly reduces its efficiency [33]. In this work, the A-TWC has the
highest amount of Vö, considering that the IPK is proportional to the concentration. In
this sense, this marker decreased in the B-TWC and C-TWC, indicating a reduction in the
number of Vö (Figure 4b,c). Particularly, sample C-FM1 shows a peak corresponding to
the cordierite support at 1001 cm−1 and ascribed to the vibrations of the tetrahedral sites
T21-T23 interconnected by oxygen [34]. We detected cordierite peaks in a subsample taken
from the surface because of the removal of the washcoat and the consequent exposure of the
internal monolith. C-FM2, C-RM1 and C-RM2 subsamples have peaks at 960 and 1040 cm−1,
possibly associated with Si-O stretching of the mullite structure (3Al2O3·2SiO2) [35–37]. The
transformation of cordierite into mullite has been previously described in high-temperature
systems. Zhang et al. (2019) studied the thermodynamic reaction in the cordierite-zirconia
system when exposed to temperatures from 1150 to 1460 ◦C. They determined that for
temperatures around 1460 ◦C the cordierite transforms into mullite and the glass phase of
mullite and zirconia [38]. However, in our samples, the temperature reached in the used
catalysts was around 1000 ◦C [17]. This phase transformation could be favoured by HO
that lowers the melting point of cordierite. Volatile compounds and poisoning elements
could generate partial fusion and the mineral phase transformation in heavily used TWC.
Remarkably, these subsamples (C-FM2 and C-RM1) were melted and even distorted the
honeycomb cells. This change implies the beginning of a partial phase transformation
process in these sections of the ceramic monolith, as has been observed by other authors
under laboratory-controlled conditions. Mullite is the only stable phase in the alumina-
silica system at atmospheric pressure [39]; its structure consists of distorted chains with
Al-O octahedra at the corners and centre of each unit cell. Al-O and Si-O corner-sharing
tetrahedra cross-link the chains [39].

The X-ray diffraction profiles (XRD) of the three TWCs are presented in Figure 5. The
diffraction pattern for the A-TWC shows characteristic cordierite peaks at 18.0◦, 18.97◦,
21.66◦, 21.72◦, 26.44◦, 28.46◦, 29.42◦, 33.76◦ and 38.50◦, corresponding to the planes (310),
(002), (112), (022), (222), (511), (421), (512), (004) (Figure 5a). The peaks of Ce0.2Zr0.8O2,
associated with the planes (101), (200) and (002), (220), were observed in the new TWC.
In the same way, the cordierite and Ce0.2Zr0.8O2 peaks are observed in both the B-TWC
and C-TWC. Besides, the used TWC show peaks of cubic ZrO2 (58.06◦), monoclinic ZrO2
(44.13◦, 57.1◦ and 58.79◦) and CeO2 (33.08◦ and 56.34◦) (Figure 5b,c), which supports the
separation of ZrO2 and CeO2 phases [27].

The crystallinity of samples A-TWC, B-TWC and C-TWC is 51.52%, 41.49% and
32.53%, respectively. This decrease is dominated by the transformation from cordierite to
mullite [38]. In particular, subsamples C-FM2 and C-RM1 show mineral mullite peaks at
33.34◦, 35.21◦, 40.84◦, 42.72◦, 43.09◦, 48.41◦, 57.59◦, 58.54◦, 60.81◦, in agreement with the
mineralogical composition observed by Raman spectroscopy in Figure 4.

3.2. Wear Degradation and Particle Size

SEM images show the wear degradation of the used TWCs. Figure 6a shows a cross-
sectional monolith-cell of the A-TWC, where the internal cordierite structure and the
washcoat can be distinguished. B-TWC displays a lightly worn catalytic layer in the cells’
central areas (Figure 6b). Washcoat loss is evident in C-TWC, and residuals of this layer
are visible only at the cells’ intersections (Figure 6c). The lack of the washcoat repre-
sents two critical problems. The first is that the conversion of toxic gases does not occur,
and the second is that all this material could be released into the environment. Previous
works have reported the presence of platinum group elements related to traffic sources
in soil/road dust [40–43], atmospheric dust [44–46], and the exhaust pipe [47–49]. More
recently, the incorporation of ZrO2 and CeO2 compounds from the catalyst in environmen-
tal matrices [14] has been studied. The fracturing of refractory material may amplify the
degradation and particle release [50]. SEM studies of used TWCs revealed that the ceramic
support presented microfractures. Fractures were observed in B-TWC with displacements
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of 5.19 ± 2.17 µm, while they were not present in the A-TWC. According to Wu and
Zhang, microfractures start at pre-existing defects within the monolith and then propagate
to form visible macrocracks. The surfaces of the microcracks and large macrocracks are
interconnected, resulting in the active material’s peel off [50]. In C-TWC, we observed
irregular breakdown and loss of the surface.
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The EDS analysis of the external catalytic layer shows that sample A-TWC contains
microcrystals made up of O, Zr, Al, Ce and Si (Figure 7a). Particles of the B-TWC are
composed of Zr, O, Ce, Y, Al, Ca and Rb (Figure 7b), while C-TWC gives O, Ca, Zn, Fe, P,
Al, Si and Ce (Figure 7c). These results support the chemical poisoning observed in the
chemical analysis. Moreover, significant heterogeneity in the size of the C-TWC particles is
evident, including fragments up to 10 µm.
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Particle size measurements made by TEM are in Figure 8. Sample A-TWC, which
was not exposed to high temperatures, presents an average 86.13 ± 16.58 nm diameter.
In comparison, the particles of the catalysts B-TWC and C-TWC show average sizes of
147.63 ± 35.65 nm and 225.35 ± 69.51 nm, respectively. The catalytic properties of ceria
compounds depend on several factors, including particle size. Reducing the particle size of
a catalyst results in increased surface area and a change in its morphology, thus generating
more reactive edge sites [6]. Chiefly, particles below 100 nm become nanophasic. In this
manner, the density of defects increases since almost 50% of the atoms are located in the
core of defects, generating many active sites for gas-solid catalysis. Moreover, diffusivity
across the boundaries of the nanometer-sized interface promotes rapid kinetics of catalyst
activation and reactions [6]. In our study, the used TWC presents a diameter size higher
than 100 nm caused by sintering. Here, two mechanisms for the sintering of NPs may occur
in the TWC: Ostwald ripening (OR) and Particle migration-coalescence (PMC) [51]. The
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first one involves the migration of mobile molecular species or atoms, driven by differences
in free energy and local concentrations of atoms at the surface. The second one consists of
the mobility of particles on the support surface followed by coalescence that leads to the
growth of NPs [51]. In this work, first, we observed crystal growth mainly driven by OR in
used TWC from a brand new TWC. Then, the enlarged size (possibly associated with PMC)
of sintered NPs took place, reducing the adhesion and promoting the washcoat detachment
from the cordierite monolith [16]. In this manner, the loss of the catalytic layer (composed
mainly of Zr0.8Ce0.2O2) in a highly used catalyst is closely related to the sintering process.
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Lastly, we collected and analysed an exhaust pipe sample to assess the release mate-
rial’s contribution from TWC. The results by SEM-EDS show some agglomerates and parti-
cles smaller than 1 µm in rounded size and a bright white, indicating that it is composed of
elements with a higher atomic number. EDS analysis shows that these particles contain Al,
Zr, Ce and Si (Figure 7d). All these elements are representative of TWC. The presence of
catalyst components in the exhaust pipe sample indicates that these refractory compounds
travel through this medium propelled by gases ending in the environment. Remarkably,
our group has already reported ZrO2-CeO2 compounds in complex environmental samples
as micro and NPs [14]. Besides, NPs size distribution showed a predominant size range
from 2 nm to 650 nm in particulate matter with variable composition from a high traffic
area [52]. Inorganic agents of a refractory nature can cause respiratory diseases due to their
accumulation in the lungs [53,54]. It has been reported that exposure to traffic pollution
(including NPs) is related to neurodevelopmental and neurodegenerative diseases [55].
Regarding plants, NPs in dust can result in stomata clogging. Particles smaller than the
diameter of stomata apertures (10–50 µm) directly enter the sub-stomatal cavity and reach
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the spongy parenchyma of the leaf tissue. This mechanism leads to a decrease in biomass
in urban environments [56]. The above suggests that NPs coming from TWC may have
significant health and ecological repercussions.

3.3. Limitations of the Study

The experimental results reported herein should be considered in light of the following
limitations. First, the studied TWC are from different brands and have minor differences
in metallic enclosures and exhaust pipes. However, all TWC have equivalent structure
and functioning with two ceramic monoliths connected to positive crankcase ventilation
system in 4-cylinder sedan automobiles with fuel injection system. Second, the gasoline
contained various additives to boost the performance and clean the engine cycle. However,
they have different formulations, mainly including P, K, Ca, Na and traces of Mn. Third,
due to deterioration and loss of material in the used TWC, the amount of sample was not
enough to perform a chemical analysis of platinoids. The number of samples was not
enough for a complete description of PCA. Finally, just one study of each subdivision of
TWC was conducted because of budget restrictions, reaching four points for the entire
piece. Nevertheless, we considered it good enough for acquiring at least a qualitative
experimental insight into the sintering process with ageing.

4. Conclusions

This article investigated three similar TWCs (one new and two used) with different
degrees of wear. Physicochemical analysis showed chemical poisoning, micro-cracks and
sintering of washcoat NPs. These processes are responsible for the wear and detachment of
the catalytic washcoat. At an advanced stage of damage (highly used TWC), degradation
of the internal monolith and chemical transformation of cordierite to mullite occur. Under
these conditions, TWCs become a potential source of non-exhaust micro and NPs released
into the atmosphere. Because they are in the respirable fraction (PM10 < 10 µm), the size of
these refractory materials implies a health risk. In short, TWCs represent a crucial factor in
environmental pollution after being continuously subjected to chemical, mechanical and
thermal stress. The subsequent mechanism of NPs’ release generated by chemical reactions
in the washcoat is not fully understood; however, the provided experimental insights will
complement this picture. Future improvements to TWC components may be beneficiated
from this knowledge. Besides, current atmospheric particulate matter regulations do not
address PM1. This study shows that the emission of such particles is related to catalyst
deterioration which in turn depends on local regulatory policy.
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