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ABSTRACT

Although miRNA-seq is extensively used in many
different fields, its quality control is frequently re-
stricted to a PhredScore-based filter. Other impor-
tant quality related aspects like microRNA yield, the
fraction of putative degradation products (such as
rRNA fragments) or the percentage of adapter-dimers
are hard to assess using absolute thresholds. Here
we present mirnaQC, a webserver that relies on 34
quality parameters to assist in miRNA-seq quality
control. To improve their interpretability, quality at-
tributes are ranked using a reference distribution ob-
tained from over 36 000 publicly available miRNA-seq
datasets. Accepted input formats include FASTQ and
SRA accessions. The results page contains several
sections that deal with putative technical artefacts re-
lated to library preparation, sequencing, contamina-
tion or yield. Different visualisations, including PCA
and heatmaps, are available to help users identify
underlying issues. Finally, we show the usefulness
of this approach by analysing two publicly available
datasets and discussing the different quality issues
that can be detected using mirnaQC.

INTRODUCTION

Different aspects of miRNA-seq such as RNA extraction,
storage conditions and sample processing together with the
chosen library preparation protocol have a great impact on
the obtained sequencing results (1,2). In any bioinformatics
analysis of high-throughput sequencing data, quality con-
trol (QC) is the key step to reveal the existence of technical
artefacts. Neglecting this step can lead to both false discov-
eries and failure to identify the existing biological signal.

The processing of miRNA-seq data is no exception, and
QC approaches should focus on measurable sample features
that can be linked to quality aspects. Moreover, whenever
possible, these quality parameters should hint or point out
specific technical artefacts. This approach would offer the
user the chance to take appropriate actions like excluding
low-quality samples from the analysis or applying statisti-
cal models in order to correct for such technical variation
when possible like in the case of batch effects (3).

Several sample attributes are generally calculated in se-
quencing experiments including the total number of se-
quenced reads, number of adapter-trimmed and filtered
reads, percentage of mapped/unmapped reads and Phred-
Score to measure the quality of the sequencing. Besides
these general statistics, many pipelines such as sRNAbench
(4), mirTrace (5) or miRge (6) implement measurements
that are specifically useful for miRNA-seq analysis like
number of unique reads, percentage of miRNA-mapping
reads, read length distribution and relative abundance
of fragments from other RNA types (mostly tRNA and
rRNA). Many of these parameters are clearly relevant for
quality. Some indicate good quality samples when they hold
high values (number of miRNA reads, total number of
reads) while others (percentage of rRNA, adapter dimers)
do it when they are low. Some of these features can be di-
rectly linked to a particular artefact, like a high percentage
of adapter dimers which is normally caused by issues with
adapters and/or input RNA concentrations (7). Other mea-
surements, like smeared out read length distributions, can
also be attributed to specific problems, in this case RNA
degradation. However, most of them can be affected by sev-
eral different artefacts thus it is frequently not possible to di-
rectly reveal specific technical issues when considering each
quality feature individually. For instance, the yield in mi-
croRNAs can be influenced by any artefacts that impact the
total read yield including contamination.
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Regardless of the values good quality measurements
should take, the context-free interpretation of sample fea-
tures is generally not straightforward. For example, as an
obvious source of unwanted fragments, rRNA presence
should be minimized, but it is difficult and arbitrary to
establish a specific threshold (5%, 10%, 20%) to discard
samples. Therefore, rather than working with predefined or
user-provided values that are hard to justify, a more agnos-
tic approach would rely on relative values calculated from
a background of comparable experiments (i.e. similar sam-
ples) which would in turn simplify the interpretation of the
QC outcome.

A vast amount of publicly available data exists that can
be exploited for purposes beyond their original goal (8). To
generate a reference corpus of experiments that can be used
to rank quality features, we downloaded over 36 000 raw se-
quencing datasets from the Sequence Read Archive (SRA)
covering most model species. Samples were first processed
using sRNAbench and then 34 quality features were ex-
tracted from each sample and subsequently organised into
the reference set. Furthermore, sample metadata is used to
tailor comparisons to more relevant sets of experiments (i.e.
samples from the same species and/or processed with the
same library preparation protocol).

In contrast with previously available software (5,6), mir-
naQC calculates absolute and relative values for several
quality-related features for a set of miRNA-seq samples. In-
put data can be uploaded as FASTQ files or provided as
SRA run accessions that will subsequently be ranked mak-
ing use of the reference corpus mentioned above. An ap-
parent advantage of this approach is that fixed thresholds
are no longer needed and decisions can be made based on
background statistics. Users can explore mirnaQC results
by means of interactive plots and tables that hold both ab-
solute and relative values of the 34 quality attributes. The
output report is structured into several categories trying to
relate the quality attributes to the different possible techni-
cal artefacts. This approach can help to identify low quality
samples or reveal issues in the sample processing which is
extremely important for protocol optimisation.

mirnaQC SAMPLE FEATURES AND QUALITY MEA-
SURES

The success of a small RNA sequencing run depends on
many different factors including RNA quality, quantity and
purity, an optimized library processing protocol and the se-
quencing itself. However, it is not always easy or even possi-
ble to directly relate features extracted from sequencing data
to any technical artefacts. mirnaQC calculates and ranks
several quality parameters conceived to hint problems in the
different aspects involved in the preparation of miRNA se-
quencing libraries. Below we describe the different sections
and, wherever possible, the putative artefacts or quality is-
sues that can be derived from them.

Sequencing yield

This section focuses on the amount of reads and the fraction
that can be assigned to known miRNAs. Generally, param-
eters in this category (percentage of valid reads, detected

microRNAs) indicate high quality when they hold high val-
ues. Low numbers (especially for the percentage of valid in-
put reads) can be related to problems in RNA processing or
low input material. Some sources like exosomes extracted
from bodily fluids however, are known to hold low levels of
miRNA, thus high numbers should not be expected for all
sample types even for high quality libraries.

Library quality

In this category we list the number of reads that are filtered
out due to minimum length (15nt), the percentage of ribo-
somal RNA and the percentage of short reads (15–17 nt).
Their presence may be attributed to degradation products
from longer RNA molecules as no small RNAs are known
in this length range.

High percentages of adapter-dimers (0, 1 or 2 nt frag-
ments after trimming) normally indicate issues with the ra-
tio of adapter to input RNA concentration. In practice, it
is very difficult to completely avoid adapter-dimers, espe-
cially in low input samples such as blood. Nevertheless the
percentile may still be useful as it might show potential for
improvement.

Ultra-short reads are defined as fragments with lengths
between 3nt and 14nt (both inclusive).

Library complexity

In general it is also interesting to assess the complexity of
the sample since low complexity libraries provide very little
information, even for otherwise high-quality datasets. Sev-
eral measurements are provided to grasp the complexity at
two levels that should be interpreted together:

• Sequencing library complexity: This is calculated as the
ratio of the total number of reads to unique reads. Lower
values suggest higher RNA diversity but it can also be
caused by degradation.

• miRNA complexity: Frequently most microRNA reads
correspond to few miRNA genes preventing lowly ex-
pressed miRNAs from being detected. Several measures
are given to estimate complexity at this level: (i) percent-
age of miRNA expression assigned to the first, the first
5 and first 20 most expressed miRNAs, (ii) the number
of miRNAs required to reach 50%, 75% and 95% of the
total miRNA expression.

Putative contamination

The percentage of reads that could not be mapped to
the species’ genome is calculated. Contamination is subse-
quently estimated by mapping against a collection of bacte-
rial and viral genomes.

Read length distribution

A narrow peak around 22 nucleotides in the read length dis-
tribution indicates good quality samples whereas degraded
or poor RNA quality manifests in a broader distribution.
Furthermore, it is clear that the 22nt peak should be present
for miRNA assigned reads and RNA quality issues might
exist if samples deviate from this.
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We summarise the miRNA read length distribution in
several ways: mean length, mode of the distribution, the
fraction of reads with lengths 21, 22 or 23 nt, the standard
deviation and the skewness of the distribution.

RNA composition

The relative abundance of other RNA molecules is au-
tomatically profiled using the sRNAtoolbox database (9).
Most of these longer RNA species (rRNA,mRNA, lin-
cRNA) are not known to be processed into smaller
molecules that can be picked up by miRNA-seq. Their pres-
ence is a symptom of RNA degradation since smaller frag-
ments are randomly generated and then sequenced. Among
these, rRNA is typically used because it’s the most abundant
one.

Sequencing quality

Sequencing quality is calculated by means of FastQC (10).
We determine the mean values of the different percentiles
provided by the program over all positions of the read.

GENERATION OF THE miRNA-seq REFERENCE
CORPUS (BACKGROUND KNOWLEDGE)

The vital part of the presented quality control tool mir-
naQC is the comparison corpus of miRNA-seq data that
is used to rank user’s samples. Using OmicIDXR API we
obtained a list of >3000 SRA studies that were annotated
as ‘miRNA-Seq’ or ‘ncRNA-Seq’ (several ‘RNA-Seq’ were
also included after checking they were in fact ‘miRNA-Seq’
datasets).

For each study we performed the following steps:

• Read the meta-data for a study generating one entry per
experiment (SRX level)

• Download all SRR files that correspond to this SRX by
means of fastq-dump (fastq.gz)

• Detect the library preparation protocol
• Analyse the small RNA sequencing data with sRN-

Abench using all available annotations from sRNAtool-
boxDB

• Upload sRNAbench results to a MySQL database

In total we analysed 36 338 samples from 30 different
species. We distinguish 8 different protocols: Illumina, Illu-
mina 2 (3′ adapter sequence), Next England Biolabs (NEB-
next), Qiagen UMI, NextFlex, adapter trimmed, SoliD and
all others (custom). Over 500 billion sequencing reads were
analysed.

mirnaQC WORKFLOW AND IMPLEMENTATION

An overview of the mirnaQC workflow is displayed on Fig-
ure 1. The only required input is sequencing data in FASTQ
format (or SRR accessions) although sample species and
library protocol information is recommended if known. If
the protocol or species are not provided by the user an au-
tomatic detection algorithm, trained with a set of manu-
ally curated samples from liqDB (11), will find the right in-
put parameters. Condition or group information can also

be provided (optional). All files belonging to a given group
should be compressed into a single .zip, tar.gz or .7z file and
then separately uploaded. The file names will be used as
group labels, and this information will appear in some of
the plots.

Input data is subsequently processed by sRNAbench
in two steps: First reads are simultaneously mapped to
the species genome and a collection of virus and bacte-
rial genomes from sRNAtoolboxDB (9) allowing one mis-
match. Preference is given to the reference genome in case
of multiple mapping reads. In the second step reads are
mapped to microRNA reference libraries (12,13), RNA-
central (14) and Ensembl annotations (15) for ncRNA and
mRNA. Note that although samples are mapped to both
reference libraries, miRBase and MirGeneDB, currently the
miRNA related figures are extracted from the miRBase
mappings.

Out of both sRNAbench output folders we extract a total
of 34 quality attributes that are next compared to 5 different
reference sets: (i) samples from the same kingdom (animals
and plants), (ii) samples from the same species, (iii) samples
from the same kingdom and protocol, (iv) samples from the
same species and protocol and (v) low-input samples (de-
fined as those obtained from bodily fluids). Each compari-
son can be browsed separately on the output page.

The processing pipeline is a java programme that includes
sRNAbench, Bowtie (16) and a MySQL client to query the
reference corpus. The web interface was developed using
Python and Django and runs on Apache. The results re-
port includes the six sections described in the mirnaQC sam-
ple features and quality measures with tables and styles from
multiQC (17) and Plotly visualisations. Both absolute val-
ues and percentiles are displayed and highlighted using a
quartile colour code (see Figure 2C).

WORKING EXAMPLE

To show the usefulness of this tool, we analysed two publi-
cally available studies. Basic statistics from the first dataset,
one of the earliest large studies designed to detect cervical
cancer (18), can be seen on Figure 2A. To help users iden-
tify potential issues, the quality parameters and their per-
centiles are displayed using a quartile-based colour code
(from better to worse values: green, yellow, orange and
red). Using this guide, several problems can be identified:
with few exceptions, most parameters rank on the third (or-
ange, Q3) and fourth quartiles (red, Q4). More specifically,
miRNA ‘peak’ values show that a rather low percentage of
microRNA reads have lengths between 21 and 23nt in the
majority of samples. This means that although those reads
can be assigned to miRNA reference sequences, they do not
correspond to the canonical miRNA lengths. This hints an
RNA processing issue that might still be tolerated if all sam-
ples are similarly affected, which can indicate either system-
atic artefacts or biological reasons.

It may also happen that not all samples are equally af-
fected by a quality issue, which can be more problematic
if two or more conditions are to be compared. mirnaQC
allows users to assign samples to conditions in order to
explore this possibility. Figure 2B shows a PCA plot of
the expression values of the 50 most expressed miRNAs.
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Figure 1. A schema of the front end and workflow of mirnaQC. Some features of the quality report are depicted at the bottom.

Users can decide which quality attribute should be used to
colour the markers, in this case we used ‘% top miRNA’
(the percentage of reads assigned to the most abundant mi-
croRNA). This graph shows that the two outlier samples are
much less complex than the rest. Furthermore, because con-
ditions are marked with different symbols (control-circles
and carcinoma-squares), we know that these two samples
belong to the same group. Keeping such samples in the anal-
ysis is not recommended since they will certainly bias the
results. Figure 2E displays the distribution of this feature
for both groups by means of boxplots. Here we can see that
these two samples are outliers but otherwise both condi-
tions show reasonably similar distributions for this param-
eter.

Users can also explore potential sources of contamina-
tion from reads mapped to viral and bacterial genomes.
Figure 2D shows that all samples suffer from rather high
percentages of contamination reads. All samples have more
bacterial/viral reads than 75% of all animal samples in the
reference set. This range of values indicates serious contam-
ination with the possible exception of cervical cancer sam-
ples, where this might be caused by sample extraction or
even have a role in the disease (19).

Finally, Figure 2E shows the library complexity of differ-
ent tissues from Takifugu rubripes (20). While the top ex-

pressed microRNA in intestine picks up 47.1% of all reads
(percentile 88.4), in ovary this figure drops to 8.3% which
corresponds to percentile 2.6. In ovary, eight microRNA
sum up over 50% of all miRNA expression while in intes-
tine it takes only two to reach the same percentage which in-
dicates a higher complexity of miRNA expression in germ
cells. Furthermore, ovary and testis exhibit much lower per-
centages of miRNAs. This might be related to their larger
repertoire of small RNAs in germ cells (21) which automat-
ically would lead to a lower relative fraction of microRNAs
in those samples.

CONCLUSION

We present a user-friendly web server for the comparative
quality control of miRNA-seq data that can be useful in sev-
eral scenarios: to identify low-quality samples that should
be excluded from downstream analysis; to reveal systematic
errors in order to improve the library preparation process,
something especially relevant for pilot studies; and finally,
to provide external quality validation for datasets so it can
be used as a standard proof of quality.

mirnaQC provides several output tables and visualisa-
tions for a total of 34 quality attributes which allow users
to rank their results against a large corpus of comparable
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Figure 2. Different examples of mirnaQC sections and visualisations. (A–D) display different quality aspects of a cancer study. (E) shows the output of
different sample complexity measures for different tissue types and two columns from Basic Statistics section at the right.
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samples. In this way, no absolute thresholds need to be ap-
plied and the user can evaluate their sequencing data based
on percentiles. Future developments include new types of
analysis and improved visualisations intended to detect con-
founding variables related to quality issues that can affect
downstream steps. Additionally, a dockerized version of the
tool will be made available so the pipeline can be run locally
or in computing clusters.

DATA AVAILABILITY

https://arn.ugr.es/mirnaqc/.
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