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Abstract

Although different strategies have been developed to generate transgenic poultry, low effi-

ciency of germline transgene transmission has remained a challenge in poultry transgen-

esis. Herein, we developed an efficient germline transgenesis method using a lentiviral

vector system in chickens through multiple injections of transgenes into embryos at different

stages of development. The embryo chorioallantoic membrane (CAM) vasculature was suc-

cessfully used as a novel route of gene transfer into germline tissues. Compared to the

other routes of viral vector administration, the embryo’s bloodstream at Hamburger-Hamil-

ton (HH) stages 14–15 achieved the highest rate of germline transmission (GT), 7.7%. Sin-

gle injection of viral vectors into the CAM vasculature resulted in a GT efficiency of 2.7%,

which was significantly higher than the 0.4% obtained by injection into embryos at the blas-

toderm stage. Double injection of viral vectors into the bloodstream at HH stages 14–15 and

through CAM was the most efficient method for producing germline chimeras, giving a GT

rate of 13.6%. The authors suggest that the new method described in this study could be

efficiently used to produce transgenic poultry in virus-mediated gene transfer systems.

Introduction

Genetic modification of avian species provides great benefits for industrial and medical pur-

poses by enabling resistance to zoonotic diseases, improving meat and egg productivity, and

generating effective bioreactor models [1,2]. Despite these great benefits, the unique reproduc-

tive system of avian species has restricted the application of efficient transgenesis protocols

routinely employed in mammals, so different strategies have been developed to produce trans-

genic birds [3,4]. Although great advances have been made in gene transfer methods, avian

transgenic technology has not been widely used until recently mainly because of the relatively

low and variable rates of germline transmission (GT) [2,5]. In addition to this limitation,

many other challenges lie ahead, such as high embryonic lethality following injection of trans-

genes [5], the need to wait for two generations before having ubiquitously expressing
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transgenic birds [3], insertional mutagenesis due to the lack of precise control over transgene

integration site (especially in direct and virus-mediated gene transfer systems), and uncontrol-

lable overexpression of transgenes [5,6]. Despite these above-mentioned limitations, a sciento-

metric analysis was conducted and the results showed a recent increase in publications on

transgenic poultry research [7], indicating the real possibility of application of this technology

in various fields in future.

Numerous studies have attempted to produce genetically-modified transgenic birds by

transducing blastoderm embryos at Eyal-Giladi and Kochav (EGK) stage X [8] using retrovi-

ruses. However, the transduction efficiency of G0 founders has been reported to be low with a

limited rate of GT [9–13]. To further improve the efficiency of this system, some research

groups have used lentiviral vectors [14–21]. The GT efficiency using lentiviral vectors was low

in these reports, ranging between 0.6 and 4.0%, although a relatively higher GT (average

17.8%) has also been reported by a research group following injection of lentiviral vectors into

the subgerminal cavity of newly laid eggs [22].

To optimize the GT, some researchers have attempted to determine the ideal developmental

stage for viral vector injection in chicken embryos. For example, Kawabe et al. [23] reported

that the highest rate of transduction of germline cells could be obtained when the viral solution

was injected directly into the blood stream of chicken embryo after 55 h of incubation at Ham-

burger-Hamilton (HH) stages 14–15 [24]. Likewise, through direct injection of a lentiviral vec-

tor into the blood vessels of quail embryos at similar stages (HH 13–15), Zhang et al. [25]

achieved a GT efficiency of 13.0%, nearly 8 times higher than that achieved through the con-

ventional method of blastoderm injection. Both studies proposed that circulating primordial

germ cells (PGC) in early embryos are effective viral targets for generating transgenic birds

using retroviral vectors.

PGC-mediated gene transfer has been suggested to be the most appropriate strategy to

overcome the low GT efficiency in avian species [26–29]. Different studies have reported that

ex vivo manipulated chicken PGC show much more improvement in GT efficiency than do

the viral-mediated systems when introduced into the bloodstream of recipient embryos [30–

35]. However, the processes of isolation, culture, and genetic modification of PGC, as well as

screening of genome-edited PGC, are time-consuming and complicated procedures for rou-

tine use which require highly skilled operators [36].

In this study, we present the first successful use of chick embryo chorioallantoic membrane

(CAM) vasculature as an accessible route for germline gene transfer. We also assessed the

germline targeting efficiency of a multi-stage injection through three different routes of lenti-

viral vector administration. Since the multi-stage injection approach requires the eggshells to

be opened at different times during the development process without compromising embryo

survival, here we established a novel procedure for eggshell windowing at the desired time

points during embryonic development.

Materials and methods

Ethics statement

All the procedures for the handling and treatment of chickens in this study were approved by

the Royan Institute Animal Ethics Committee (No. R-084-2003). All experimental chickens

were housed under optimum conditions of light and temperature with regular cleaning. In

addition, chickens were provided ad libitum access to fresh food and water.
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Virus particles production and titration

To make HIV-based lentiviral vector particles encoding enhanced green fluorescent protein

(EGFP), confluent human embryonic kidney (HEK293T) cells were co-transfected with

pWPXL (Addgene, Cambridge, MA, USA), and a mixture of packaging helper plasmids

(psPAX, pMD2G, Addgene). Transfection was achieved using Lipofectamine 2000 (Invitro-

gen, Carlsbad, CA, USA) according to the protocol provided by the manufacturer. The super-

natants containing viral particles were harvested at 48 and 60 h after transfection and filtered

through 0.45 μm cellulose acetate filters (Millipore, USA). Afterwards, the lentiviral particles

were concentrated by ultracentrifugation at 21000 rpm for 2 h at 4˚C. The resulting viral pellet

was resuspended in an adequate volume of Dulbecco’s modified Eagle’s medium (DMEM)/

high glucose (Sigma-Aldrich, St. Louis, MO, USA) with 10% inactivated serum, aliquoted and

stored at −80˚C.

The biological titration of lentiviral vectors expressing EGFP was carried out by flow cytom-

etry as previously described [37]. Lentiviral stocks with titers of 1×109 transducing units per

milliliter (TU/ml) were used for experimentation.

Chicken embryo injection and hatching

Fertilized chicken eggs (Iranian native Golpayegani breed) were obtained from a local poultry

farm at the peak production period. Each embryo was injected thrice (Group BAC) at different

stages of its development and through different routes as follows: at stage X, into the sub-ger-

minal cavity of blastoderm embryo, at HH stages 14–15, into the dorsal aorta of the embryos,

and at HH stage 37 (on the 11th day of incubation), into the CAM vasculature. For the first

injection, fresh and fertile eggs were placed vertically with their blunt end down at room tem-

perature (RT) for 4 hours before manipulation, allowing the embryos to float to the highest

point inside the shell. A round window with a diameter of approximately 1.5 cm was opened

at the pointed end of each egg using a handheld rotary tool (Dremel, model number: 4000-4/

65) to reach the blastoderm embryo. Before removing the cut eggshell piece, it was marked

according to its position with respect to the cutting edge so that it could easily be put back to

its original location. The eggshell pieces were labeled and stored in phosphate buffered saline

solution (PBS), containing 10% egg albumen and 1% penicillin-streptomycin and a cell culture

incubator at 37˚C until further use. Two microliters of the concentrated lentiviral vector stock

(S1 Fig) with a titer of 1×109 TU/ml were injected into the sub-germinal cavity using a pulled-

glass capillary needle (inner diameter: 40 μm; World Precision Instruments, Sarasota, FL,

USA) attached to an oil hydraulic injection system (CellTram oil, Eppendorf). Before the injec-

tion, phenol red (Sigma-Aldrich, St. Louis, MO, USA) was added to the viral solution at a final

concentration of 0.1% to facilitate visualization during microinjection. Correct injections were

confirmed by visual inspection verifying the spreading of the viral solution across the entire

area pellucida but not outside the borders of the area opaca (Fig 1a). After the injection, egg-

shells were completely filled with fresh albumen collected from other freshly laid eggs (Fig 1b).

Having an overflow of egg albumen is necessary to prevent air bubble formation after sealing

the window. A small piece of plastic wrap (PVC cling film, Pilgon, Iran) was stretched over the

window (Fig 1c) and its ends were secured with a hot glue gun (Shanghai Techway Industrial

Co., China) to the eggshell. The sealed eggs were incubated in a vertical position (with the win-

dow uppermost) in a humidified incubator (Rcom Maru 380 Deluxe, Rcom, Korea) at 37.7˚C

and 55% relative humidity without turning.

After 55 h of incubation, the manipulated eggs were removed from the incubator and the

plastic wrap was peeled away carefully to avoid damaging the embryo vasculature. Two micro-

liters of the lentiviral vector solution (at the same concentration of the first injection) were
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Fig 1. The three-stage injection method in chicken embryos from the blastoderm stage to the hatching using

original eggshells. (a) A round window with a diameter of approximately 1.5 cm was opened at the pointed end of the

non-incubated fertilized eggs (stage X); the viral solution, containing phenol red, was injected into the sub-germinal

cavity. The injected solution had to be spread across the area pellucida but it should not surpass the borders of the area

opaca. (b) Thin albumen was added to fill the shells so that they would slightly overflow when the cover was put on the

window. (c) Plastic wrap was stretched over the window and its ends were secured with a hot glue gun to the eggshell.

(d) After 55 h of incubation, the plastic wrap was removed and the second injection was performed into the dorsal

aorta at HH stages 14–15 embryo. (e) The distribution of the injection solution, containing phenol red, throughout the
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injected into the dorsal aorta of each embryo at HH stages 14–15 using a pulled-glass capillary

needle (inner diameter: 40 μm; World Precision Instruments, Sarasota, FL, USA) attached to

an oil hydraulic injection system under a stereo-microscope. In order to visualize and confirm

the distribution of the injection solution throughout the embryonic vasculature, phenol red

was added to the viral solution at a concentration similar to that of the first injection (Fig 1d

and 1e). After the injection, each eggshell fragment was removed from the storage, put back

into its respective place across the window, and fixed with a hot glue gun (Fig 1f and 1g). The

manipulated eggs were then incubated in an incubator (Rcom Maru 380 Deluxe, Rcom,

Korea) at 37.7˚C and 55% relative humidity in a vertical position with the air sac uppermost

and egg turning every 2 h.

On the 11th day of incubation (HH stage 37), the manipulated eggs were candled at their

blunt end to identify blood vessels of CAM. A small window was carefully drilled over the site

of a prominent blood vessel and the drilled shell piece was gently removed, leaving the under-

lying white shell membrane intact. A drop of mineral oil was used to render the underlying

blood vessel transparent and 4 μl of the viral solution, at the same concentration used previ-

ously, were injected through the transparent eggshell membrane into the blood vessels using a

pulled-glass capillary needle (inner diameter: 80 μm; World Precision Instruments, Sarasota,

FL, USA) attached to an oil hydraulic injection system. Before injection, the plunger was aspi-

rated slightly to ensure that the needle was successfully inserted into a blood vessel (Fig 1h).

After the eggshell window was sealed with a hot glue gun (Fig 1i), the eggs were returned to

the incubator (Rcom Maru 380 Deluxe, Rcom, Korea). At the end of the 18th day of incubation,

egg turning was stopped and the eggs were placed in hatching trays at 37.2˚C and 65% relative

humidity until hatching (Fig 1j).

Experimental groups

The eggs were grouped according to the route of injection (B: Blastoderm injection at EGK

stage X; A: Aorta injection at HH stages 14–15; and C: Chorioallantoic membrane injection at

HH stage 37).

Group BAC: a triple injection into the blastoderm, aorta, and CAM

Group BA: a double injection into the blastoderm and aorta

Group BC: a double injection into the blastoderm and CAM

Group AC: a double injection into the aorta and CAM

Group B: a single injection into the blastoderm

Group A: a single injection into the aorta

Group C: a single injection into the CAM

Group Co (Control group): no injection

Group Sh (Sham group): a triple injection of PBS

Genomic DNA analysis

Genomic DNA samples were extracted from the semen of mature G0 roosters and the blood of

G1 hatchlings using the DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) according

to manufacturer’s instructions. For genomic PCR analysis, a primer pair was designed to

embryonic blood vasculature was done. (f,g) Eggshell fragment was taken out of storage, put back into its respective

place across the window, and fixed with a hot glue gun. (h) At 11 days of incubation, a small window was drilled over

the site of a blood vessel of the chorioallantoic membrane and before the third injection, the plunger was aspirated to

ensure that the needle was inserted into a blood vessel. (i,j) After sealing of the eggshells window with a hot glue gun,

the eggs were incubated until hatching.

https://doi.org/10.1371/journal.pone.0247471.g001
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include the upper strand (5´- TCCGATCACGAGACTAGCC -3´) and lower strand (5´- CATGGA
CGAGCTGTACAA -3´) sequences and used for amplification of a 780 bp DNA fragment encod-

ing EGFP gene. PCR amplification was performed using the subsequent cycles: initial denatur-

ation at 95˚C for 3 min, followed by 35 cycles of denaturation at 95˚C for 45 sec, primer

annealing at 56˚C for 45 sec, and polymerization at 72˚C for 1 min, followed by a final exten-

sion at 72˚C for 10 min. The plasmid DNA was used as the positive control, and the genomic

DNA isolated from the wild-type chickens was used as the negative control. Finally, 5 μl of

each genomic PCR amplicon was analyzed by agarose gel electrophoresis.

Reverse transcription quantitative PCR (RT-qPCR) analysis

Total RNA was isolated from the testes of G0 newly hatched chicks using TRIzol reagent

(Ambion, Austin, TX, USA) according to the manufacturer’s instructions. The isolated RNA

samples were treated with DNase I (Thermo Scientific, Waltham, MA, USA) and reverse-tran-

scribed using random hexamer-primers and M-MuLV reverse transcriptase (Takara, Japan).

The resulted cDNA was used to perform quantitative PCR in an Applied Biosystems Step One

Plus real-time PCR system (Applied Biosystems, CA, USA) using SYBR Green PCR Master

Mix (Takara, Japan). The relative expression levels of the target gene (EGFP) were calculated

using the 2−ΔΔCt method. For EGFP, the following primers were used for the real-time PCR:

forward, 5´- AGCAGAAGAACGGCATCAAG -3´ and reverse, 5´- GGTGCTCAGGTAGTGGTT
GTC -3´. The following primers were also used to amplify chicken glyceraldehydes-3-phos-

phate dehydrogenase (GAPDH) gene as the internal control: forward 5´-GATTCTACACACGG
ACACTTCAAGG -3´ and reverse 5´-ACAATGCCAAAGTTGTCATGGATGAC -3´. All primers

designed by Beacon Designer 7.9 software (Premier Biosoft International, Palo Alto, CA, USA).

Real-time PCR reactions were performed in triplicates with the following cycling conditions:

95˚C for 2 min followed by 40 cycles of 95˚C for 30 sec, 55˚C for 30 sec, and 72˚C for 30 sec.

Visualization of EGFP in organs of transgenic chickens

The tissue localization of EGFP in transgenic chickens was examined either by the microscopic

detection of native EGFP-fluorescence in frozen sections or immunohistochemistry with an

anti-GFP antibody in paraffin-embedded sections. Briefly, organ tissues were excised and

fixed in 4% paraformaldehyde in PBS at 4˚C overnight. For frozen sections, after the overnight

cryo-protection of tissues in a sucrose solution (30% sucrose in PBS), the tissues were embed-

ded in OCT compound (Tissue-Tek, Sakura, Torrance, CA). Sections at 7 μm thickness were

cut on a cryostat (Leica Biosystems, Wetzlar, Germany), mounted on positively charged slides,

and stored at −80˚C until assay. For immunohistochemistry staining, the fixed samples were

embedded in paraffin and sectioned at 4 μm thickness. After deparaffinization, antigen

retrieval and blocking of nonspecific antigenic sites, the sections were incubated with a rabbit

anti-GFP antibody (Abcam, Cambridge, UK; 1:1000) overnight at 4˚C and then with the goat

anti-rabbit Alexa Fluor 488 secondary antibody (Life Technologies, Ltd., Paisley, UK; 1:500)

for 2 h at RT, followed by counterstaining with 40, 6-diamidino-2-phenylindole (DAPI). The

immunostained sections were imaged under a fluorescence microscope (BX51; Olympus,

Japan), which was equipped with appropriate filter sets and coupled to a digital camera (DP72,

Olympus). A negative tissue specimen was used for each tissue type to ensure the elimination

of autofluorescence.

Flow cytometry analysis

Single-cell suspension of testicular cells was prepared by a one-step enzymatic digestion proto-

col [38]. The resulting single cells were then diluted to 106 cells/ml in PBS and directly
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analyzed for EGFP fluorescence on a FACSCalibur instrument using CellQuest software (BD

Biosciences, San Jose, CA, USA). EGFP-positive cells were identified by comparison with sin-

gle-cell suspensions obtained from the testes of wild-type chicks.

Western blot experiments

Testicular EGFP expression at the protein level was further confirmed by western blot analysis

of the whole testis proteins using an anti-GFP antibody. The samples were incubated for 15

minutes at −20˚C after the addition of acetone to allow protein precipitation. Afterwards, the

solutions were centrifuged for 10 min at 14,000 g and 4˚C and the precipitates were resus-

pended in a lysis buffer (7 M urea, 2 M thiourea, 4% CHAPS, 40 mM Tris, pH 8.5, 0.002% bro-

mophenol blue, 65 mM DTT, 1 mM EDTA, and 1 mM PMSF). Equal amounts (30 μg) from

each protein sample were separated by SDS-PAGE and transferred to PVDF membranes

(PVDF; Biorad, USA). The membranes were blocked with 10% (W/V) skim milk (Merck,

USA) and subsequently incubated with primary antibodies for 2 h at RT. Specific primary anti-

bodies were monoclonal purified anti-GFP (Biolegend, San Diego, CA, USA; 1:1000) and

monoclonal anti-ß-actin (Clone AC-74, Sigma-Aldrich, St. Louis, MO, USA; 1:500) antibodies.

After being washed with TBST buffer (50 mM Tris-HCl, pH 7.6, 150 mM NaCl, and 0.1%

tween 20), the membranes were incubated with secondary antibodies for 45 min. The second-

ary antibodies were horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG (1:5000,

Dako, Japan) and HRP goat anti-rat IgG antibody (Biolegend, San Diego, CA, USA; 1:4000).

The protein bands were visualized using an Amersham ECL Advance Western Blotting Detec-

tion Kit (GE Healthcare, Germany).

Statistical analysis

Data were analyzed using SPSS software version 23.0 (SPSS Inc., Chicago, IL, USA) by one-

way ANOVA, followed by the Tukey’s post-hoc test. The hatching rates, hatchling mortality

rates, transgenic frequencies, and germline transmission rates of different experimental treat-

ments were compared using the chi-squared test. Values are expressed as mean ± SEM (stan-

dard error of the mean) and P< 0.05 was considered statistically significant.

Results

Effect of injection method on viability and transgenic frequency in G0

presumptive founders

As shown in Table 1, the triple injection (BAC and sham groups) had the most adverse effect

on hatchability compared with other types of injection, including single and double injections.

Among the injection routes, the lowest hatchability was observed in the blastoderm group (B

vs. A and C). However, neither the injection frequency nor the injection route affected the sex

ratio. Similar to hatchability, the number of injections and the route of injection also affected

the hatchling mortality rate, with the highest rates observed in groups with triple injection and

those with injection into the blastoderm. Fig 2a shows DNA amplification (EGFP region) from

semen samples collected from G0 roosters. Regarding the transgenic frequency, based on the

percentage of EGFP-positive semen samples (Table 1), the lowest frequency was observed

when the injection was performed into the blastoderm (P< 0.05), whereas no significant dif-

ference was observed between the dorsal aorta and CAM route groups (P = 0.67). Both the

double injection into the dorsal aorta and CAM route (AC group) and the triple injection

(BAC group) achieved higher germline-transgenic frequencies in the G0 generation, compared
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to the single injection groups (P< 0.05), while no significant difference was found between

the double- and triple-injection groups (P> 0.41).

RT-qPCR and flow cytometry results

We quantitatively assessed the EGFP expression at both mRNA (Fig 2b) and protein (Fig 3)

levels in the testes of G0 newly hatched chicks. The RT-qPCR data revealed that the triple-

injection group had the highest EGFP expression, which was significantly higher than that of

Table 1. Hatchability, sex ratio, hatchling mortality, transgenic frequency, and germline transmission efficiency in chimeric chickens produced by different injec-

tion routes of viral vector administration.

Injection

method

Hatchability no.

(%)

Male sex ratio in G0 chicks

no. (%)

Hatchling mortality

no. (%)

EGFP-positive semen samples of G0

roosters no. (%)

Transgenic ratio in G1

progeny no. (%)

B 105/160 (65.6%) a 48/105 (45.7%) 22/105 (20.9%) c 3/24 (12.5%) a 1/220 (0.4%) a

A 126/155 (81.2%) bc 54/126 (42.8%) 11/126 (8.7%) b 11/29 (37.9%) b 17/220 (7.7%) c

C 122/140 (87.1%) be 52/122 (42.6%) 7/122 (5.7%) ab 13/30 (43.3%) bc 6/220 (2.7%) b

BA 94/158 (59.5%) ad 49/94 (52.1%) 18/94 (19.1%) c 15/23 (65.2%) cd 7/220 (3.1%) b

BC 102/155 (65.8%) a 49/102 (48.0%) 19/102 (18.6%) c 18/27 (66.6%) cd 1/220 (0.4%) a

AC 121/160 (75.6%) c 59/121 (48.7%) 12/121 (9.9%) b 20/29 (68.9%) d 30/220 (13.6%) d

BAC 97/178 (54.5%) d 51/97 (52.5%) 21/97 (21.6%) c 19/25 (76.0%) d 21/220 (9.5%) cd

Sh 82/155 (52.9%) d 36/82 (43.9%) 16/82 (19.5%) c 0 0

Co 127/140 (90.7%) e 59/127 (46.4%) 3/127 (2.3%) a 0 0

A, B, C: Viral vector injection into blastoderm (B), dorsal aorta (A), and chorioallantoic membrane vasculature (C). Co: Control group with no manipulation; Sh: Sham

group with PBS injection into the B, A, and C sites. Hatchability (number of hatched chicks/injected eggs). Values with different letters in the same column are

significantly different (P< 0.05).

https://doi.org/10.1371/journal.pone.0247471.t001

Fig 2. PCR screening of putative transgenic male founders. (a) Genomic PCR analysis of the semen of G0 roosters.

The EGFP reporter gene in the semen samples of G0 roosters in all vector-injected groups was detected by PCR. DNA

samples used as templates for PCR were as follows: Plasmid DNA (pWPXL) (P) as positive control, genomic DNA

extracted from the semen of the seven vector-injected (left to right lanes, respectively), control (Co) and sham (Sh)

groups. (b) Quantitative RT-PCR analysis of testis mRNA from G0 chickens. Total mRNA was isolated from the

testicular tissues of G0 chickens and analyzed by RT-PCR. The data were normalized with the expression of chicken

GAPDH.

https://doi.org/10.1371/journal.pone.0247471.g002
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the double- and single-injection groups (P< 0.05) (Fig 2b). Among the double-injection

groups, the relative expression of EGFP was significantly lower in the BC group than BA and

AC groups (P< 0.05) (Fig 2b). Among double- and single-injection groups, only two groups

(BC and A) showed no significant difference (P> 0.05) (Fig 2b). No significant differences

were observed among the single-injection groups (P> 0.05) (Fig 2b).

As depicted in Fig 3a, over 90% of the testis samples which were collected from the double-

and triple-injection groups and analyzed by flow cytometry contained EGFP positive cells,

while this percentage drastically reduced in testis samples collected from the single injection

groups, 33.3% (B), 45.4% (A), and 61.5% (C). The results of flow cytometry analysis also

revealed that the percentage of testicular cells positive for EGFP was significantly higher in the

triple-injection group (BAC) than that of the double injection groups (P< 0.05) and in the

double injection groups than that of the single injection groups (P< 0.05) (Fig 3b and 3c).

Among the double injection groups, no significant difference was observed between BA and

Fig 3. The testicular expression of EGFP at protein level was confirmed by flow cytometry in G0 chickens. (a) The

frequencies of EGFP positivity based on flow cytometry analysis in samples taken from the vector-injected groups. n =

number of testes evaluated by flow cytometry in each group. (b) and (c) Testicular cells were harvested by

trypsinization, and approximately 5×105 cells/500 μl PBS were investigated by a BD FACS Calibur flow cytometer,

using the testicular cells of non-transgenic chicks as negative controls. The relative cell number counts are plotted as a

function of variable intensities of the green fluorescence from individual cells. Pale green line graph: Non-transgenic

cells; dark green line graph: Transgenic cells. The percentage of total EGFP-positive cells is shown in each histogram.

(b) The positive cell percentages were plotted as mean ± SEM of the data from five independent experiments. Values

with different letters are significantly different (P< 0.05).

https://doi.org/10.1371/journal.pone.0247471.g003
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BC groups (P> 0.05); however, the percentages of EGFP positive testicular cells in the afore-

mentioned groups were significantly lower than that of the AC group (P< 0.05) (Fig 3b and

3c). We also detected no significant difference between groups A and C in terms of the per-

centage of EGFP positive cells (P> 0.05), but the mean values for these two groups were signif-

icantly higher than that of the group B (P< 0.05) (Fig 3b and 3c).

Western blot analysis and fluorescence microscopy

We assessed the EGFP and β-actin expression at the protein level by Western blot analysis in

the testicular tissues of G0 hatched chicks (Fig 4a) in which their EGFP expression was previ-

ously confirmed by the RT-qPCR (Fig 2b) and flow cytometry (Fig 3) assays. Our results

showed that all the seven vector-injected groups were positive for EGFP protein. Despite simi-

lar levels of β-actin expression, the level of EGFP expression varied between groups. Fig 4b

shows the immunostaining for EGFP protein in the pancreas, spleen and testis tissue sections

from a G0 chick in group C, indicating mosaic expression of the transgene in these tissues. The

assessment of the EGFP expression in cryosections of different tissues showed that native

EGFP fluorescence was present in most of the examined tissues; as shown in the pancreas,

spleen and testis tissues taken from a G0 chick in group C (Fig 4c).

Fig 4. Detection of EGFP protein using Western blotting and fluorescence microscopy in G0 chickens. (a) Western

blotting analysis of the testicular protein extracts from the seven vector-injected groups and the sham group. β-actin

was used as the loading control. (b) The mosaic expression of EGFP was confirmed in the pancreas, spleen and testis

tissue sections from a G0 chick in group C by use of Alexa-Fluor488 conjugated anti-GFP antibody stained on paraffin-

embedded tissues. (c) Direct detection of EGFP fluorescence in OCT-embedded tissues from a G0 chick in group C.

https://doi.org/10.1371/journal.pone.0247471.g004
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Germline transmission evaluation in G1 generation

To assess the germline transmission (GT) efficiency, three germline chimeric roosters from

each group were randomly selected and mated with wild-type hens. DNA derived from the

blood of G1 chicks, obtained by the above crossing, was assessed for the presence of EGFP

using PCR (Fig 5a), and the results were expressed as transgenic ratios in G1 progeny

(Table 1). The best result for this parameter was observed in the AC group, which received a

double injection into the dorsal aorta at HH stages 14–15 and CAM, with a GT efficiency of

13.6%. Although the ratio for the triple-injection group (BAC) was lower than that of the AC

group, the difference was not significant (P = 0.18). Comparison of the results between the

three independent injection routes revealed that the lowest rate of GT was achieved when the

injection was carried out into the blastoderm (0.4%), whereas injection into the dorsal aorta at

HH stages 14–15 resulted in the highest GT rate (7.7%). Injection of viral vectors into the

CAM vasculature resulted in a GT efficiency of 2.7%, which was significantly higher than that

obtained by injection into embryos at the blastoderm stage (P< 0.05). Transgene inheritance

in G1 chicks was further confirmed by the sequencing of PCR products obtained from the

amplification of blood DNA (S2 Fig). Ubiquitous EGFP fluorescence was detected in various

tissues of transgenic G1 chicks, as shown for the liver tissue in Fig 5b.

Discussion

A variety of strategies have been used for the generation of transgenic poultry; however, the

efficiency of chimera production and transgene inheritance is still low [5]. To improve the effi-

ciency of generating germline-transmitting chimeric chickens, we aimed to assess the multi-

injection of viral vectors into embryos at three different stages of development using the

advantages of HIV-1 derived lentiviral vectors (S1 Fig) and modified manipulation of chicken

eggs at the desired developmental stages (Fig 1). In this modified approach, we used the origi-

nal eggshells instead of the surrogate eggshells [39] to maintain embryo development from lay-

ing eggs to hatching. Up to our knowledge, this is the first report presenting this novel

modified approach for improving germline transmission efficiency in chicken chimeras.

Fig 5. Identification of G1 transgenic chicks expressing EGFP. (a) PCR analysis was performed on blood DNA from

G1 chicks. DNA samples used as templates for PCR were as follows: Plasmid DNA (pWPXL) (P) as positive control,

genomic DNA extracted from the blood of the G1 progenies of the seven vector-injected (left to right lanes,

respectively) and control (Co) groups. Lane M, DNA marker. (b) Ubiquitous EGFP fluorescence is shown in the liver

tissue of a transgenic G1 chick.

https://doi.org/10.1371/journal.pone.0247471.g005
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The minimum hatchability of this technique was 52.9%, which is higher than that reported

(less than 37%) in most of the previous studies using a surrogate eggshell system

[6,11,13,15,18,22,40–43]. Although some improvements have been reported in the culture of

chicken embryos [44–47], culture methods using surrogate eggshells or artificial vessels suffer

from several disadvantages, such as high economic costs, long operating time, inconsistency

between the morphology of the original eggs and the surrogate shells, and the risk of injury to

or contamination in the embryo during the process of transferring egg content [48]. In addi-

tion, it is important to note that the rates of hatchability achieved in this study is following sin-

gle-, double- and triple- injection and it is clear that over-manipulation could be more

detrimental to embryo survival than a single manipulation. Therefore, the new approach

described in this study could have potentially important consequences for future research on

the production of recombinant proteins in highly efficient poultry systems rather than other

expression systems such as bacteria or mammalian cells [21,49].

The prevention of the transfer of embryos from their shells to surrogate shells can be con-

sidered as one of the reasons for the improved efficiency of the modified approach in this

study. Other reasons for this improved efficiency could be the reduced dead-in-shell mortality

rate, which routinely occurs during the last 3 days of incubation in the classical surrogate egg-

shell system due to yolk sac infection and egg turning limitation [46,48], and also maintaining

optimal gas exchange across the eggshell pores during incubation by keeping the developing

embryos in their original eggshells. It is imperative to underscore that the aim of this study was

not to compare two methods; rather, the study was designed to investigate the efficiency of

generating germline transgenic chickens using multiple injections at three different develop-

mental stages.

The tissue composition and accessibility of the CAM for experimental manipulation, have

attracted many researchers. The highly vascularized network of the CAM has been widely used

as an experimental model to evaluate tumor cell metastasis and dissemination in vivo, as well

as to study anticancer drug effects on tumor inhibition [50–53]. Several studies have demon-

strated that many tumor cells can be metastasized into various tissues (e.g. liver, spleen, lung,

pancreas, brain, bursa of fabricius, bone marrow, ovary, etc.) after cell inoculation or intrava-

sation into the CAM vasculature [53–57]. Hen and colleagues [58] were the first researchers

who used the CAM as a route of gene delivery into the somatic tissues of chickens with the

highest levels of expression in the liver and spleen. In the current study, for the first time, we

demonstrated the possibility of using CAM as an accessible route of gene transfer to germline

cells. However, the mechanistic basis of the above observations and our findings remains

unclear due to the lack of enough knowledge about the developmental characteristics of CAM

such as its lymphatic and vascular system remodeling and permeability [52], which could affect

the pattern of biodistribution of viral vector particles. Based on the pilot experience, we found

that a minimum volume of 4 μl of concentrated viral stock (1×109 TU/ml) had to be injected

into the CAM for consistent detection of EGFP gene in the semen samples. However, due to

the limited capacity of the receiving vessels, the amount injected into the dorsal aorta of

embryos at HH stages 14–15 did not exceed 2 μl. Therefore, caution should be exercised when

comparing the two injection routes in terms of GT efficiency as similar volumes of viral vectors

were not injected. We acknowledge that this may be seen as a shortcoming of our approach,

but improving the overall GT efficiency was the main focus of this study.

Germline chimeric roosters (G0) which were identified as positive based on the genomic

PCR screen were mated with wild type hens in order to assess the rates of GT of the transgene

to the resultant G1 offspring. We didn’t measure the level of chimerism for each individual G0

rooster, because the main focus of this study was to assess the overall germline transgenesis for

each method. However, we acknowledge this as a shortcoming of our analysis, making it
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impossible to assess the correlation between the degree of chimerism in each selected G0

rooster and the level of germline transgenesis. PCR analysis was performed on blood DNA

from G1 chicks to identify transgenic individuals. Subsequently, DNA sequencing of the PCR

products was carried out to confirm transgene integration in the G1 chicks. The injection of

lentiviral vectors into the dorsal aorta at HH stages 14–15 yielded a GT efficiency of 7.7%,

which was significantly higher than those when the injection was administered into the blasto-

derm (0.4%) or CAM (2.7%). Despite the significant improvement observed in the GT effi-

ciency when using the dorsal aorta and CAM routes compared to the blastoderm route, in the

double-injection system, when the injection was administered into the blastoderm and then

either dorsal aorta (BA: GT efficiency 3.1%) or CAM (BC: GT efficiency 0.4%), the GT effi-

ciency was significantly reduced. These results indicate that the injection into the blastoderm

is inversely correlated with the GT efficiency. Similar results were observed when the triple-

injection group (BAC: GT efficiency 9.5%) was compared with the double-injection group

(AC: GT efficiency 13.6%), further emphasizing the inverse correlation mentioned above. This

observation raises the possibility that early injection into chick embryos at blastoderm stage

may lead to a decrease in germ cells pool which is considered as the target of gene transfer at

later stages.

The results regarding the EGFP expression at the mRNA level were not totally in line with

the above findings. The relative expression of EGFP at the mRNA level was similar between

the groups with a single injection despite to the different injection routes. However, in the

double- and triple- injection groups, the relative expression of EGFP at the mRNA level was

significantly higher than that of the single injection groups (Fig 2b). These findings indicate

that although the mRNA expression level was higher in the BA, BC, and BAC groups, which

received an additional injection into the blastoderm, their GT efficiency did not increase com-

pared to A, C, and AC groups, respectively. This incompatibility may be related to the differen-

tial ability of PGC in the blastoderm, compared to that of the circulating PGC at HH stages

14–15 or gonadal germ cells at the HH stage 37, to allow for transgene integration into their

genome. This differential ability could be attributed to the high heterochromatin content and

chromatin epigenetic modifications in early PGC in the blastoderm relative to the late PGC

[59]. It is also of note that the number of PGC at the blastoderm stage was reported to be sig-

nificantly lower compared to the later stages [60]. In addition, PGC at the blastoderm stage

might be more vulnerable to manipulation than those at the later stages. These two latter possi-

bilities can also account for the differential gene targeting ability of PGC in the blastoderm.

Furthermore, the increase in the EGFP mRNA expression could be related to other testicular

cells as the efficiency of GT is affected by the efficiency of gene targeting in PGC. Another pos-

sibility is that although the PGC in the blastoderm were targeted successfully by the viral vec-

tors, they were not able to form functional gametes that can produce offspring. Similar results

were also observed at the protein level assessed by flow cytometry (Fig 3b and 3c). The percent-

age of testis samples positive for EGFP also indicates that the injection into the blastoderm is

not the best route to obtain transgene-expressing testis cells with high repeatability (Fig 3a).

The finding of low germline transgenesis observed in this study was consistent with that of the

previous studies which used blastoderm-stage embryos for germline gene transfer [14,15,17–

21,25]. The results of this study and those of earlier studies suggest that early blastoderm PGC

in chick embryos may not be a suitable target for transgene integration and hence gene target-

ing in chicken germ cells should be aimed at later stages [23,25,61–64].

The groups receiving at least one injection into the blastoderm, including the B, BA, BC,

BAC, and Sh groups, showed the highest G0 hatchling mortality and the lowest hatchability

rates. These results might be due to the direct effect of early viral injection on embryo survival
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and post-hatching development or, alternatively, the effect of air entrance on the embryo sur-

vival during the blastoderm stage associated with egg windowing [65].

Conclusions

The results of this study showed that the embryo’s bloodstream at HH stages 14–15 was the

most effective route of viral vector administration in terms of germline gene transfer. The

embryo CAM vasculature was successfully used as a novel route of gene transfer into germline

tissues. Thus, CAM can be considered as a possible route for the germline transmission of in
vitro modified PGC in future studies. In addition, double injection of transgenes into the dor-

sal aorta, at HH stages 14–15, and CAM vasculature, at HH stage 37, was found to be the most

efficient method in terms of hatchability rates of the manipulated eggs, hatchling viability and

GT efficiency. This new double-injection strategy combines the simplicity and reliability, so

that can be employed in place of the classical less efficient method of using a single injection

into the sub-germinal cavity of blastoderm embryos. Accordingly, we believe that this new

strategy has the potential to become a versatile and effective tool for germline gene transfer.

Supporting information

S1 Fig. The schematic representation of the pWPXL lentiviral vector. LTR, long terminal

repeat; RRE, ref-responsive element; cPPT, central polypurine tract; pEF1a, human elongation

factor-1 alpha promoter; EGFP, enhanced green fluorescent protein; WPRE, woodchuck hepa-

titis virus posttranscriptional control element.

(PDF)

S2 Fig. A sample sequencing of the genomic PCR product that contained the EGFP

sequence amplified from a genomic sample of transgenic G1 chick. Here, the sequence of

genomic PCR product is compared with the EGFP sequence in pWPXL viral vector using

SnapGene software. The result of sequence analysis confirmed the integration of the vector

into the chicken genome. Upper sequence: EGFP ORF amplified from the genome-integrated

pWPXL. Lower sequence: EGFP ORF in pWPXL viral vector.

(PDF)

S1 Raw images.
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