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Purpose: Retinopathy of prematurity (ROP), a leading cause of childhood blindness,
is diagnosed by clinical ophthalmoscopic examinations or reading retinal images. Plus
disease, defined as abnormal tortuosity and dilation of the posterior retinal blood
vessels, is the most important feature to determine treatment-requiring ROP. We
aimed to create a complete, publicly available and feature-extraction-based pipeline,
I-ROP ASSIST, that achieves convolutional neural network (CNN)-like performancewhen
diagnosing plus disease from retinal images.

Methods:Wedeveloped twodatasets containing100and5512posterior retinal images,
respectively. After segmenting retinal vessels, we detected the vessel centerlines. Then,
we extracted features relevant to ROP, including tortuosity and dilation measures,
and used these features in the classifiers including logistic regression, support vector
machine and neural networks to assess a severity score for the input. We tested our
system with fivefold cross-validation and calculated the area under the curve (AUC)
metric for each classifier and dataset.

Results: For predicting plus versus not-plus categories, we achieved 99% and 94% AUC
on the first and second datasets, respectively. For predicting pre-plus or worse versus
normal categories, we achieved 99% and 88% AUC on the first and second datasets,
respectively. The CNNmethod achieved 98% and 94% for predicting two categories on
the second dataset.

Conclusions: Our system combining automatic retinal vessel segmentation, tracing,
feature extraction and classification is able to diagnose plus disease in ROP with CNN-
like performance.

Translational Relevance: The high performance of I-ROP ASSIST suggests potential
applications in automated and objective diagnosis of plus disease.
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Introduction

Retinopathy of prematurity (ROP) is a disease
that can be diagnosed from findings either by clini-
cal ophthalmoscopic examinations or reading fundus
images. It mostly affects infants with a birth weight
of ≤1500 g or gestational age of 30 weeks or less.1
ROP is characterized by aberrant retinal vascular devel-
opment, vascular abnormalities, and neovasculariza-
tion. In mild ROP, retinal vascular pathologies regress
spontaneously, but in severe cases the vascular abnor-
malities progress to fibrovascular proliferation and
retinal detachment with subsequent blindness. ROP
remains one of the leading causes of childhood blind-
ness in the world.2 Furthermore, as the survival rate of
premature infants is increasing, the number of infants
at the risk of ROP is increasing.3

To standardize ROP diagnosis, an international
classification system was developed in the 1980s and
revised in 2005.4,5 According to this system, plus
disease is the most important disease feature in deter-
mining the need for treatment, and it is defined as
abnormal tortuosity and dilation of the posterior
retinal blood vessels. The system developed in the 1980s
defined plus disease as a binary variable (i.e., present or
absent). However, in 2005, a refined system defined a
new class, pre-plus. According to this definition, a pre-
plus eye has vascular abnormalities in the retina, yet
dilation and tortuosity of the retinal vessels are insuffi-
cient to label the corresponding eye with plus disease.5
The presence of plus disease indicates that treatment
such as laser photocoagulation is appropriate.1 There-
fore, it is important to diagnose plus disease accurately.

There have been multiple attempts to automate
the measurement of the vascular dilation and tortu-
osity that constitute plus disease, to variable degrees
of success. Most of the current retinal image analysis
systems are not fully automated. CAIAR,6 RISA7 and
the system proposed by Fiorin and Ruggeri9 are semi-
automatic systems for quantifying dilation and tortu-
osity of retinal vessels. Also, RIVERS8 traces retinal
vessel centerlines and detects the changes between
registered images.

Recently, there have been several descriptions
of automated systems. There are two categories
of automated systems: (1) systems that extract
handcrafted features (e.g., vascular tortuosity and
diameter of the vessels), and (2) systems that employ
convolution neural networks (CNNs) for feature
extraction. The algorithm developed by Pour et al.10
and ROPTool11 use handcrafted features for ROP
detection. ROPTool determines the existence of ROP
by comparing the values of handcrafted features in

each quadrant with a predefined average. On the
other hand, Brown et al.12,13 have employed CNN
for segmenting retina vessels, diagnosing plus disease
and monitoring ROP treatment. Their CNN approach
achieves 0.94 and 0.98 area under the curve (AUC)
statistics for predicting normal versus pre-plus or
worse and plus versus not-plus disease, respectively.
Also, Worrall et al.14 proposed a CNN method for
detecting plus disease that achieved 92% accuracy. In
many medical imaging tasks, CNNs have been found
to have improved performance compared with feature-
extraction-based machine learning approaches15;
however, they have the limitation that the CNN
features are not transparent or explainable.

In this paper, we combine some of the advantages of
a CNN model for identification of the relevant vascu-
lar structures with a feature-extraction algorithmprevi-
ously developed16 to determine whether combining
these models might produce an automated plus disease
classifier with performance similar to that of CNNs but
with explainable features. The I-ROPASSIST system is
inspired by that of Ataer-Cansizoglu,16 who proposed
a system to create a severity score for a retina image.
Even though we follow that system’s vessel tracing
and feature extraction methods, our system differs in
several aspects. We add an optic disc center detector
to make the system fully automated and replace the
vessel segmentation method. We compare three differ-
ent classifiers to show that our handcrafted features
are discriminative for detection of plus disease. Finally,
our pipeline is a freely available package written in
Python and does not require a paid license to use. The
package is accessible at https://github.com/neu-spiral/
iROPASSISTPackage.

Methods

Dataset

This study was approved by the Institutional Review
Board at the coordinating center (Oregon Health
& Science University) and at each of eight study
centers (Columbia University, University of Illinois
at Chicago, William Beaumont Hospital, Children’s
Hospital Los Angeles, Cedars-Sinai Medical Center,
University of Miami,Weill CornellMedical Center and
Asociacion para Evitar la Ceguera en Mexico). This
study was conducted in accordance with the Decla-
ration of Helsinki. Written informed consent for the
study was obtained from parents of all infants enrolled.

As part of the Imaging and Informatics in ROP
(i-ROP) study, a multicenter ROP cohort study, we

https://github.com/neu-spiral/iROPASSISTPackage
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Figure 1. System pipeline. Input retina image first goes through vessel segmentation process, and the optic disc center is then detected.
Using segmented images and optic disc centers, the vessels are traced and vessel tree information is extracted. Using the outputs from
previous steps, features of the retina are extracted, and these features are used for classification.

developed two datasets containing 100 and 5512 poste-
rior retinal images, respectively. The retinal images were
taken using a RetCam® wide-angle fundus camera
(Natus Medical Inc., Pleasanton, CA, USA) between
July 2011 and December 2016. A reference standard
diagnosis (i.e., plus, pre-plus or normal) was assigned to
each of the images as previously described.17 In brief,
the reference standard diagnosis was established based
on the consensus diagnosis that combined the image-
based diagnosis by three independent expert graders
and the clinical diagnosis at each study center. The
large dataset containing 5512 images consisted of 163
plus, 802 pre-plus, and 4547 normal images and was
used for training and validation using a cross-validation
approach. The 100-image dataset, which was used by
Ataer-Cansizoglu,16 contained 15 plus, 34 pre-plus,
and 51 normal images. The smaller dataset was a fully
independent dataset that has been well characterized
by multiple expert classifications in prior work.18–20 It
is included in this study to present the performance of
our system on previously studied dataset.

System Pipeline

We divide the plus disease diagnosis procedure into
5 steps, as shown in Figure 1. First, we take color retinal
images as inputs, segment the vessels, and find the optic
disc center, the center point of optic disc where the
optic nerve fibers leave the retina. Second, we detect
centerlines of the vessels and the vessel tree struc-

ture and then extract 143 features based on dilation
and tortuosity of the vessels. Finally, we produce the
severity score via a classifier. Segmented single-channel
images and optic disc centers are optional inputs to
the system. If they are provided, the system runs the
remaining steps based on the provided inputs. These
steps are independent and can be modified for future
improvements.

Segmentation

The pipeline of the system begins with segment-
ing the vessels in a color retina image. We followed
the segmentation procedure from Brown et al.12 The
system deploys a pre-trained U-Net CNN21 architec-
ture for segmentation. The patch size of the archi-
tecture is 48 × 48. The U-Net CNN was trained on
200 manually segmented images, and cross-entropy
loss function was employed. Here, stochastic gradi-
ent descent with a learning rate of 0.01 was used as
the minimizer. The trained network segments the input
image by extracting all overlapping patches with an
8-pixel stride. Using 8-pixel strides results in overlap-
ping regions, and these regions are averaged to produce
an output image with pixel values ranging from 0 to
1. The resulting image contains a circle enclosing the
retinal field of view. We removed the circle with a mask
obtained by applying a threshold to the image and
estimating the center and radius of the circle. The final
output is a 640 × 480, single-channel (gray) image of
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Figure 2. Images in the first row are the input color retina images, in the middle row are corresponding manual segmentations, and in
the last row are the resultant automatically segmented images. Also, beginning from the left column, images are ordered according to their
severity level (i.e., normal, pre-plus, and plus).

the vessels in the retina. The output of the U-Net CNN
can be interpreted as an image, pixel values of which are
the probability of being a vessel.

Figure 2 shows sample retina images and their
segmented versions. Images in the first row are the
input retina images, in the middle row are the
corresponding manual segmentations used by Ataer-
Cansizoglu et al.,16,19 and in the last row are the resul-
tant automatically segmented images using the Brown
et al.12 method. Also, beginning from the left column,
images are ordered according to their severity level (i.e.,
normal, pre-plus, and plus).

Optic Disc Center Detection

In our system, the optic disc center is used in both
vessel tracing and feature extraction modules. When
creating the vessel tree structure of the image, the
system begins with the vessels that are connected to

the optic disc (i.e., a circle around the optic disc center
with a radius of 30 pixels). Also, in the feature extrac-
tion module there are several features that use the optic
disc center for distance measures. In our system, the
user can provide the optic disc center as an input, or
the system can detect the optic disc center automati-
cally. We show the performances of both cases in the
Results section. The automatic optic disc center detec-
tor employs a CNN that consists of the downsam-
pling arm of U-Net.21 The CNN was trained on
5000 segmented images. The loss function deployed
for training was the Euclidean distance between the
predicted disc center and ground truth, provided by
ROP experts. The loss function can be formulated as

L (c, ĉ) = ‖c − ĉ‖2 (1)

where c is the true disc center and ĉ is the predicted disc
center.
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Table 1. Segment-Based Features and Their Corresponding Formulations

Feature Formula

Cumulative tortuosity index (CTI) CTI(v) = Lc(v)/Lx(v)
Average segment diameter (ASD) ASD(v) = #vessel pixels/Lc(v)
Distance to disc center (DDC) DDC(v) = c(a) − ρ.

Integrated curvature (IC) IC(v) =
b
∫
a
|κ (s)|ds

Integrated squared curvature (ISC) ISC(v) =
b
∫
a
|κ (s)|2ds

Integrated curvature normalized by curve length (ICLc) ICLc(v) = IC(v)/Lc(v)
Integrated curvature normalized by chord length (ICLx) ICLx(v) = IC(v)/(Lx (v) )
Integrated squared curvature normalized by curve length (ISCLc) ISCLc(v) = ISC(v)/(Lc (v) )
Integrated squared curvature normalized by chord length (ISCLx) ISCLx(v) = ISC(v)/(Lx(v) )

For DDC, c(a) is the start point of segment v, and ρ is the optic disc center. Lc(v) and Lx(v) are the curve length and chord
length of segment v, respectively.

Vessel Tracing

The output image of segmentation module is an
image with the probability of being a vessel for each
pixel. The pixel values change between 0 and 1. Before
feeding this image to the feature extraction module, a
threshold is applied by using the method of Otsu,22
which uses histogram information of the image and
minimizes the intra-class variance. After applying a
threshold, we obtain a vessel image. From this vessel
image, we find the center line of vessels and their
connectivity information to be able to extract the vessel
tree information. We follow the vessel tracing method
of Ataer-Cansizoglu et al.,16,19 and we provide the
details of their method in the Supplementary Materi-
als.

Feature Extraction

In image-based machine learning applications,
representing an image with informative features plays
an important role. Vessel dilation and tortuosity are
commonly used for the definition of ROP.4,5 Also,
expertsmention that vessel tree information is informa-
tive for the diagnosis of ROP.23,24 Thus, in this part of
the system, we aim to extract tortuosity- and dilation-
related features from the provided vessel tree informa-
tion. We represent each image with 11 different feature
sets, representing a subset of features that Ataer-
Cansizoglu16 extracted. The features can be divided
into two categories: point based or segment based.
In addition to the segment-based features presented
in Table 1, we extract curvature and point diameter as
point-based features. Mathematical derivations of the
extracted features are provided in the Supplementary
Materials.

The output of the feature extraction stage is a
feature vector of size 143: 11 feature sets each contain-
ing 13 statistics, 5 based on a Gaussian mixture model
fit and 8 on other typical measures.

Classification

We considered a dataset D containing N images,
indexed by i ∈{1, 2, …, N}. This dataset contains
the tuples of the form (xi, yi), where xi ∈ R

143 is the
feature vector generated from Section 3.4, and yi is
the corresponding label of image i. We regressed the
image features with their corresponding class labels,
and we employed three different classifiers: (1) logistic
regression, (2) support vector machine (SVM), and (3)
neural networks.

Logistic Regression
We trained a logistic regression classifier with

lasso regularization by minimizing the following loss
function:

L (β, D) =
∑

i∈D
log

(
1 + e−yiŷi

) + λ‖β‖1 (2)

ŷi = βTxi (3)

where β is the linear-discriminant model parameter,
and λ is the regularization weight.

Support Vector Machine
Second, we trained an SVM for classification

purposes. We found the learned parameter β by

min C
∑
i∈D

ζi + βTβ

subject to yi
(
βTxi + b

) ≥ 1 − ζi
ζi ≥ 0 ∀i ∈ D

(4)
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Table 2. Classifier Performances Evaluated with Mean AUC (±Confidence Intervals)

SVM

LR Linear RBF NN

Small dataset Plus vs. not-plus 0.97 (±0.06) 0.95 (±0.08) 0.97 (±0.06) 0.99 (±0.04)
Pre-plus or worse vs. normal 0.98 (±0.03) 0.97 (±0.03) 0.95 (±0.05) 0.99 (±0.02)

Large dataset Plus vs. not-plus 0.93 (±0.03) 0.91 (±0.03) 0.92 (±0.03) 0.91 (±0.03)
Pre-plus or worse vs. normal 0.87 (±0.02) 0.86 (±0.02) 0.85 (±0.02) 0.79 (±0.02)

Confidence intervalswere calculated fromHanley andMcNeil.25 Classifiers are trainedand testedwith the features extracted
with ground truth optic disc centers.

We used two different kernel functions for training
SVMs: linear and radial basis function (RBF).

Neural Network
Finally, we trained a neural network for obtaining

a severity score for each image. This network is a fully
connected multilayer perceptron. The loss function is
the logistic loss used in logistic regression classifier
(Equation 2). We tuned the number of layers, number
of nodes in each layer, learning rate, and regulariza-
tion for each dataset and classification task. A detailed
explanation for these parameters is provided later.

The regularization parameter λ in logistic regression
and neural networks ranged from 10–6 to 104. Also, the
penalty term C in SVM ranged from 10–2 to 102. The
number of layers in neural networks ranged from 1 to 4,
and the number of nodes in the first layer ranged from
1 to 143. The number of nodes in the hidden layers was
found by taking the integer part of n1/exp(l), where n1 is
the number of nodes in the first layer and l is the depth
of the layer. The output layer of the neural networks
is a single neuron. We present the best results achieved
after tuning these parameters.

Statistical Analysis
In the experiments of testing the severity scores,

we binarized labels by using plus versus not-plus and
normal versus pre-plus or worse. We calculated the
AUC scores with fivefold cross-validation to evalu-
ate the performance of the system. We divided the
datasets into five splits such that each split had a near-
equal number of samples from each class and repre-
sented 20% of the data. Also, the folds do not include
any overlapping images of the same patient (acquired
in multiple sessions) in the training and test set. We
trained each classifier with four splits and tested it
on the remaining split. We present the mean AUC of
five folds and calculate the 95% confidence intervals
by using the formula of Hanley et al.25 Also, when
comparing the prediction performances of our system
with the CNN-based method, we assess the statisti-

cal significance of the difference by representing the
P value of the one-sided Welch’s t-test for unequal
variances.26

Experiments
We trained the optic disc center detector with 5000

randomly chosen images from the large dataset. We
extracted two sets of features on both the small and
large datasets by relying on (1) optic disc centers
provided by experts, and (2) optic disc centers predicted
by the detector we trained. We then trained and tested
the classifiers with both sets of features.

Results

We calculated the results of the three classifiers
in two methods, using manual identification of the
optic disc (Table 2) and with CNN detection (Table 3).
As shown in Table 2, the neural networks provided
a slightly higher mean AUC in predicting both plus
and normal than all the other classifiers for the small
dataset. It achieved 0.99 AUC for predicting both plus
and normal classes. These results obtained after cross-
validation determined that the best neural networks to
predict plus and normal classes are two-layer neural
networks with (75, 1) and (140, 1) neurons in each
layer, respectively. Values of the regularization param-
eter λ for the networks were 0.001 and 1, respectively,
as a result of cross-validation. Neural networks were
trained using gradient descent with respective step sizes
of 0.005 and 0.001 over 500 epochs. It is also worth
noting that, for the large dataset, logistic regression
provided higher mean AUCs than other classifiers in
predicting both plus and normal classes. Values of the
regularization parameter λ for logistic regression classi-
fiers of plus and normal labels were identified in cross-
validation as 4 and 1, respectively.

Table 3 shows the results of the second set of exper-
iments, where the optic disc center was found with
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Table 3. Classifier Performances Evaluated with Mean AUC (±Confidence Intervals)

SVM

LR Linear RBF NN

Small dataset Plus vs. not-plus 0.98 (±0.05) 0.92 (±0.10) 0.90 (±0.11) 0.99 (±0.04)
Pre-plus or worse vs. normal 0.98 (±0.03) 0.95 (±0.05) 0.97 (±0.03) 0.97 (±0.03)

Large dataset Plus vs. not-plus 0.92 (±0.03) 0.92 (±0.03) 0.89 (±0.03) 0.94 (±0.03)
Pre-plus or worse vs. normal 0.87 (±0.02) 0.86 (±0.02) 0.85 (±0.02) 0.88 (±0.01)

Confidence intervalswere calculated fromHanley andMcNeil.25 Classifiers are trainedand testedwith the features extracted
with predicted optic disc centers.

Figure 3. ROC and PR curves of neural networks trained and tested on features of the large dataset with predicted optic disc centers. The
plots on the first and second roware the ROC andPR curves of networks predicting plus versus not-plus andpre-plus orworse versus normal,
respectively.

the detector described earlier. For the small dataset,
the neural networks provided the highest mean AUC
compared to the other classifiers in predicting plus with
0.99 AUC. The neural network for predicting the plus
labels is a three-layer neural network with (25, 9, 1)
neurons at each layer. The regularization parameter
λ for training this network was 0.5. We used gradi-
ent descent to optimize the network parameters with
a step size of 0.01 over 300 epochs. When predicting
the normal labels in the small dataset, logistic regres-
sion achieved 0.98 AUC, which is slightly higher than
the other classifiers. The regularization parameter λ for
this classifier during training was 1000. Also, for the
large dataset, the neural networks provided a slightly
higher mean AUC in predicting both plus and normal
labels than all the other classifiers: 0.94 and 0.88,
respectively. The neural network models achieved this
performance with a two-layer network with (36, 1)

neurons in each layer. Values of the regularization
parameter λ for training the networks were 0.001 for
plus and 1 for normal. Gradient descent with all data
was used to optimize the network parameters using a
step size of 0.1 over 200 epochs for plus and a step size
of 0.01 over 500 epochs for normal. Figure 3 shows the
ROC and PR curves of the corresponding networks.

Discussion

We have reported the results of a fully automated
feature extraction-based pipeline for plus disease classi-
fication. There are several key findings. These results
suggest that the feature-extraction-based approach, I-
ROP ASSIST, achieves high performance in predict-
ing plus disease, and this performance is similar to the
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performance of CNN-based approaches. Next, multi-
ple classifiers produce high or similar performance,
suggesting that the extracted features are meaningful
and the success-limiting step of feature-based work.
Finally, we also claim that extracted features are
linearly separable.

As noted, the first key finding is that CNN-like
performance can be achieved with feature-extraction-
based methods. The CNN approach developed by
Brown et al.13 achieved 0.94 and 0.98 AUC statistics
for predicting pre-plus or worse versus normal and plus
versus not-plus disease, respectively. Our feature-based
approach achieved 0.88 and 0.94 AUC values for the
corresponding tasks. The AUC differences between the
models are 0.6 and 0.4. The P values corresponding
to these compressions are 0.88 and 0.99, respectively.
These results suggest that the CNNcould identifymore
discriminative features given a large dataset for train-
ing, whereas the curated features we designed have been
a performance-limiting factor, resulting in approxi-
mately 5% lower AUC.

The second and third key findings stem from having
near-equal results from different classifiers. Achiev-
ing high performance using the feature set described
earlier in the Feature Extraction section shows that the
extracted features are discriminative for ROP classifi-
cation. Having near-equal results from classifiers that
search for both linear and nonlinear boundaries among
classes indicates that, instead of the separation of the
features, the extracted features are the main determin-
ing factor for our model’s classification accuracy levels.
Moreover, the fact that the linear logistic classifier
performance was competitive with nonlinear alterna-
tives such as the RBF–SVMandNNs indicates that the
optimal classification boundaries for the given feature
distributions are close to being linear. This indicates
that even very simple classifiers such as the logistic
classifier can achieve high performance when classify-
ing the handcrafted features.

CNN methods have demonstrated significant
advances in medical problems; however, their uninter-
pretable black-box nature is a barrier to real-life
applications. Clinicians are often unwilling to accept
their recommendations without explanation, which
is currently not provided even by state-of-the-art
CNN methods.27–30 However, the I-ROP ASSIST
system uses only handcrafted features relevant to the
definition of ROP.

Limitations

The quality of the input images is a poten-
tial limitation for the I-ROP ASSIST system. The

system requires 480 × 640-pixel input images and
resizes the input images with different shapes before
processing. Because resizing the image will affect the
image quality, downscaling larger images and upscal-
ing smaller images are other potential limitations of
this study. Also, studies show that inconsistency for
the clinical diagnosis of plus disease is significant
even among experts.31,32 To mitigate this potential
limitation in this study, we used reference standard
diagnoses.17

Future Work

The front-end image processing stage offers a rich
environment in which better features can be discov-
ered. The statistics we used as features are quite coarse,
considering the level of detail and potentially discrimi-
native information present in the segmented and traced
vessels. In future work, we will improve the feature
extraction process to achieve better performance levels.
Also, we will extend our work to a system that uses our
handcrafted features for explaining CNN predictions.
We showed that both CNN and I-ROPASSIST extract
relevant features for ROP diagnosis. Because of the
black-box nature of CNN, the CNN features are not
explainable. We will use our handcrafted features for
finding a mapping between CNN features and features
that clinicians can understand.

Conclusions

This fully automated system, which combines
retinal vessel segmentation, tracing, feature extraction
and classification stages, diagnosed plus disease in
ROP with performance on par with recent publica-
tions reporting on the use of CNNs. Combining these
approaches in the future may lead to improved explain-
ability of deepCNNs. TheMIT-licensed complete code
package is available to the public at https://github.com/
neu-spiral/iROPASSISTPackage. We also provide the
features of three example images from our dataset for
public use.
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