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Abstract: Electroconductive hydrogels with stimuli-free self-healing and self-recovery (SELF) proper-
ties and high mechanical strength for wearable strain sensors is an area of intensive research activity
at the moment. Most electroconductive hydrogels, however, consist of static bonds for mechanical
strength and dynamic bonds for SELF performance, presenting a challenge to improve both proper-
ties into one single hydrogel. An alternative strategy to successfully incorporate both properties into
one system is via the use of stiff or rigid, yet dynamic nano-materials. In this work, a nano-hybrid
modifier derived from nano-chitin coated with ferric ions and tannic acid (TA/Fe@ChNFs) is blended
into a starch/polyvinyl alcohol/polyacrylic acid (St/PVA/PAA) hydrogel. It is hypothesized that
the TA/Fe@ChNFs nanohybrid imparts both mechanical strength and stimuli-free SELF properties
to the hydrogel via dynamic catecholato-metal coordination bonds. Additionally, the catechol groups
of TA provide mussel-inspired adhesion properties to the hydrogel. Due to its electroconductivity,
toughness, stimuli-free SELF properties, and self-adhesiveness, a prototype soft wearable strain
sensor is created using this hydrogel and subsequently tested.

Keywords: dynamic hydrogels; nanohybrid; tannic acid; ferric ions; chitin nanofibers; self-healing;
self-recovery

1. Introduction

Hydrogels are three-dimensional (3D) cross-linked hydrophilic polymers capable of
maintaining a large amount of water (or any biological fluids) [1–3], and widely used for
the fabrication of sensors [4], scaffolds [5], wound healing substrates [6], actuators [7], and
so on. However, a major disadvantage is that they tend to lose functionality under load
due to the long-term damage inflicted on them. To increase their lifetime, therefore, and
extend potential applications, introducing self-healing and self-recovery (SELF) properties
into hydrogels is a promising new approach [8]. However, the requirement for increased
molecular mobility to facilitate SELF properties is in opposition to the need for increased
mechanical strength because mobile crosslinks do not have enough structural integrity to
keep the 3D structure of hydrogels while under load. Therefore, there is an urgent need to
fabricate hydrogels that exhibit both SELF properties and adequate mechanical strength [9].
To achieve SELF properties within hydrogels, different methods have been proposed thus
far, such as loading healing agents to hydrogels or incorporating dynamic covalent and/or
non-covalent bonds, such as metal–ligand bonds [2,8,10,11].

Thus far, many hydrophilic polymers have been evaluated, with polysaccharides
being the most promising candidates primarily because of their low cost, cytocompatibility,
biocompatibility, and biodegradability [1,12]. As an example, starch in particular, is an
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inexpensive and readily-available polysaccharide with branched (amylopectin) and linear
(amylose) polymeric forms [1,13]. However, its brittleness and moisture-sensitivity render
it difficult to employ in load-bearing applications [3,12,14,15], while its lack of electrocon-
ductivity makes it equally difficult for use in soft wearable strain sensors [16,17]. Found
in the exoskeleton of arthropods and synthesized linearly by glucosamine monomers
with β-(1-4)-N-acetyl glucosamine linkages, chitin nanofibers (ChNF) is the second most
abundant polysaccharide in nature and contains highly crystallized fibrous structures with
diameters usually between 2–20 nm [18–20]. Similar to nanofibers isolated from cellulose,
they have a highly modifiable surface area capable of imparting mechanical strength to
hydrogels. It is hypothesized therefore that ChNFs modified with tannic acid (TA) and
ferric ions (Fe3+) would give both SELF and mechanical properties to the hydrogel due
to their stiff but dynamic structural motifs. Moreover, due to the presence of TA, the
hydrogel may exhibit mussel-inspired adhesion and capable of attaching to almost any
surface but still peel off without leaving any residue. This feature can make these hydrogels
extremely versatile because most soft wearable strain sensors require external adhesives
to eliminate interfacial delamination between the sensor and substrate, especially under
repeated deformation [21,22].

A dynamic mussel-inspired hydrogel with SELF properties and high mechanical strength
exhibiting electro-conductivity and self-adhesion for use in soft wearable strain sensors has
been designed and synthesized in this work. To do this, a TA/Fe@ChNFs nanohybrid
modifier has been synthesized and used as a modifier to a starch-based polymer network.
The TA/Fe@ChNFs nanohybrid functions not only as a nanofiller but also as a dynamic
cross-linking agent, providing both SELF properties and mechanical strength to the hydrogel.
To date, there is little if any research available using TA/Fe@ChNFs nanohybrids to fabricate
such hydrogels. Furthermore, polyvinyl alcohol (PVA) is used as a non-toxic, biodegradable,
and water-soluble polymer additive to plasticize and increase the molecular mobility of the
polymer. Acrylic acid (AA) monomers are grafted to the starch to increase binding affinity and
enhance energy dissipation and, thus, avoid the formation of irreversible, covalent crosslinks.
The SELF performance and mechanical strength of the hydrogel are enhanced by adding
TA/Fe@ChNFs nanohybrid as dynamic motifs into the hydrogel.

2. Materials and Methods
2.1. Chemicals and Materials

The chitin nanofibers (ChNFs) isolated by ultrafine grinding were supplied by Nano
Novin Polymer Co. (Sari, Iran). Tannic acid (TA), acrylic acid (AA), starch (St), polyvinyl
alcohol (PVA), ammonium persulfate (APS), and ferric chloride hexahydrate (FeCl3·6H2O)
were purchased from Sigma-Aldrich (Castle Hill, Australia). All other chemicals purchased
were analytical grade unless otherwise noted and were used as received.

2.2. Fe/TA@ChNFs Nanohybrid Synthesis

The Fe/TA@ChNF nanohybrid was synthesized using a facile two-step procedure. In
brief, 134.0 g of ChNFs suspension (1.5 wt.%, containing about 2.0 g ChNFs) was diluted
using 500 cc distilled water, followed by adjusting the pH to 8.5 by dropwise addition of a
tris buffer solution (1 M) into the ChNF suspension. Afterward, 2.0 g of TA was added to
the suspension while stirring at ambient room temperature for 12 h. Subsequently, excess
TA was washed using centrifugation and re-dispersion in distilled water to concentrate
the TA-ChNFs to 3.0 wt.%. In order to introduce Fe nanoparticle into the TA-ChNFs
suspension, 0.5 g of FeCl3·6H2O was dissolved in 100 mL of distilled water and stirred
overnight. After that, 50.0 g of TA-ChNFs was introduced into the suspension and stirred
for 6 h at ambient temperature during which time the color of the suspension changed
from white to red. Finally, the suspension was centrifuged and washed with distilled
water to extract the excess Fe ion solution, followed by homogeneously re-dispersing the
synthesized Fe/TA@ChNFs nanohybrid in distilled water using ultrasonic treatment. The
Fe/TA@ChNFs suspension was finally sealed and cryopreserved at 4 ◦C.
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2.3. Fabrication of PVA-St-PAA-Fe/TA@ChNF Nanohybrid Hydrogels

The PVA-St-PAA hydrogels were synthesized based on the method developed by
Hussain et al. for PVA-glycogen-PAA hydrogels [23]. Briefly, a certain content of St and
PVA was dissolved in a 1:1 ratio in 100 mL distilled water at 90 ◦C for 2 h. After cooling at
ambient temperature, 1.0 mL of APS (1.0 g/10 mL) was added to the 5 mL St-PVA solution
and stirred for 10 min to activate the PVA and St functional groups. Next, an adequate
amount of AA monomer was added to the solution and stirred for another 10 min to
polymerize PAA. Finally, Fe/TA@ChNF nanohybrid was gradually added to the mixture
at different concentrations (0.5. 1, 1.5, 2 wt.%) while stirring. To remove any formed
bubbles, the mixture was sonicated for a few minutes then left for 30 min at ambient
temperature to allow hydrogelation to occur. The synthesized nanocomposite hydrogels
containing 0.0 wt.%, 0.5 wt.%, 1.0 wt.%, 1.5 wt.%, and 2.0 wt.% of Fe/TA@ChNF nanohybrid
were identified and used throughout as follows: PVA-St-PAA-Fe/TA@ChNF0, PVA-St-
PAA-Fe/TA@ChNF0.5, PVA-St-PAA-Fe/TA@ChNF1, PVA-St-PAA-Fe/TA@ChNF1.5, and
PVA-St-PAA-Fe/TA@ChNF2.

2.4. Hydrogel Characterization

The nanostructured morphologies of ChNFs and Fe/TA@ChNFs were evaluated
using transmission electron microscopy, TEM (JEOL, 2100). To do this, each sample was
diluted to about 0.001 wt.% using ethanol and sonicated to prepare a well-homogenized
suspension. Next, the samples were cast onto perforated carbon-coated grids and the excess
liquid was absorbed using filter paper. An image analyzer program (ImageJ) was used to
analyze the resulting microscopic images. The microstructured morphologies of the freeze-
dried hydrogels were evaluated using scanning electron microscopy, SEM (Zeiss, Supra,
Oberkochen, Germany), before and after loading Fe/TA@ChNFs. ATR-FTIR was used to
analyze the ChNFs, Fe/TA-ChNFs, and hydrogel using a Bruker Vertex 70 FTIR between
600–4000 cm−1. Mechanical properties were determined using a universal tensile testing
machine equipped with a 200 N load cell (Instron, Norwood, MA, USA). The mechanical
properties of the silicone-coated rectangular-shaped specimens were determined using
a constant stretching rate of 60–160 mm/min and sample dimensions of 10 mm wide,
6 mm thick, and 35 mm long. The initial distance between the two clamps was 15 mm. A
visual inspection of the self-healing performance of the hydrogel was performed by cutting
it in half and immediately splicing the two halves together again to form the original
shape. The strength ratio between the healed and original hydrogel was defined as the
healing efficiency. Rheological measurements of the hydrogels were conducted using an
oscillatory rheometer equipped with a parallel plate geometry with a 40-mm diameter at a
gap of 49 µm and a frequency of 1.0 Hz (TA Instruments, HR-3, New castle, DE, USA). The
self-adhesive performance of the hydrogels was evaluated using different clean substrates
with the same universal tensile testing machine at a crosshead speed of 10 mm/min until
separation was achieved [22].

3. Results and Discussions
3.1. Design and Synthesis of PVA-St-PAA-Fe/TA@ChNF Nanohybrid Hydrogels

In this research, a tough, self-healing, self-adhesive, and conductive hydrogel via re-
versible catecholato-metal coordination bonds through the incorporation of Fe/TA@ChNF
nanohybrid into the PVA-St-PAA network was synthesized. To do this, TA and Fe nanopar-
ticles were first introduced onto the surface of ChNFs, which, by virtue of its high surface
area and abundance of available hydroxyl groups, was able to interact with the catechol
groups within the dendritic structure of the TA (Figure 1A1). The oxidative polymerization
of TA monomers on ChNFs under alkaline conditions changed the color of ChNFs suspen-
sion from white to yellow and introduced ample catechol groups on ChNFs that were able
to adsorb Fe3+ ions onto the TA@ChNFs surface via chelation interactions. The presence
of TA in TA@ChNFs also facilitated the in situ formation of metal nanoparticles on the
TA@ChNFs surface because of its high reduction capability. Immediately after treating
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TA@ChNF with ferric chloride, the color of suspension changed from yellow to a dark
red color (Figure 1A2). Based on the TEM images, the observed lengths of ChNFs and
TA@ChNF were on the micrometer scale, while their diameters were on the nanoscale
(62 ± 17 nm, Figure 1B and 69 ± 28 nm, Figure 1C). Successful deposition of Fe nanopar-
ticles on ChNFs was confirmed using TEM. As seen in Figure 1D, dense but uniform Fe
nanoparticles (15–25 nm) were observed due to the successful formation of Fe/TA@ChNF
nanohybrid. According to the FTIR spectra (Figure 1E), the peaks at 3434 cm−1 in the
ChNFs, TA@ChNF and Fe/TA@ChNFs spectra could be attributed to O-H stretching, while
the bands in the 2800–3000 cm−1 region to -CH2 symmetrical and asymmetrical stretching
vibrations of chitin. The amide I band of chitin was also observed at 1619 cm−1 and the
CONH2 group of chitin was observed at 1307 cm−1. After polymerization of TA, stretching
peaks at 813, 1531, and 1612 cm−1 were observed in TA@ChNFs, which are not present in
pristine ChNFs and were attributed to the presence of stretching vibrations of C-C aromatic
bonds. These findings complement those of similar studies on the deposition of TA onto
the surface of cellulose nanocrystals [24]. A significant decrease in the intensity of the
major peaks and broadening of the absorption peak at 3434 cm−1 for the Fe/TA@ChNFs
nanohybrid was observed due to the consumption of hydroxyl groups by Fe nanoparticles.
The effect of Fe nanoparticles on the thermal stability of TA@ChNFs was also studied
(Figure 1F). After deposition of Fe nanoparticles, the decomposition of TA@ChNFs became
slower than without Fe nanoparticles at 250 ◦C, which can be due to the interactions
between Fe nanoparticles and TA@ChNFs.

It was hypothesized that the presence of both TA and Fe nanoparticles in ChNFs
would bestow strong cohesiveness in the bulk to PVA-St-PAA via reversible dynamic
catecholato–metal coordination bonds. Moreover, it was expected that PVA-St-PAA would
show a strong self-adhesion to different substrates via a mussel-inspired adhesion. Af-
ter loading Fe/TA@ChNFs, we anticipated the formation of dynamic catecholato–metal
coordination bonds between Fe/TA@ChNFs and PVA-St-PAA and ionic coordination
bonding between Fe nanoparticles and carboxylic groups of PAA and hydroxyl groups
of St and PVA. These coordination modes, together with hydrogen bonding between the
hydroxyl groups of Fe/TA@ChNFs and the functional groups of St, PVA, and PAA, formed
a strong reversible 3D dynamic network that instantly formed a hydrogel. The influence
of loading Fe/TA@ChNFs on the morphology of PVA-St-PAA was studied using SEM
images (Figure 2A–E). As can be seen, the fracture surface of the freeze-dried hydrogels
showed a difference in morphology and pore size to that of the loaded and unloaded
Fe/TA@ChNFs hydrogels. The unloaded sample showed a nonhomogeneous morphology
(Figure 2A) while the Fe/TA@ChNFs loaded counterparts showed a small, dense, high
surface area, and uniform pore size (Figure 2B–E). Additionally, the pore sizes decreased by
increasing the Fe/TA@ChNFs concentrations in the hydrogels. Hence, the incorporation of
Fe/TA@ChNFs nanohybrids had a significant effect on the structural homogeneity of PVA-
St-PAA due to the formation of reversible bonds between polymers chains. Figure 2F(b)
shows the FTIR spectra of the PVA-St-PAA-Fe/TA@ChNF0.5. Absorption peaks related to
the C=C distortion vibration (1563 cm−1), CH2 shearing vibration (1422 cm−1), C-O stretch-
ing vibration (1051 cm−1), and C-C stretching vibration (809 cm−1) were detected, proving
the successful introduction of Fe/TA@ChNFs into the PVA-St-PAA hydrogel. Figure 2G
shows the 0.5 wt.% Fe/TA@ChNF-assisted PVA-St-PAA hydrogel.
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Figure 1. (A1) Schematic of depositing TA and Fe ions onto ChNFs and (A2) the color change of ChNFs after loading TA and
Fe ions respectively, TEM image of (B) ChNFs, (C) TA-ChNFs, (D) Fe/TA@ChNFs, (E) FTIR results of (a) Fe/TA@ChNFs,
(b) TA@ChNFs, (c) ChNFs, and (F) thermal stability of (a) Fe/TA@ChNFs and (b) TA@ChNFs.

Figure 2. SEM images of (A) unreinforced hydrogel, (B) PVA-St-PAA-Fe/TA@ChNF0.5 (C), PVA-St-PAA-Fe/TA@ChNF1,
(D) PVA-St-PAA-Fe/TA@ChNF1.5, (E) PVA-St-PAA-Fe/TA@ChNF2, (F) FTIR results of (a) PVA-St-PAA hydrogel and (b)
and PVA-St-PAA-Fe/TA@ChNF0.5 hydrogel, (G) PVA-St-PAA-Fe/TA@ChNF0.5 hydrogel with different modes of dynamic
catecholato–metal coordination bonds.
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3.2. Mechanical, Rheological, and SELF Properties

It is proposed, therefore, that inclusion of Fe/TA@ChNF nanohybrids with rigid but
dynamic motifs not only improves the mechanical properties of PVA-St-PAA hydrogel but
these also act as dynamic cross-linkers. Hence, they can be used instead of static cross-linkers
like N,N′-methylene bisacrylamide during the polymerization of PAA. To demonstrate this,
we prepared rectangular shape hydrogels followed by stretching them using a universal
tensile test. The stress–strain curves of the hydrogels containing different percentages of
Fe/TA@ChNF nanohybrid (0, 0.5, 1, 1.5, and 2 wt.%) are shown in Figure 3A. The stretchabil-
ity, toughness, and strength of the hydrogels reached 1503%, 184.1 kPa, and 2.27 MJ/m3 by
loading 1.5 wt.% Fe/TA@ChNF nanohybrid to the hydrogels, revealing that Fe/TA@ChNF
nanohybrids can increase the mechanical properties of the hydrogels and create highly stretch-
able hydrogels. However, further increasing of Fe/TA@ChNF nanohybrid (2 wt.%) drastically
reduced the mechanical properties of the hydrogels. This can be related to the formation
of aggregations within the network of hydrogels acting as stress concentration points, thus
adversely dropping the mechanical properties of hydrogel under stress. To evaluate the effi-
ciency of the hydrogel against crack propagation while stretching, a notch was created in each
hydrogel and it was observed that the Fe/TA@ChNF nanohybrid greatly improved blunting
of any propagating crack with the highest improvement in toughness achieved for the 1.5 wt.%
Fe/TA@ChNF nanohybrid-assisted hydrogel (Figure 3B). To track the strain-rate dependency,
mechanical tests were conducted on 1.5 wt.% Fe/TA@ChNF nanohybrid-assisted hydrogel at
60–160 mm/min stretching rates. It was found that higher strain rates lead to higher breaking
strain, although the strain rate dependency disappeared after 120 mm/min because of the
reduction in energy dissipation efficiency of the reversible dynamic catecholato–metal coordi-
nation bonds (Figure 3C) [24]. The effect of Fe/TA@ChNF nanohybrid on self-healing of the
hydrogels was then quantified using the tensile strength ratio between the healed and original
hydrogels (Figure 3D). As seen, by increasing Fe/TA@ChNF nanohybrid the self-healing
performance of hydrogel increased from 80% for 0.5 wt.% Fe/TA@ChNF nanohybrid-assisted
hydrogel to 96.5% for 1 wt.% Fe/TA@ChNF nanohybrid-assisted hydrogel after 60 min
healing time and then showed little further increase despite a maximum healing of 98%
for 1.5 wt.% Fe/TA@ChNF nanohybrid-assisted hydrogel. As seen, the healed 1.5 wt.%
Fe/TA@ChNF hydrogel almost recovered to its initial mechanical properties after 60 min heal-
ing (Figure 3E). To demonstrate the time-dependent self-healing of the hydrogels, self-healing
was measured for the 1.5 wt.% Fe/TA@ChNF hydrogels at different time frames (20, 40, and
60 min) (Figure 3F). As seen, the healing efficiency reached 79% after 20 min healing time and
then slowed down reaching 96.5% after 40 min, and finally 98% after 60 min healing.

Visual inspection of self-healing (Figure 3G–J) was performed using two 1.5 wt.%
Fe/TA@ChNF nanohybrid-assisted hydrogels, one of which had been dyed with methylene
blue (Figure 3H). The samples were cut in half and rejoined at the cutline using samples
of different colors to clearly illustrate healing. The hydrogel showed a stimuli-free and
rapid self-healing response with immediate stability and stretchability across the cutline
thanks to the presence of strong dynamic bonds (Figure 3I and Video S1). Interestingly,
the blue in the sample started to fade (Figure 3J) presumably a result of the molecular
mobility and the dynamic covalent bonding, such as the formation of ionic and metal
chelating bonds (Figure 3G). To illustrate self-healing of the reinforced and unreinforced
hydrogels at the microscopic level, the breakup and reformation of the hydrogel networks
using an alternate step strain test (strain = 1% and 1000%) at a fixed time interval (100 s)
(Figure 3K,L) was explored. As seen, at low amplitude oscillatory shear (strain = 1%) the
storage moduli (G′) of both reinforced and unreinforced hydrogels are higher than their
loss moduli (G′′) indicating that the 3D network of the hydrogel remains intact under small
oscillatory strain over time. After subjecting the hydrogel to high amplitude oscillatory
shear (strain = 1000%) over the next 100 s however, G′ and G′′ were inverted meaning that
the 3D hydrogel network had collapsed and transformed into a sol-state. Despite showing
the formation of a hydrogel-state (G′ > G′′) by returning from high strain to low strain at a
fixed frequency (1.0 Hz) for the unreinforced hydrogel, it did not fully recover the disrupted
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3D network of hydrogel due to lacking dynamic bonds (Figure 3K). On the other hand,
an instantaneous, repeatable, and complete self-recovery of the disrupted 3D network
was observed for the reinforced hydrogel after disruption indicating the excellent self-
healing or recovery of the hydrogel due to the reversible bonds in the hydrogel structure
(Figure 3L). To explain this, it is proposed that at a very high strain, the strong catecholato–
metal coordination bonds start to unzip, causing the observed changes in G′ and G′′

and transformation from a hydrogel to a sol state (Figure 3M). Therefore, by combining
SELF mechanical properties, the hydrogels formed here are clearly very versatile and can
potentially be employed for many practical applications.

Figure 3. (A) Tensile stress–strain curves of the hydrogels at different Fe/TA@ChNF nanohybrid concentrations, (B) tensile tests
for the notched hydrogels at different Fe/TA@ChNF nanohybrid concentrations, (C) tensile test of the hydrogel reinforced by
1.5 wt.% Fe/TA@ChNF nanohybrid at different strain rates, (D) healing efficiency of the hydrogels at different Fe/TA@ChNF
nanohybrid concentrations, (E) typical stress–strain curves of the pristine and healed hydrogels reinforced by 1.5 wt.%
Fe/TA@ChNF nanohybrid concentration, (F) time-dependency behavior of 1.5 wt.% Fe/TA@ChNF hydrogels during the
self-healing process, (G–I) visual self-healing inspection of the 1.5 wt.% Fe/TA@ChNF hydrogel, (J) the healed hydrogel after
20 min, breakup and reformation ability of (K) unreinforced hydrogel and (L) 1.5 wt.% Fe/TA@ChNF hydrogel at 1 and 1000%
strains and a fixed time interval, and (M) shear-thinning behavior of the 1.5 wt.% Fe/TA@ChNF hydrogel.
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3.3. Self-Adhesiveness, Electrical Conductivity, and Strain Sensing Test

In addition to imparting SELF, toughness, and stretchability, the presence of catechol
moieties of TA can also impart mussel-inspired self-adhesiveness to the hydrogel. These
properties, when combined with the observed electronic properties, can make the hydrogels
developed here particularly unique for soft wearable strain sensing applications [21,24–26]. To
reveal the remarkable self-adhesive capability of the hydrogel on a wide range of substrates,
the hydrogel was adhered to a range of different surfaces, including stone, gold, silver, glass,
salmon tissue, plastic, cotton, and tree leaf. As seen in Figure 4A, the hydrogel was used
to attach all of these substrates to a nitrile rubber glove and bore the weight of the item.
To quantify this qualitative observation, a cyclic peel-off tensile test was performed four
times by attaching the hydrogel onto different substrates (rubber, plastic, glass, metal, and
leather) and the adhesive load during peeling was determined (Figure 4B). The hydrogel
adhered to all of these surfaces while showing a repeatable self-adhesive performance with
the highest adhesion strength between the hydrogel and metal interface that can be related to
the existence of metal complexation at the interface of them (Figure 4C). Furthermore, π-π
stacking or CH-π interaction can be considered as the mechanism of the adhesion between
plastic and hydrogel. Similarly, hydrogen bonding can be deemed as the main adhesion
mechanism between glass, leather, and rubber to the hydrogel [21,24]. The hydrogel was also
attached to a wooden mannequin’s elbow to observe stretchability and self-adhesiveness of
the hydrogel. As seen in Video S2, the hydrogel can be stretched without detaching, thus
showing simultaneously self-adhesion and stretchability suggesting that this hydrogel may
be suitable for soft wearable strain sensors.

Polymers like PAA can be cross-linked by ions (Fe3+, Ca2+, and Li+). Hence, the
presence of ample cross-linked ions can impart excellent electrical conductivity and high
performance in the strain sensor to hydrogels. The electrical conductivity of the hydrogel
was also evaluated by simply using a light-emitting diode (LED) indicator. As seen in
Video S3, the LED bulb was immediately lit after connecting the hydrogel to the electric
circuit and reversibly lit and darkened by stretching and relaxing the hydrogel because
of local disconnections. As seen in Figure 4D, the LED bulb was lit after connecting the
healed hydrogel to the electric circuit and restored the electric circuit at the molecular
level after self-healing of the hydrogel. Next, the hydrogels resistance was measured
with a multimeter at a probe distance of 1 cm and stretching the hydrogel up to 960%.
As seen in Figure 4E, the resistance of the hydrogel increased with applying a tension
due to the increasing distance between the conductive segments of the 3D network and
increasing void content within the hydrogel network [21]. As a result, the electrical
conductivity of the hydrogel together with its self-healing, self-adhesiveness, toughness,
and stretchability increases the versatility of the hydrogel for many practical applications,
including soft wearable strain sensors. Moreover, unlike most hydrogel-based strain
sensors needing an external adhesion for attaching to the body, these hydrogels do not
need any external adhesion thanks to their self-adhesiveness performance. Additionally,
since static crosslinkers were not used during the fabrication of the hydrogel, it is, thus,
not brittle and will not easily lose its functionality while under load [24]. To detect the
strains of the body, the hydrogel was used as a soft wearable strain sensor by adhering to a
human forefinger. Once attached, the original (Figure 4F) and healed (Figure 4G) sensors
responded well to finger strain. It was observed that the resistance increased to higher
values by bending the forefinger and stretching the sensor, in agreement with the results
of Figure 4E. The resistance was repeatedly recoverable to its initial value when a human
forefinger was straightened while displaying an identical resistance pattern. Importantly,
the initial resistance was restorable. The relative resistance change of the hydrogel after 200
s was stable, albeit with some slight fluctuations (Figure 4F). As a result, due to a stable,
reproducible, and detective resistance change at different bending angles, the hydrogel
was able to reliably monitor the real-time resistance displaying remarkable suitability
as a soft wearable strain sensor with high mechanical strength, SELF-performance, and
self-adhesion. The healed sensor was also attached to a human forefinger to evaluate the
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SELF-performance of the sensor under the same strains. The results showed that the healed
sensor was able to successfully detect similar patterns comparable to those detected by the
original hydrogel (Figure 4G). This confirms that this hydrogel, thanks to its high healing
efficiency, is suitable for long-term use in soft wearable strain sensors.

Figure 4. (A) Self-adhesiveness of the hydrogel to different substrates, (B) measurement of the self-adhesion strength of the
hydrogels on different substrates by a tensile test, (C) Cyclic self-adhesiveness measurement of the hydrogel on different
substrates, (D) electroconductivity of the cut hydrogel after healing, (E) the resistance of original and healed hydrogel at
different strains, and monitoring the relative resistance change of (F) original and (G) healed hydrogels adhered to the first
author’s forefinger to monitor its bending with different angles in real-time.

4. Conclusions

A nano-polysaccharide mixed hydrogel with excellent SELF, mechanical, electrical,
and self-adhesiveness performance suitable for soft wearable strain sensors has been
presented. For this purpose, ChNFs were used as the nano-polysaccharide and were coated
with ferric ions and tannic acid (TA/Fe@ChNFs) to provide the dynamic covalent structural
motifs. Using a facile method, the electroconductive polysaccharide-based hydrogel was
synthesized from starch/polyvinyl alcohol/polyacrylic acid (St/PVA/PAA) hydrogels,
followed by loading TA/Fe@ChNFs into the hydrogel network. Due to the incorporation
of TA/Fe@ChNFs, thereby forming hydrogen bonding and chelation coordination bonds, it
was observed to have excellent SELF ability—without needing any external stimuli—whilst
having reliable mechanical, electrical, and self-adhesion properties. Hence, this hydrogel
is anticipated to be ideally suited for use in soft wearable strain sensors. For the future
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work, extra attention can be paid to cost, toxicity, processability, and biocompatibility while
designing such hydrogels to meet industrial and application requirements. Additionally,
the mechanism of self-healing at nanoscale should be assessed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/s21113574/s1, Video S1: Rapid self-healing response with immediate stability and stretchability;
Video S2: Stretchability and self-adhesiveness of the hydrogel to a wooden mannequin’s elbow; Video S3:
Evaluation of the electrical conductivity of the hydrogel using a light-emitting diode (LED) indicator.
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