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Reconstructing Past Populations With Uncertainty
From Fragmentary Data

Mark C. WHELDON, Adrian E. RAFTERY, Samuel J. CLARK, and Patrick GERLAND

Current methods for reconstructing human populations of the past by age and sex are deterministic or do not formally account for measurement
error. We propose a method for simultaneously estimating age-specific population counts, fertility rates, mortality rates, and net international
migration flows from fragmentary data that incorporates measurement error. Inference is based on joint posterior probability distributions
that yield fully probabilistic interval estimates. It is designed for the kind of data commonly collected in modern demographic surveys and
censuses. Population dynamics over the period of reconstruction are modeled by embedding formal demographic accounting relationships
in a Bayesian hierarchical model. Informative priors are specified for vital rates, migration rates, population counts at baseline, and their
respective measurement error variances. We investigate calibration of central posterior marginal probability intervals by simulation and
demonstrate the method by reconstructing the female population of Burkina Faso from 1960 to 2005. Supplementary materials for this
article are available online and the method is implemented in the R package “popReconstruct.”

KEY WORDS: Bayesian hierarchical model; Cohort component model; Fertility rate; International migration; Markov chain Monte Carlo;
Mortality rate.

1. INTRODUCTION

Every two years, the United Nations Population Division
(UNPD) publishes detailed estimates and projections of key de-
mographic quantities for all countries in the world, from 1950
to 2100; they appear in the United Nations World Population
Prospects (UNWPP; United Nations 2009a, b). The parameters
reported include age-specific fertility and mortality rates (vi-
tal rates), population counts, and international migration rates.
These numbers are used for the development and assessment of
policy and are of particular importance for countries that lack
their own well-resourced official statistical systems. For many
of these countries, the UNPD is a key partner in the process of
compiling, analyzing, and publishing internationally compara-
ble demographic data.

The UNWPP tables can be classified into two broad groups,
known as estimates and projections. Projections are predictions
about demographic parameters in the future while estimates
concern populations of the past. We will use the term recon-
struction, which we find less ambiguous. Nevertheless, use of
the term “estimate” agrees with standard usage in statistics; data
about demographic parameters in the past are used to estimate
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the true values. Between the biennial editions of the UNWPP,
new data are collected and old data become available, so revi-
sions must be made to the reconstructions to accommodate it.

Demographers have long acknowledged the presence of un-
certainty in their measurements and many so-called indirect
methods exist for obtaining “best” point estimates (e.g., United
Nations 1983). It is still common practice to produce ranges
of projections of vital rates and population counts based on
different scenarios; high-, medium-, and low-fertility, for ex-
ample. These ranges cannot be interpreted probabilistically, but
methods have been developed that do yield probabilistic pro-
jections; Lee (1998) and Booth (2006) provide reviews. In con-
trast, there has been relatively little work on the development
of fully probabilistic methods for demographic reconstruction.
Here we propose a general method for reconstruction that ac-
counts for measurement uncertainty and works with the type of
demographic data that have commonly been collected for most
countries over the last 60 years or so.

The article is structured as follows. Existing methods of pop-
ulation reconstruction are reviewed in Section 2. In Section 3,
we define our notation and parameters and describe the method.
In Section 4, we investigate some statistical properties of our
method through simulation before applying it to real data from
Burkina Faso in Section 5. We close with a summary of the
results and a discussion in Section 6.

2. EXISTING METHODS OF POPULATION
RECONSTRUCTION

Outside of official statistical agencies, demographic recon-
structions have been undertaken to study historical populations
of the past (e.g., Wrigley and Schofield 1981) and to estimate
excess mortality in crises such as famine or social upheaval
(e.g., Boyle and Ó Gráda 1986; Heuveline 1998; Merli 1998;
Goodkind and West 2001). The most commonly used methods
are based on the demographic balancing equations. These are the
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basic accounting relationships, which state that the population
size at time t + δ is equal to the size at time t plus births and
immigrants, minus deaths and emigrants. These relationships
are encoded in the cohort component method of population
projection (CCMPP; Lewis 1942; Leslie 1945, 1948; Preston,
Heuveline, and Guillot 2001). Given the size and age-structure
of a population at some baseline time, its size and structure at
any point in the future can be determined from the baseline pop-
ulation and the fertility, mortality, and international migration
rates that prevail over the period of reconstruction.

The back projection method of reconstruction (Wrigley and
Schofield 1981) attempts to apply these relationships in reverse
by using an estimate of the population structure at the terminal
year of the period of reconstruction. This approach is problem-
atic since the CCMPP procedure is not formally invertible. To
produce sensible results, some additional constraints have to be
imposed or somewhat ad-hoc fixes applied. In response to these
concerns, Lee (1971, 1974) proposed the method of inverse
projection. Inverse projection enacts the reconstruction forward
through time; it is named for the fact that, instead of estimating
counts of births and deaths from rates, count data are used to
infer rates. Both of these methods have been further developed
since their inception. For example, McCaa and Barbi (2004) and
Rosina (2004) described extensions of inverse projection, while
Oeppen (1993) proposed generalized inverse projection (GIP).
All of the extended methods remain purely deterministic.

A stochastic reconstruction method was proposed by Bertino
and Sonnino (2003) who modeled childbirth and death as inho-
mogeneous Poisson processes. The method is designed to work
with counts of births and deaths aggregated over age and so
requires the analyst to specify model age-patterns for fertility
and mortality, although different schedules can be chosen for
different subperiods. These schedules are taken as the intensity
functions of the process and realizations are simulated through
time to produce sequences of empirical estimates of population
age structures. Hence, the only source of variation accounted
for is natural variation around the demographic rates; the total
numbers of deaths by year are assumed to be recorded with-
out error. Moreover, international migration is assumed to be
negligible over the period of reconstruction.

Finally, all of the above methods were designed to work
with individual data of the kind sometimes found in Euro-
pean parish registers, or aggregated summaries of them. The
data available for many countries in our intended application
are not as detailed. The aim of this article is to introduce a
new method of reconstruction that uses measurements of demo-
graphic parameters from 50 to 60 years in the past from multiple
noisy data sources, often available only for limited years or pe-
riods. Uncertainty due to measurement error is expressed as
probability distributions and intervals rather than deterministic,
scenario-based ranges. To our knowledge, there are no existing
methods of human population reconstruction that have these
features.

Daponte, Kadane, and Wolfson (1997) used an approach sim-
ilar to ours to construct a counterfactual history of the Iraqi
Kurdish population between 1977 and 1990. They, too, repre-
sented errors in the measurement of demographic parameters
as the standard deviations of probability distributions. However,
they used a low-dimensional parameterization of mortality and

fixed the age patterns of fertility. International and sub-national
migration was assumed to be negligible.

Where migration is accounted for, it has been handled in dif-
ferent ways. Lee’s inverse projection method estimates it as
a residual if censuses are available at intermediate years in
the reconstruction interval. Alho (1992) added it as extra er-
ror in measuring survival. Here, migration is treated explicitly
and age–time specific estimates are available as for the other
parameters.

Complex models have also been developed by fisheries re-
searchers to study the population dynamics of marine life (e.g.,
Quinn and Deriso 1999). A large body of work also exists on
the dynamics of land animal populations; Brooks, Catchpole,
and Morgan (2000a) and Brooks et al. (2002) provide reviews.
In most wildlife studies, data-collection methods and the type
and amount of data available differ somewhat from those in hu-
man demography. Nevertheless, there are similar statistical chal-
lenges to overcome and these suggest a Bayesian approach may
be appropriate. For instance, in ecology and demography, mul-
tiple sources of data informing the same demographic parame-
ters often exist. Poole and Raftery (2000) found that Bayesian
melding allowed these to be synthesized in a coherent man-
ner (see also Givens, Raftery, and Zeh 1993; McAllister et al.
1994; Raftery, Givens, and Zeh 1995). Furthermore, population
dynamics models are often over-parameterized (e.g., Lee 1985,
1993). The resulting ridges in the likelihood surface posed prob-
lems that Bayesian approaches have been able to overcome (e.g.,
Brooks et al. 2000b; Catchpole, Kgosi, and Morgan 2001).

Here we propose a Bayesian solution to the reconstruction
problem in which the dominant source of uncertainty, measure-
ment error, is adequately accounted for through fully proba-
bilistic estimates. We handle multiple, noisy data sources and
we account for uncertainty about migration as well as fertility
and mortality. We do not require individual-level data of the
European parish register kind.

3. METHOD

3.1 Notation and Parameters of Interest

In this article, we restrict our attention to the dynamics of
populations of females only. The parameters of interest are age-
and time-specific vital rates, net international migration flows,
and population counts. We will refer to “international migra-
tion” as simply “migration” as this is the only type we consider.
We use the symbols n, s, g, and f to denote population counts,
survival (a measure of mortality), net migration (immigrants
minus emigrants), and fertility, respectively. All of these param-
eters will be indexed by five-year increments of age, denoted
by a, and time, denoted by t. Reconstruction will be done over
the time interval [t0, T ]. The age scale runs from 0 to A > 0; in
our application (Section 5) A is 80. To model fertility, we define
a

[fert]
L ≤ a

[fert]
U where fertility is assumed to be zero at ages out-

side the range [a[fert]
L , a

[fert]
U + 5). Throughout, a prime indicates

vector transpose.
Given nt0 = (n0,t0 , n5,t0 , . . . , nA,t0 )′, the vector of age-specific

female population counts at baseline t0, and using “◦” to de-
note entrywise product, the CCMPP gives nt+5 = Qt (nt + nt ◦
gt /2)) + nt ◦ gt /2, t = t0, t0 + 5, . . . , T − 5. Here, Qt is a K



98 Journal of the American Statistical Association, March 2013

by K matrix encoding fertility and mortality and K is the number
of age groups. The quantity gt is the net number of migrants
expressed as a proportion of the population size so that nt ◦ gt

is the net number of migrants, a count. Projection proceeds in
discrete steps; those alive at the beginning of each step are sub-
jected to the fertility, mortality, and migration prevailing during
the projection interval. This is a discrete time approximation to
a continuous time process and there are standard adjustments to
improve accuracy. Adding half of the migrants at the beginning
of the projection step and the remainder at the end is one such
adjustment. The specific form we use is:⎡⎢⎢⎢⎢⎢⎢⎢⎣

n0,t+5

n5,t+5

...

nA−5,t+5

nA,t+5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f̃0,t f̃5,t · · · f̃A−5,t f̃A,t

s5,t 0 0 0

...
...

. . .
...

...

0 0 · · · 0 0

0 0 · · · sA,t sA+5,t

⎤⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n0,t + g0,tn0,t /2
n5,t + g5,tn5,t /2

...

nA−5,t + gA−5,tnA−5,t /2

nA,t + gA,tnA,t /2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

g0,tn0,t /2

g5,tn5,t /2

...

gA−5,tnA−5,t /2

gA,tnA,t

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

where

f̃a,t ≡ s0,t (1 + SRB)−1(fa,t + fa+5,t · sa+5,t )(5/2) (2)

(Preston et al. 2001). Annualized, age-specific fertility rates en-
ter Equation (1) through the transformation defined in Equation
(2). This transformation maps the rates into proportions so that
projection can be compactly expressed as a matrix multiplica-
tion. We use a tilde to represent this transformation and discuss
it further below. SRB is the sex ratio at birth (the ratio of males
to females among all births). Multiplication by SRB in Equation
(2) ensures only the female births are kept. Throughout, we take
SRB to be fixed at 1.05, a demographic convention. We will use
M(·) to represent CCMPP and abbreviate Equation (1) as

nt+5 = M(nt , f t , st , gt ). (3)

The survival parameters, sa,t , give the proportion of those
aged a − 5 to a at time t who survive to be aged a to a + 5 at time
t + 5, for a = 0, 5, . . . , A + 5. That is, sa,t is the proportion of
people surviving into the age range [a, a + 5) over the five years
between t and t + 5. Also, sA,t is the proportion aged [A − 5, A)
at exact time t who survive to time t + 5, by which time they are
in the age group [A,∞). We allow for subsequent survival in
this age group by letting sA+5,t be the proportion aged [A,∞)
at time t who survive five more years.

Age-specific mortality during a given time period will be
summarized by life expectancy at birth (e0), where

e0,t ≡ 5
A∑

a=0

a∏
i=0

si,t + 5

(
A∏

i=0

si,t

)
(sA+5,t /(1 − sA+5,t )). (4)

The derivation is straightforward but requires additional con-
cepts from demography (see the online supplementary materi-
als). The quantity e0,t is the average age at death in a hypotheti-
cal cohort subjected for its entire life to the mortality conditions
represented by the set of age-specific survival proportions, st .

The net number of migrants aged [a, a + 5) to the population
during the time period [t, t + 5) is ga,tna,t . The age-summarized
measure of migration we use will be the average annual to-
tal net number of migrants that, for the period [t, t + 5), is
(1/5)

∑
a ga,tna,t . We model ga,t instead of ga,tna,t , however,

because we expect variation over time and age in the former to
be less dependent on magnitude.

The f̃a,t represent a combination of age-specific fertility and
under-five mortality. When multiplied by na,t , they give the
number of female births surviving to time t + 5. That is, the
f̃a,t give the number of surviving female babies at t + 5 as a
proportion of the number of females aged [a, a + 5) alive at
time t. We do not model f̃a,t , however, because data are typically
gathered to estimate fertility rates, fa,t , not the proportions, f̃a,t .
Fertility rates are annualized occurrence/exposure rates. They
give the ratio of births of both sexes to women aged a to a + 5
(occurrence) to person-years lived (exposure) during [t, t + 5).
Thus, the number of births in the projection step t to t + 5 is
not quite 5fa,tna,t because the denominator of fa,t is not na,t

(we need the factor of five because fa,t are single-year rates but
the projection intervals are five years wide). The expression in
Equation (2) is more accurate. To illustrate, calculating n0,t+5

(and taking g0,t n0,t = 0 for clarity) gives

n0,t+5 = s0,t (1 + SRB)−1
a

[fert]
U∑

a=a
[fert]
L

5fa,t

(
na,t + na−5,t sa,t

2

)
(5)

(where we use the SRB to keep only the female births). The
quantity in the right-most parentheses in Equation (5) is a
better approximation for the denominator of fa,t than na,t . We
multiply by s0,t to account for mortality of births during the
projection step.

Age-specific fertility rates for a given time period will be
summarized by the total fertility rate (TFR) that, for the period
[t, t + 5), is defined as

TFRt ≡ 5 ·
a

[fert]
U∑

a=a
[fert]
L

fa,t . (6)

It is the average number of children born to members of a
hypothetical cohort of women who survive from age a

[fert]
L to

age a
[fert]
U + 5 and experience the age-specific fertility rates that

were in effect during the period [t, t + 5).

3.2 Data and Initial Estimates

Data on the parameters of interest come from numerous
sources of varying quality and coverage. For example, esti-
mates of fertility rates come from registers of births or from
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surveys such as the Demographic and Health Surveys (DHSs),
depending on the country. Moreover, several data points for
the same age- and time-specific parameters are often available
due to multiple overlapping surveys. The UNPD often adjusts
these outputs to reduce systematic biases. They apply existing
demographic techniques and draw on their expert knowledge
about the specific data sources. Further details about the UNPD’s
methodology can be found in the literature by the United Na-
tions (2010). In many cases, this bias-reduction stage is highly
specific to country and parameter, and so we do not propose a
general approach to replace this part of the analysis.

Instead, we take the outputs of this stage, which are single
bias-reduced age–time series for all four parameters, as inputs
to our model. We call the elements of these biased-reduced sin-
gle series initial estimates and use an asterisk (∗) to distinguish
them from the true values. For example, we let fa,t be the true
(unknown) fertility rate and f ∗

a,t be an initial estimate of it; simi-
larly for the other parameters. We also use an asterisk to indicate
estimates of population counts based on bias-reduced census
counts (e.g., adjusted census counts based on post-enumeration
surveys) or similarly adjusted counts from a comprehensive de-
mographic survey. Hence, we let na,t be the true population
count and n∗

a,t a census-based estimate of it.

3.3 Model Description

We will take t0 and T to be, respectively, the earliest and
most recent years for which census-based population counts are
available. These will usually be bias-adjusted census counts,
and we will just call them census counts. We will denote
the years after t0 for which census-based estimates of popula-
tion counts are available by t0 < t

[cen]
L , . . . , t

[cen]
U ≤ T . Let θ =

(nt0 , f t0
, f t0+5, . . . , f T , st0 , . . . , sT , gt0

, . . . , gT ) be the vector
of all age- and time-specific vital rates and migration parame-
ters, as well as population counts at t0. These are precisely the
inputs required by the CCMPP, M(·) in Equation (3). Census
counts for years t

[cen]
L , . . . , t

[cen]
U are not included in θ because

they are not inputs to M(·).
Reconstruction is equivalent to estimation of θ . To achieve

this, we propose the following hierarchical model that depends
on the original data only through the initial estimates. We model
the census counts after the earliest census at Level 1, conditional
on the outputs of the CCMPP, which appear in Level 2. The
initial estimates of fertility, mortality, and migration, as well as
census counts at t0, are modeled at Level 3. Level 4 specifies
informative prior distributions. We assume, a priori, that the
elements of θ are mutually independent given θ∗.

Level 1: log n∗
a,t | na,t , σ

2
n ∼ Normal

(
log na,t , σ

2
n

)
,

a = 0, 5, . . . , A t = t
[cen]
L , . . . , t

[cen]
U (7)

Level 2: na,t | nt−5, f t−5, st−5, gt−5

= M(nt−5, f t−5, st−5, gt−5), (8)

a = 0, 5, . . . , A; t = t0 + 5, t0 + 10, . . . , T

Level 3: log na,t0 | n∗
a,t0

, σ 2
n ∼ Normal

(
log n∗

a,t0
, σ 2

n

)
,

a = 0, 5, . . . , A (9)

log fa,t | f ∗
a,t , σ

2
f

∼
{

Normal
(

log f ∗
a,t , σ

2
f

)
, a = a

[fert]
L , . . . , a

[fert]
U

undefined, otherwise
(10)

logit sa,t | s∗
a,t , σ

2
s ∼ Normal

(
logit s∗

a,t , σ
2
s

)
,

a = 0, 5, . . . , A + 5 (11)

ga,t | g∗
a,t , σ

2
g ∼ Normal

(
g∗

a,t , σ
2
g

)
, a = 0, 5, . . . , A, (12)

(where t = t0, t0 + 5, . . . , T in Equations (9)–(12))

Level 4: σ 2
v ∼ InvGamma(αv, βv), v ∈ {n, f, s, g}. (13)

For 0 < x < 1, logit x ≡ log(x/(1 − x)). We also impose the
restriction that all population counts be nonnegative, so that the
joint prior on θ at time t is multiplied by

I
(
M(nt , f t , st , gt ) > 0

) ≡
⎧⎨⎩

1 if, for all a = 0, . . . , A,
na,t+5 ≥ 0

0 otherwise.
(14)

In standard Bayesian terms, Equation (7) is the likelihood
of nt

[cen]
L

, . . . , nt
[cen]
U

, while Equation (13) is the prior distribution

of σ 2
v , specified by the user-defined hyperparameters αv and

βv . Population counts at baseline are treated differently because
Equation (8) is essentially a standard difference equation with
initial condition θ , which contains nt0 . These are the only pop-
ulation counts that M(·) takes as inputs. The remaining census
counts, at times t

[cen]
L , . . . , t

[cen]
U , are compared with the outputs

of M(·) via Equation (7). Inference will be based on the joint
posterior distribution of θ .

The quantities involved, and their dependence relations, are
summarized in Figure 1.

3.4 Determining the Hyperparameters

To determine plausible values of αv and βv , v ∈ {n, f, s, g},
we view the σ 2

v as representing the variance of the errors in
the initial estimates of the respective demographic parameters.
Although prior knowledge about these variances is unlikely to be
exact, we expect that informative estimates can be derived from
experts’ knowledge of the data sources. Methods for eliciting
prior information from experts are numerous (e.g., O’Hagan
et al. 2006). Here, we use a straightforward method based on the
mean absolute error (MAE) of the transformed initial estimates.

Taking fertility rate as an example, note that Equation
(10) implies that MAE(log fa,t | σ 2

f ) ≡ E(| log fa,t − log f ∗
a,t | |

σ 2
f ) = σf

√
2/π . The prior distribution for σ 2

f can be speci-
fied by choosing quantiles for MAE(log fa,t | σ 2

f ). Suppose ex-
pert opinion is that MAE(log fa,t | σ 2

f ) is likely to be close
to 0.1, but could be as high as 0.5. This suggests setting
median(σ 2

f ) = (0.1)2π/2 = 0.016 and the 0.975 quantile to
(0.5)2π/2 = 0.393. To find an inverse gamma distribution with
these quantiles, we would fix αf at a range of values between 0.3
and 6 and choose βf such that median(MAE(log fa,t | σ 2

f )) =
0.1. The parameter αf would then be chosen such that the 0.975
quantile of MAE(log fa,t | σ 2

f ) was about 0.5. This would give
αf = 1 and βf = 0.0109.

Since demographers are more used to thinking about untrans-
formed fertility rates, it is useful to consider what specifying
MAE(log fa,t | σ 2

f ) means on the original scale. MAE on the
log scale approximates mean absolute relative error (MARE) on
the original scale, where MARE(fa,t | σ 2

f ) ≡ E(|fa,t − f ∗
a,t | |

σ 2
f )/f ∗

a,t . This approximation is good for the MAE values used
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n∗
a,t

[cen]
L

Fixed parameter based on data

Random variable

Fixed parameter

Dependence relation

Key

σ2
n

. . . . . . . . .

. . . . . . . . . . . .

CCMPP

. . .

σ2
s

. . .

n
a,t

[cen]
L

n
A,t

[cen]
U

n∗
A,t

[cen]
U

. . .

Fertility Mortality Migration Baseline count

αf βf αs βs αg βg αn βn

σ2
f σ2

g

fA,T gA,T na,t0ga,t0fa,t0

s∗A+5,T g∗
A,Tg∗

a,t0
f ∗

A,T n∗
A,t0

n∗
a,t0

f ∗
a,t0

s∗a,t0

sA+5,T nA,t0sa,t0

Figure 1. Plot showing the relationships between parameters, initial estimates, and the cohort component method of population projection in
the estimation model.

here. The MARE has been used previously by demographers as
a way of quantifying measurement accuracy (Keilman 1998).
For the migration parameter, which is already a proportion, we
specify the MAE directly.

The population count variance, σ 2
n , is also modeled on the

log scale and αn, βn are found in the same way as αf and βf .
Survival is measured on the logit scale, but this should not be
too difficult to interpret. Note that E(|logit s̄a,t − logit s̄∗

a,t | |
σ 2

s ) = E(|logit sa,t − logit s∗
a,t | | σ 2

s ) where s̄a,t = 1 − sa,t . In
practice, the s̄a,t are close to zero, so that s̄a,t ≈ s̄a,t /(1 − s̄a,t ).
Thus, specifying the MAE of the log-odds of survival is not that
different from specifying it for the log-probability of death.

3.5 Estimation

We draw samples from the joint posterior using a Markov
chain Monte Carlo (MCMC) sampler (Metropolis et al. 1953;
Hastings 1970; Geman and Geman 1984). Without the restric-
tion in Equation (14), the full conditional posterior distributions
for the variance hyperparameters would be the usual conjugate
inverse gamma distributions. With the restriction, the conju-
gate forms are not exactly correct but will probably be close to
the true full conditionals. Therefore, to update these parameters
we use the conjugate full conditional distributions as proposal

densities in Metropolis-Hastings steps. The posterior densities
of the remaining parameters are not easy to express analyti-
cally since each vital rate enters the likelihood through the map
M(·). Therefore, these parameters are updated using Metropolis-
Hastings steps with univariate normal proposal densities, with
variances tuned by the method proposed by Raftery and Lewis
(1996). We will use the term “iteration” to refer to one com-
plete sweep through all age- and time-specific parameters and
variance parameters.

The R environment for statistical computing (R Development
Core Team 2010) together with the CODA package (Plummer
et al. 2006, 2010) were used for all data manipulation, model
estimation, and output analysis. R code for the simulation study
(Section 4), reconstruction of the female population of Burkina
Faso, and model checks (Section 5) are available as online sup-
plementary materials. The method is also implemented in the R
package “popReconstruct.”

4. SIMULATION STUDY

We now describe the results of a simulation study carried out
to investigate the calibration of posterior probability intervals
for fa,t , sa,t , ga,t , and na,t0 under repeated sampling of the initial
estimates.
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Table 1. True vital rates used in the simulation study

Time period

Age (1960, 1965) (1965, 1970) (1970, 1975) (1975, 1980)

Fertility rate
0 0.00 0.00 0.00 0.00
5 0.40 0.40 0.40 0.40

10 0.30 0.30 0.30 0.30
15 0.00 0.00 0.00 0.00

Survival proportion
0 0.90 0.90 0.90 0.90
5 0.95 0.95 0.95 0.95

10 0.85 0.85 0.85 0.85
15 0.80 0.80 0.80 0.80
20+ 0.10 0.10 0.10 0.10

Migration proportion
0 −0.03 −0.05 0.03 0.05
5 −0.05 −0.10 0.05 0.10

10 −0.06 −0.11 0.06 0.11
15 −0.01 −0.01 0.01 0.01

4.1 Inputs

The true vital and migration rates assumed to have prevailed
in this population are shown in Tables 1 and 2. We denote these
by f

[true]
a,t , s[true]

a,t , g[true]
a,t , and n

[true]
a,t0 . In practice, these would be the

unknown, true values of the parameters fa,t , sa,t , ga,t , na,t0 that
appear in Equations (9)–(12). This is not intended to be a realis-
tic model of a human population; datasets typically encountered
in human demography have up to 18 age categories and any
number of time periods. However, we believe that this reduced
population model is of sufficient size and complexity to explore
the characteristics of the statistical model while not being too
computationally expensive. The TFR and e0 were kept constant
at 0.7 births per woman per year and 15.61 years, respectively,
for the duration of the reconstruction. A varying pattern of mi-
gration was chosen that consisted of net out-migration in the first
half of the reconstruction period followed by net in-migration in
the second half. The magnitude of the flows was quite volatile,
varying from 13% to 26% of the receiving population. Migra-
tion in both directions was concentrated in the two middle age
groups.

The true population counts, denoted n
[true]
a,t , are shown in

Table 2. Those for 1960 were chosen to represent a young pop-
ulation. Those for the subsequent time periods were derived by
applying the CCMPP to the 1960 population using the vital rate
and migration parameters in Table 1. Therefore, the underlying

Table 2. True population counts used in simulation study

Year

Age 1960 1965 1970 1975 1980

0 7500 8482 9453 11436 14504
5 6000 6886 7512 9280 11600

10 4000 4862 5293 6690 8651
15 3000 3404 3998 4762 6149

Table 3. Level 4 hyperparameters and selected implied quantiles of
the Mean Absolute Error (MAE) of the respective demographic
parameters used in the simulation study and the application to

Burkina Faso. f and n are modeled on the log scale, s is modeled on
the logit scale, and g is untransformed

Quantiles of MAE(v)

v α β 0.025 0.25 0.5 0.75 0.975

f, s, n 1 0.0109 0.0433 0.0707 0.1 0.1552 0.5232
g 1 0.0436 0.0867 0.1414 0.2 0.3104 1.0465

true population dynamics over the reconstruction period were
completely and deterministically defined by Equation (1). The
entries in Table 2 correspond to na,t , t = t0, t

[cen]
L , . . . , t

[cen]
U in

Equation (8).
The hyperparameters of the inverse gamma distributions were

determined as described in Section 3.4. The median MAEs for
log-fertility rate, logit survival, and log-population counts were
set to 0.1 with 0.975 quantiles of approximately 0.5. The same
quantities for migration were set to 0.2 and approximately 1, re-
spectively. The resulting values of αv , βv , and MAE quantiles are
shown in Table 3. For fertility, MAE(log fa,t | σ 2

f ) = σf

√
2/π ;

similarly for population count. For survival, MAE(logit sa,t |
σ 2

s ) = σs

√
2/π and for migration MAE(ga,t | σ 2

g ) = σg

√
2/π .

4.2 Study Design

The values in Tables 1–3 remained fixed throughout the
simulation study and the initial estimates f ∗

a,t , s∗
a,t , g∗

a,t ,
and n∗

a,t were treated as random. We drew n∗
a,t | σ 2

n from a

logNormal(log n
[true]
a,t , σ 2

n ) distribution in accordance with Equa-
tion (7). The remaining initial estimates were drawn from
distributions derived from Equations (9)–(12) in an analo-
gous manner. For example, the f ∗

a,t | σ 2
f were drawn from a

logNormal(log f
[true]
a,t , σ 2

f ) distribution.
The coverage of central marginal Bayesian confidence inter-

vals (or credible intervals) under the model was estimated by
the following experiment. For j = 1, . . . , J :

1. Randomly sample σ
2[j ]
v , v = n, f, s, g, from Equation

(13).
2. Generate initial estimates f

∗[j ]
a,t , g

∗[j ]
a,t , n

∗[j ]
a,t for a = 0, . . . ,

15+, t = 1960, . . . , 1980, s
∗[j ]
a,t , for a = 0, . . . , 20+ t =

1960, . . . , 1980, as described above.
3. Check that Equation (14) is satisfied by the initial esti-

mates; if not return to Step 1.
4. Draw a large MCMC sample from the joint posterior and

find the 0.025, 0.5, and 0.975 quantiles of the marginal
distribution of each parameter.

The estimated coverage is then the proportion of the J Bayesian
confidence intervals containing the known, true value for each
parameter.

We set J = 200 and applied the estimation method described
in Section 3.5. Initial values for the population counts, vital rates,
and migration proportions were set to the initial estimates. Start
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Table 4. Estimated coverage probabilities of 95% posterior intervals
for all demographic parameters of interest

Demographic parameter

Years Ages Population Fertility Survival Migration

1960 [0, 5) 0.930
[5, 10) 0.940
[10, 15) 0.945
[15, 20) 0.920
20+

[1960, 1965) [0, 5) 0.940 0.940
[5, 10) 0.945 0.935
[10, 15) 0.965 0.950 0.950
[15, 20) 0.935 0.955 0.960
20+ 0.960

[1965, 1970) [0, 5) 0.950 0.940
[5, 10) 0.920 0.945 0.940
[10, 15) 0.960 0.935 0.965
[15, 20) 0.925 0.955
20+ 0.935

[1970, 1975) [0, 5) 0.915 0.960
[5, 10) 0.920 0.955 0.950
[10, 15) 0.930 0.950 0.935
[15, 20) 0.965 0.940
20+ 0.890

[1975, 1980) [0, 5) 0.950 0.930
[5, 10) 0.920 0.950 0.970
[10, 15) 0.955 0.945 0.950
[15, 20) 0.950 0.955
20+ 0.975

values for the variances were arbitrarily set to 5 as they appeared
to have a negligible effect on the final results.

4.3 Results and Discussion

Point estimates of the coverage of the marginal 0.95 posterior
probability intervals are shown in Table 4. These are all close to
0.95. In practical applications with real datasets, where the true
parameter values are unknown, interest will be in interval esti-
mates of the demographic parameters. These should be based on
the joint posterior distribution. For illustration, we have plotted
central marginal Bayesian confidence intervals of a selection
of age-specific and age-summarized parameters that might be
of interest based on the MCMC sample from a single replicate of
the simulation study (Figure 2). For comparison, we have
also plotted the true parameter values used throughout the
simulation and the noisy initial estimates generated under the
model.

Bayesian confidence intervals can be plotted for age-specific
parameters as has been done for age-specific fertility rates in
Figure 2(a). Confidence intervals for any function of the age-
specific parameters can be obtained immediately by transform-
ing each vector of age-specific values in the MCMC sample and
computing the sample quantiles. Quantities of particular inter-
est are the summary measures defined in Section 3.1. We show
TFR, e0, and the average annual total net number of migrants in
Figures 2(b)–(d).

5. RECONSTRUCTION OF THE POPULATION OF
BURKINA FASO, 1960–2005

We now illustrate the method by reconstructing the female
population of Burkina Faso from 1960 to 2005. Uncertainty in
this case is nonnegligible due to the fragmentary nature of the
available data. This application shows how our method is able to
quantify this appropriately by producing probabilistic interval
estimates.

5.1 Initial Estimates

Brief descriptions of our initial estimates are given below.
Further details are in the online supplementary materials, in-
cluding the initial estimates themselves. The parameters αv and
βv , v ∈ {n, f, s, g}, were set to the same values as in the simula-
tion study (Table 3); the MAEs given there were based on expert
opinions provided by UNPD analysts for the case of Burkina
Faso.

5.1.1 Population Counts. Population counts, n∗
a,t , in exact

years 1960, 1975, 1985, 1995, and 2005 by sex were taken from
the literature by the United Nations (2009a) that are based on
a 1960–1961 demographic survey and censuses in 1975, 1985,
1996, and 2006. The United Nations (UN) figures are preferred
over the raw census counts because important adjustments were
made for underenumeration. This form of bias is more common
in certain age-groups and efforts to reduce it are based on post-
censal surveys.

Burkina Faso experienced a high level of population growth
between 1960 and 2005; the total female population increased
from 2.3 million to 6.9 million, an average of 2.4% per year.
The population has a young age structure, as illustrated by the
age-specific population counts in Figure 3.

5.1.2 Fertility Rates. Initial estimates of age-specific fertil-
ity rates, f ∗

a,t , were derived from multiple, overlapping series of
point estimates taken from the 1960 and 1991 demographic sur-
veys, the 1976 census post-enumeration survey, the 1985, 1996,
and 2006 censuses, and the 1992–93, 1998–99, and 2003 DHSs.
Alkema et al. (2012) studied estimates of TFR using these data
and found evidence of bias. Therefore, we took Alkema et al.’s
(2012) median bias-adjusted estimates as our initial estimates
of TFR and multiplied them by age-specific fertility patterns.

Age patterns sum to one and indicate the share of fertility at-
tributable to each age-group. We obtained a separate pattern for
each projection interval in the reconstruction period by smooth-
ing the available point estimates over age, within interval, us-
ing loess (Cleveland 1979; Cleveland, Grosse, and Shyu 1992)
and normalizing. The loess method performs a series of locally
weighted regressions. Smoothing within five-year sub-interval
(Figure 4) yielded trends that were also sensible, a priori, when
viewed by five-year age group (see supplementary materials).
No point estimates were available for the period 1965–1970.
To generate initial estimates for this period, we multiplied the
1960–1965 age-pattern by Alkema et al.’s (2012) adjusted TFR
estimate for 1965–1970.

5.1.3 Survival Proportions. Initial estimates of survival
proportions, s∗

a,t , were derived from abridged demographic life
tables constructed using data on under five and adult mortality
from the 1960–1961 and 1991 national demographic surveys,
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Figure 2. Ninety-five percent Bayesian confidence intervals for selected parameters from a single replication of the simulation study.
(a) Age-specific fertility rate. (b) Total fertility rate. (c) Life expectancy at birth. (d) Average annual total net number of migrants. The online
version of this figure is in color.

the 1992–1993, 1998–1999, and 2003 DHSs, and UNICEF’s
Multiple Indicator Cluster Survey—Round 3 conducted in 2006.
The tables were created by applying the Brass two-parameter
relational logit model (Brass 1971) with the Timæus Sahelian
standard (Timæus 1999). Standard methods were used to derive
survival proportions from the life tables.

5.1.4 Migration Proportions. Estimates of migration of
comparable detail to those for vital rates are seldom available
for many countries. Some estimates for Burkina Faso by broad

age-group and sex are given by Condé (1980) for the period
1960–1975 who concluded that migration during this period
was primarily labor migration. In addition, whole-population
estimates for 1960–2005 are available from the literature by
the United States Census Bureau (2008) and United Nations
(2009a) that indicate sustained net out-migration over the pe-
riod 1960–2000. The latter source suggests a reversal to net
in-migration over 2000–2005.

We designed our initial estimates to reflect the direction and
approximate magnitude suggested by these sources. The g∗

a,t
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Figure 3. Population counts by five-year age group for the female
population of Burkina Faso. The online version of this figure is in color.

were set to −0.055 for 15 ≤ a ≤ 50, 1960 ≤ t ≤ 1995, 0.055
for 15 ≤ a ≤ 50, t = 2000, and zero otherwise. Thus, for exam-
ple, our initial estimate for the net number of migrants over the
five-year period 1960–1965 is centered at −5.5% of the 1960
population, an average of −1.1% of the 1960 population per
year for the five years in the projection interval. The direction
is reversed over 2000–2005, since Burkina Faso likely received
refugees from the civil war that broke out in neighboring Côte

D’Ivoire during this period. The greater uncertainty about these
initial estimates than about those for the other parameters is ac-
counted for by setting αg, βg such that the median and the 0.975
quantile of the MAE were twice as large as the values used for
the other parameters (Table 3).

5.2 Results

We summarize the full joint posterior distribution with pos-
terior medians and 95% central Bayesian confidence intervals
based on the marginal distributions of age-specific input param-
eters and age-summarized versions such as TFR and e0. We
use half the width of the confidence intervals (“half-widths”)
to indicate the magnitude of posterior uncertainty. Summariz-
ing the joint posterior distribution of θ by quantiles of marginal
distributions provides coherent and probabilistic interval esti-
mates. They are coherent because uncertainty about all other
parameters is accounted for. Our simulation study suggests that
the intervals are also well calibrated in that they achieve their
nominal coverage over repeated random sampling of the initial
estimates and census data, under the model.

5.2.1 Population Counts. The posterior medians for popu-
lation counts at baseline (Figure 5) are very close to their initial
estimates; across age groups, the maximum absolute difference
is 2.3% of the initial estimate. All of the intervals have half-
widths less than 7.4% of the median, indicating that posterior
uncertainty about this quantity is low.

5.2.2 Fertility. A similar plot for age-specific fertility rates
is shown in Figure 6. Again, the posterior medians are close
to their respective initial estimates, but the half-widths of the

Figure 4. Data points for the initial estimates of age-specific fertility patterns of Burkina Faso women, 1960–2005, grouped by five-year
sub-interval. The lines are the within-time loess smooths. The online version of this figure is in color.
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Figure 5. Ninety-five percent Bayesian confidence intervals for the
female population of Burkina Faso by age in 1960. Also shown are the
initial estimates. The online version of this figure is in color.

posterior intervals are wider, ranging from 18% to 21% of the
median. This is because most of the information about fertil-
ity in the nonfertility parameters comes from the population

counts in the age range 0–5, and this depends mainly on the
level of fertility, not how it is distributed across age group of
mother. Information about the age pattern of fertility in our pos-
terior distribution comes mostly from the data-derived initial
estimates. The interval widths narrow as age-specific fertility
approaches zero, which occurs at the extremes of the age range
of nonzero fertility. Due mainly to biology, human fertility is
known to be low at the extremes of this range with a high de-
gree of certainty. The shape of our posterior intervals reflects
this.

Posterior median estimates of TFR (Figure 7(a)) increased
from 7.1 children per woman in 1960–1965 to about 7.4 over
the period 1965–1980, and then decreased to 6.4 children per
woman in 2000–2005. Over the entire reconstruction period, the
limits of the 95% intervals are equivalent to about plus or minus
half a child. The posterior medians are slightly lower than the
initial estimates, which were based only on information about
fertility collected mainly in surveys. Our posterior distribution
for TFR also takes population counts, mortality, and migration
into account. There is more information about TFR in these
parameters than there is about the fertility age pattern, explaining
why the interval half-widths for TFR are narrower, relatively,
than those for the age-specific rates; all are less than 7.5% of
the posterior median.

5.2.3 Mortality. Posterior estimates of mortality are pre-
sented in terms of e0 and under-five mortality, 1 − s0,t (Fig-
ures 7(c) and (d)). Under-five mortality is often viewed as an

Figure 6. Ninety-five percent Bayesian confidence intervals for age-specific fertility rates for the female population of Burkina Faso,
1960–2005. Also shown are the initial estimates. The online version of this figure is in color.



106 Journal of the American Statistical Association, March 2013

Figure 7. Ninety-five percent Bayesian confidence intervals for selected age-summarized parameters for the female population of Burkina
Faso, 1960–2005. (a) Total fertility rate. (b) Average annual total net number of migrants. (c) Under-5 mortality. (d) Life expectancy at birth.
The online version of this figure is in color.

indicator of a country’s level of development. The posterior
marginal distributions for these two parameters reflect a sus-
tained improvement in mortality conditions in Burkina Faso
over the period. Posterior median estimates of e0 for 1960–1965
and 2000–2005 are 35 and 52 years, respectively. The interval
half-widths decrease from 2.2 years in 1960–1965 to 1.8 years
in 2000–2005, indicating a decrease in uncertainty about this
parameter over the interval of reconstruction. Posterior median
estimates of under-five mortality declined from 0.25 to 0.12
over the period (95% intervals: [0.21, 0.29] and [0.1, 0.15],
respectively).

5.2.4 Migration. We summarize age-specific migration by
the average annual net number of migrants added to the popula-
tion, in units of 1000 (Figure 7(b)). The average of the posterior
median estimates between 1960 and 2000 is −18 (thousand
women) per year. Importantly, the 95% intervals contain zero
at all time periods and, moreover, they are very wide. The in-
terval for 1960–1965 is [−28, 13], while it is [−73, 11], for
1995–2000.

Burkina Faso has been characterized as a country of emi-
gration between 1960 and 2000, with migration dominated by
people moving to find work in neighboring countries. This view
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is consistent with knowledge about the labor market during that
period, as well as with data collected in neighboring countries
(Condé 1980; United States Census Bureau 2008). These data
are fragmentary, however, and there are no reliable estimates
of the magnitude of the migratory flow. Our results reflect this
situation. Our marginal posterior distribution is centered below
zero, which suggests that, on balance, the available data are
more consistent with a net outflow up to 2000. Nevertheless,
there is insufficient information to rule out a zero, or even a
small positive, net flow.

For 2000–2005, the 95% interval is [−29, 70] with posterior
median 22. While a positive net flow is suggested, the interval
is very wide and contains zero. Clearly, there is a great deal of
uncertainty about migration during this period, even after taking
information about all the other parameters into account.

5.3 Model Checking and Sensitivity Analysis

The census counts, n∗
a,t , play a central role in our model; all

vital rate and migration parameters are related to one another a
posteriori through these counts. We conducted two checks; one
to assess sensitivity to the form of the likelihood and another to
assess out-of-sample predictive performance.

We assessed sensitivity to the use of the relatively light-
tailed normal likelihood with constant variance using the ap-
proach by Carlin and Polson (1991). Replacing σ 2

n with λa,tσ
2
n ,

λa,t ∼ InvGamma(1, 1), t = 1960, 1965, . . . , 2000, a = 0, 5,
. . . 80+, in Equations (7) and (9) relaxes the assumption of con-
stant variance. Moreover, in comparison with Equation (7), the
(marginal) likelihood under this formulation is the heavier-tailed
Student’s t(mean = log na,t , scale = σn, df = 2) distribution.
We refer to this modification as the “t2 likelihood model.”

Posterior marginal quantiles of the demographic parameters
were examined to assess the need for this additional flexibility.
We compared the empirical 0.025, 0.5, and 0.975 quantiles of the
posterior marginal distributions of each age- and time-specific
parameter using the MCMC samples from the runs under the
modified and original models. This involved comparing two sets
of multivariate distributions. Within each parameter, except mi-
gration, we calculated the absolute relative differences (ARDs)
for each age and time, expressed as a percentage, and summa-
rized them by their averages and maxima, taken over all ages
and times. For example, the mean of the ARDs of the 0.025
quantiles for fertility rate was calculated as

100

(17)(9)

∑
a

∑
t

∣∣f [0.025,orig]
a,t − f

[0.025,t2]
a,t

∣∣
f

[0.025,orig]
a,t

,

where f
[0.025,orig]
a,t and f

[0.025,t2]
a,t are the 0.025 quantiles of the

posterior distribution for fa,t under the original and t2 likeli-
hood models. The numerals 17 and 9 correspond to the number
of age groups and time periods, respectively. The maximum
ARDs were computed similarly. Migration is expressed as a
proportion so we calculated absolute (nonrelative) differences
for this parameter.

Posterior distributions of the λa,t were also examined to assess
the need for the additional flexibility of the t2 likelihood model.
Posterior distributions of the λa,t concentrated away from 1
would indicate that the original normal-based model fits poorly
(Carlin and Louis 2009, chap. 4).

The predictive ability of the original model was tested by
rerunning the analysis four times, each time omitting one of the
census datasets. For t = 1975, 1985, 1995, 2005, we compared
the posterior predictive distributions na,t | n∗

a,−t with the point
values n∗

a,t , where n∗
a,−t is the set of census counts for age a for all

years except t. We call this the “out-of-sample validation.” For
each of the four runs, we summarized the difference between the
posterior predictive median and the census counts using MARE,
expressed as a percentage, where

MARE ≡ 100

(17)(4)

∑
a

t
[cen]
U∑

t=t
[cen]
L

|n∗
a,t − ña,t |

n∗
a,t

,

ña,t is the sample median of the na,t based on the MCMC sample
and the numerals 17 and 4 refer to the number of age groups
and censuses, respectively. Small values of MARE suggest that
the model predicts the observed counts well.

5.3.1 Results. Quantiles of the posterior marginal distribu-
tions from the t2 likelihood model were close to those from the
original model (Table 5). All mean ARDs were below 6% and
most maximum ARDs were below 5%. Large ARDs were found
between the extreme quantiles of some population counts, the
largest for the 0.975 quantile in 1960, age group 65–69 (ARD =
36%). However, on the raw scale, this represented a difference
of less than 10,000 people, which is small relative to the total
population size, the median estimate of which was slightly over
two million in 1960 under both models.

The posterior distributions of the λa,t were virtually all cen-
tered around 1. That of λ80,1975 had the median furthest from
1, but was still very spread out; its 0.025, 0.25, 0.5, 0.75, and
0.975 quantiles were, respectively, 0.30, 0.93, 2.4, 9.4, and 167.
This suggests that the extra flexibility of the t2 likelihood model
is not needed.

The MARE from the out-of-sample validation was 3.9%,
indicating that the posterior predictive estimates of the census
counts were close to the observed census counts.

Table 5. Mean and maximum Absolute Relative Differences (ARDs)
between posterior marginal quantiles of the posterior distributions
from the t2 likelihood and original models. Absolute differences

(ADs) are given for migration (see Section 5.3)

Mean ARD Max ARD
Parameter Quantile (%) (%)

Fertility rate 0.025 0.79 4.09
0.500 0.22 0.65
0.975 0.52 1.87

Survival proportion 0.025 0.38 2.67
0.500 0.06 1.67
0.975 0.30 2.39

Migration proportion 0.025 0.68 0.29
0.500 0.72 2.36
0.975 1.81 2.20

Population count, 1960 0.025 0.92 1.73
0.500 0.20 0.48
0.975 5.38 36.48

Population count, 1965–2005 0.025 0.92 19.08
0.500 0.24 1.87
0.975 1.07 24.36
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Overall, these results indicate that the normal-based model
as originally formulated in Section 3.3 fits the data reasonably
well.

6. DISCUSSION

We have described a method for reconstructing past popu-
lations by age and sex that is designed to work with the type
of data commonly collected in modern demographic surveys
and censuses, especially in developing countries. Population
dynamics are modeled by the well-known cohort-component
method of population projection and measurement error is ac-
counted for in a coherent, fully probabilistic manner through
a Bayesian hierarchical model. Inference is based on the joint
posterior distribution of all parameters, which depends on data
through bias-reduced initial estimates. We applied our method
to a real dataset and found that the widths of our posterior in-
tervals indicated a nonnegligible amount of uncertainty about
all parameters, but were of magnitudes within the range of vari-
ation demographers are used to when working with estimates
and projections. The method is implemented in the R package
“popReconstruct.”

Inferences are likely to be sensitive to changes in the initial
estimates. However, these are primarily data-derived and our
goal is to synthesize all of the available information; changes in
these parameters should have an influence on the posteriors. In
our application to the female population of Burkina Faso, the
posterior medians were similar to the initial estimates in many
cases. This suggests that the initial estimates of each parameter
agreed closely with the census counts and the initial estimates
of the other parameters. We would expect to see a greater dif-
ference between the posterior medians and initial estimates of
parameters for which this agreement is weaker.

Lee (1971, 1974) and Oeppen (1993) proposed deterministic
methods of population reconstruction. We have assumed a deter-
ministic model only for the population dynamics. That is, given
the true vital and migration rates, the evolution of the population
is modeled deterministically. In contrast, Bertino and Sonnino
(2003) gave a method in which the population dynamics were
stochastic and the vital rates functioned as mean parameters. We
agree with Pollard (1968; see also Cohen 2006) and expect that,
in our applications, variation due to measurement error will
overwhelm any additional variation arising from a stochastic
population dynamics model. Moreover, Bertino and Sonnino’s
(2003) method cannot be easily applied in our context because
it was designed to take counts of baptisms and deaths by year as
inputs. Information of this kind is seldom available in most of
the cases where we wish to apply our method. Key features of
our approach, therefore, are that the major source of uncertainty
in population reconstruction, namely measurement error, is ap-
propriately accounted for through fully probabilistic estimates
and the method can be used with the kind of data available for
most countries over the past 60 years.

We made the simplifying assumption of constant variance
across age and time for each demographic parameter on the
log or logit scale. This might seem restrictive; more complex
variance structures for the other parameters could be proposed
to allow for the fact that more is typically known about infant
and child mortality than old-age mortality, for example. How-

ever, the benefits of this extension would have to be weighed
against the additional complexity of having to estimate more
parameters. As our checks indicated, using separate age- and
time-specific variance parameters for population counts made
little difference to the final results, probably because there was
not enough information in the initial estimates to estimate them.
The story might be different in a multicountry context, however.
For instance, with demographically similar countries, it might be
realistic to set some of the variance parameters constant across
countries but allow for variation over time or age.

Census counts, or data of comparable reliability, are assumed
available for the baseline year. This requirement could be re-
moved by modifying Equation (9) so as to accommodate values
of n∗

a,t0
derived from noncensus sources. Since these would prob-

ably be less reliable than census-derived estimates, this would
mean replacing σ 2

n in Equation (9) with a new variance parame-
ter to account for the extra uncertainty. This could be modeled in
the same way as the existing variance parameters per Equation
(13). The period of reconstruction in our example was delimited
by the years of the earliest and most recent data on population
counts. This modification would permit the period of recon-
struction to begin earlier if some initial estimate of population
counts at an earlier baseline year were to be obtained.

No modifications are required to continue reconstruction be-
yond the year of the most recent census where initial estimates
of vital rates and migration are available. However, the posterior
distribution of the vital rates and migration for years beyond the
most recent census will be based entirely on the initial estimates.

The structure of our model could be extended to produce more
detailed reconstructions in several ways. An extension to two-
sex populations is an obvious example. While we expect this
to be feasible, dependencies between female- and male-specific
parameters must be appropriately accounted for.

We used our method to reconstruct national populations.
There are at least two ways in which subnational reconstructions
could be obtained. The most straightforward would be to obtain
sets of initial estimates for each subnational region of interest,
and apply the model separately to each. Subnational estimates
of population counts by age can be obtained from many cen-
suses. In developed countries, vital registration systems would
likely provide initial estimates of regional fertility and mortality.
Less developed countries often lack these systems and such data
might be difficult to obtain. Obtaining subnational estimates of
net migration is likely to be difficult for most countries.

A more feasible approach is to use subnational initial
estimates of population counts and set initial estimates of sub-
national vital rates to their national-level estimates. A minimal
set of modifications to allow this could involve replacing the
national-level population count vectors, nt , in Equation (1)
with vectors of stacked sub-national counts. For R regions,
the population count vector at time t, n·,t ≡ (n0,t , . . . , nA,t )′,
would be (n′

·,·,1, . . . , n′
·,·,R)′. The projection matrix would

take a block diagonal form with R blocks, one for each
region. Similarly, the ga,t would be national-level initial
estimates of migration proportions. Level 1, Equation (7),
and Level 3, Equations (9)–(12), of the hierarchical model
would be extended to include additional, similar terms for
each region. For example, Equation (11) could be replaced
by logit sa,t,r | s∗

a,t , σ
2
s ∼ Normal(logit s∗

a,t , σ
2
s ) for regions
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r, . . . , R. Level 4, Equation (13), would be unchanged for
v = f, s, g since we only have national-level initial estimates,
but models with separate variance parameters for each region
(i.e., σ 2

n,r , r = 1, . . . , R) would be worth investigating.
An advantage of this modification is that “hybrid” cases where

subnational data are available for some time periods and/or pa-
rameters could be accommodated by using them to derive spe-
cific initial estimates and substituting these for the national-level
estimates in the modified Level 3. Corresponding, additional
variance parameters could also be added at Level 4. A possible
shortcoming of this approach is lack of flexibility in cases where
a few regional vital rates differ greatly from the national-level
rates since the national level initial-estimates are used as fixed
medians at Level 3. This might be detected by applying the ap-
proach by Carlin and Polson (1991) to the vital rate variance
parameters, as was done in Section 5.3 for σ 2

n . Alternatively,
dependence among subnational vital rates could be explicitly
modeled, perhaps using a spatial model in Level 3.

Migration is not split into its constituent inflows and outflows
since the projection model (1) requires net migration as an in-
put. Reliable data on migration over long periods are not usually
available, especially for developing countries. Even where data
on flows are collected, such as in the European Union, there
can be significant disagreement in estimates of binational flows
between the records of the sending and receiving countries (e.g.,
Raymer, de Beer, and van der Erf 2011). The UNPD has con-
sidered this issue and net migration is currently their preferred
measure.

However, in cases where good information about both in- and
out-migration is collected by means of population registers or
border control agencies, it might be reasonable to model the
two flows separately on a country-by-country basis. To allow
this, the ga,t would be replaced with gI

a,t and gE
a,t , say, for im-

migration and emigration, respectively. A minimal modification
would then be to replace ga,t with gI

a,t − gE
a,t in Equation (1) and

replace Equation (12) with two similar terms for gI
a,t and gE

a,t .
If good information about the accuracy of the immigration and
emigration data were available, then σ 2

g could be replaced with
two separate parameters; otherwise it would be unchanged.

SUPPLEMENTARY MATERIALS

The derivation of Equation (4); further information about the
derivation of the initial estimates discussed in Section 5.1; the R
code required to perform both the simulation study and the re-
construction of the female population of Burkina Faso (together
with sensitivity analyzes); results of the Burkina Faso recon-
struction as .csv les.

[Received March 2012. Revised August 2012.]
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The Indian Journal of Statistics (1933–1960), 6, 93–96. [97]



110 Journal of the American Statistical Association, March 2013

McAllister, M. K., Pikitch, E. K., Punt, A. E., and Hilborn, R. (1994), “A
Bayesian Approach to Stock Assessment and Harvest Decisions Using the
Sampling/Importance Resampling Algorithm,” Canadian Journal of Fish-
eries and Aquatic Sciences, 51, 2673–2687. [97]

McCaa, R., and Barbi, E. (2004), “Inverse Projection: Fine-Tuning and Ex-
panding the Method,” in Inverse Projection Techniques: Old and New Ap-
proaches, eds. E. Barbi, S. Bertino, and E. Sonnino, Berlin: Springer-Verlag,
pp. 11–28. [97]

Merli, M. G. (1998), “Mortality in Vietnam, 1979–1989,” Demography, 35,
345–360. [96]

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller,
E. (1953), “Equation of State Calculations by Fast Computing Machines,”
Journal of Chemical Physics, 21, 1087–1092. [100]

Oeppen, J. (1993), “Back Projection and Inverse Projection: Members of a Wider
Class of Constrained Projection Models,” Population Studies, 47, 245–267.
[97,108]

O’Hagan, A., Buck, C. E., Deaneshkhah, A., Eiser, J. R., Garthwaite, P. H.,
Jenkinson, D. J., Oakley, J. E., and Rakow, T. (2006), Uncertain Judgements:
Eliciting Experts’ Probabilities, London: Wiley. [99]

Plummer, M., Best, N., Cowles, K., and Vines, K. (2006), “CODA: Convergence
Diagnosis and Output Analysis for MCMC,” R News, 6, 7–11. [100]

——— (2010), CODA: Output Analysis and Diagnostics for MCMC (Com-
prehensive R Archive Network, CRAN). Available at www.r-project.org.
[100]

Pollard, J. H. (1968), “A Note on Multi-Type Galton-Watson Pro-
cesses With Random Branching Probabilities,” Biometrika, 55, 589–590.
[108]

Poole, D., and Raftery, A. E. (2000), “Inference for Deterministic Simulation
Models: The Bayesian Melding Approach,” Journal of the American Statis-
tical Association, 95, 1244–1255. [97]

Preston, S. H., Heuveline, P., and Guillot, M. (2001), Demography: Measuring
and Modeling Population Processes, Malden, MA: Blackwell. [97,98]

Quinn, T. J., and Deriso, R. B. (1999), Quantitative Fish Dynamics, New York:
Oxford University Press. [97]

R Development Core Team (2010), R: A Language and Environment for Sta-
tistical Computing, Vienna: R Foundation for Statistical Computing. [100]

Raftery, A. E., Givens, G. H., and Zeh, J. E. (1995), “Inference From a Deter-
ministic Population Dynamics Model for Bowhead Whales,” Journal of the
American Statistical Association, 90, 402–416. [97]

Raftery, A. E., and Lewis, S. M. (1996), “Implementing MCMC,” in
Markov Chain Monte Carlo in Practice, eds. W. R. Gilks, S. Richard-
son, and D. J. Spiegelhalter, London: Chapman & Hall, pp. 115–
130. [100]

Raymer, J., de Beer, J., and van der Erf, R. (2011), “Putting the Pieces of the
Puzzle Together: Age and Sex-Specific Estimates of Migration Amongst
Countries in the EU/EFTA, 2002–2007,” European Journal of Population,
27, 185–215. [109]

Rosina, A. (2004), “Using Information on the Age Distribution of Deaths in
Population Reconstruction: An Extension of Inverse Projection With Appli-
cations,” in Inverse Projection Techniques: Old and New Approaches, eds.
E. Barbi, S. Bertino, and E. Sonnino, Berlin: Springer-Verlag, pp. 29–38.
[97]

Timæus, I. M. (1999), “Notes on a Series of Life Table Estimates of Mortality in
the Countries of the Sub-Saharan Africa Region,” unpublished manuscript
prepared for the World Health Organization. [103]

United Nations (1983), Manual X: Indirect Techniques for Demographic Es-
timation, New York: Department of International, Economic and Social
Affairs, United Nations. [96]

——— (2009a), World Population Prospects: The 2008 Revision (Vol. I: Com-
parative Tables), New York: Department of Economic and Social Affairs,
Population Division, United Nations. [96,102,103]

——— (2009b), World Population Prospects: The 2008 Revision (Vol. II: Sex
and Age Distribution), New York: Department of Economic and Social
Affairs, Population Division, United Nations. [96]

——— (2010), World Population Prospects: The 2008 Revision (Vol. III: An-
alytical Report), New York: Department of Economic and Social Affairs,
Population Division, United Nations. [99]

United States Census Bureau (2008), International Data Base: Demographic
Indicators, Burkina Faso, 1960–2000. Available at http://www.census.gov/
population/international/data/idb/informationGate way.php. [103,107]

Wrigley, E. A., and Schofield, R. S. (1981), The Population History of England,
1541–1871: A Reconstruction, London: Edward Arnold. [96,97]


