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AFX = acute lymphocytic leukaemia-1 fused gene from chromosome X; Cdk = cyclin-dependent kinase; INK = inhibitor of Cdk; KIP = kinase
inhibitor protein; MAPK = mitogen-activated protein kinase; MEK = MAPK kinase; PI3K = phosphoinositide 3-kinase; PKB = protein kinase B;
PTEN = phosphatase and tensin homolog deleted on chromosome 10; SCF = Skp1, Cul1, F-box protein; TGF-β = transforming growth factor-β;
TSC2 = tumor suppressor tuberin-2.
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Introduction
G1 progression is governed by cyclin-dependent kinases
(Cdks) [1–3]. The Cdks regulate biochemical pathways,
or checkpoints, that integrate mitogenic and growth
inhibitory signals and coordinate cell cycle transitions
[4,5]. The Cdks are regulated by both activating and
inhibitory phosphorylation, by cyclin binding and by two
different families of Cdk inhibitors. In early G1 phase, mito-
gens increase D-type cyclins, which bind and activate
Cdk4 and Cdk6 [6]. The subsequent activation of cyclin E
and cyclin A–Cdk2 complexes regulate S phase entry and
progression. Two families of Cdk inhibitors regulate the
cyclin–Cdk complexes [2,7,8]. The inhibitor of Cdk4
(INK4) family members, which include p15INK4B, p16INK4A,
p18INK4C, and p19INK4D, specifically bind Cdk4 and Cdk6
and inhibit cyclin D association. Members of the kinase
inhibitor protein (KIP) family, p21CIP1, p27Kip1, and p57Kip2,
bind and inhibit cyclin E-bound and cyclin A-bound Cdk2.
Although p21 and p27 are major inhibitors of Cdk2, they
also promote G1 progression by facilitating the assembly
of cyclin D–Cdk4 and cyclin D–Cdk6 complexes [9,10]. In
early G1, p27 assembles cyclin D1–Cdks in the cyto-

plasm and this facilitates the import of cyclin D1 com-
plexes into the nucleus.

Regulation of the cell cycle inhibitor p27KIP1

p27 was discovered in cells arrested by transforming
growth factor-β (TGF-β), by contact inhibition, and by lovas-
tatin [11–14]. p27 acts in G0 and early G1 to inhibit cyclin
E–Cdk2. Assembly of cyclin D–Cdk complexes by p27 is
activated in early G1 and involves changes in p27 phospho-
rylation [15]. Mitogenic growth factor signaling mediates a
decrease in p27 protein levels. Whereas p27 mRNA con-
centrations are constant throughout the cell cycle, p27 con-
centrations are the highest in quiescent cells, decrease
during G1 phase and are minimal in S phase [16]. p27
translation is maximal in quiescence and falls rapidly after
exit from G0 [16,17]. p27 is also importantly regulated by
proteolysis, with the p27 t1/2 decreasing fivefold to eightfold
with passage from G0 to S phase [18,19].

Transcriptional regulation
Although p27 regulation occurs predominantly at the
levels of translation and protein stability, transcriptional
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regulation of p27 has been demonstrated. Normal quies-
cent T cells express high concentrations of p27 mRNA
and protein, both of which decline rapidly after T cell acti-
vation [20]. Regulation of p27 mRNA concentrations also
occurs after androgen depletion in breast cancer cells
[21], in normal prostate tissue, and benign prostatic
hyperplasia [22]. In melanoma cells, interleukin-6 signaling
activates signal transduction and activators of transcrip-
tion-3 (STAT3) and increases p27 mRNA [23]. The p27
promoter contains binding sites for several transcription
factors including Sp1, cAMP-response element, Myb,
NFκB, and acute lymphocytic leukaemia-1 fused gene
from chromosome X (AFX). AFX is a forkhead transcription
factor recently shown to activate p27 transcription [24].
Phosphorylation of AFX by protein kinase B (PKB) inacti-
vates this transcription factor and might thereby decrease
p27 transcription. The relevance of transcriptional regula-
tion of p27 to human cancers is unclear because most
reduction of p27 in human cancers is thought to occur
through proteolysis (see below and [7]).

Regulation of p27 localization
p27 localization is also cell cycle regulated: p27 is nuclear
in G0 and early G1 and appears transiently in the cyto-
plasm at the G1/S transition [25]. The nuclear import of
p27 depends on a bipartite nuclear localization signal in
the carboxy-terminal region of the protein [26]. Interaction
of p27 with the nuclear pore protein NPAP60 [27,28] is
important in p27 nuclear import and might also regulate
p27 export [27]. In response to mitogenic stimulation, at
least part of the nuclear p27 pool undergoes nuclear
export dependent on phosphorylation at serine 10
[25,29,30]. Human kinase interacting stathmin (hKis) can
phosphorylate p27 at serine 10 [29]. p27 is bound to the
exportin CRM1 in early G1, and binding of CRM1 to p27
increases with G1 progression [25]. p27 contains a
nuclear export signal (NES) whose mutation decreases
p27–CRM1 binding, nuclear export, and p27 degradation
[25]. Active CRM1–RanGTP-mediated nuclear export of
p27 is linked to cytoplasmic proteolysis of p27 in early G1.

Proteolytic degradation of p27
p27 proteolysis is regulated by at least two distinct mech-
anisms. In early G1, mitogens seem to activate an export-
linked degradation mechanism that is followed in late G1
and S phases by a cyclin E–Cdk2-dependent degradation
of p27. The late G1 and early S phase of p27 proteolysis
is regulated by its phosphorylation at threonine 187
(T187) by cyclin E–Cdk2 [18,31–33]. Phosphorylation of
p27 at T187 promotes the interaction of p27 with Skp2,
the F box component of the SCFSkp2 (Skp1, Cul1, F-box
protein) ubiquitin ligase. Once p27 phosphorylated on
T187 is recognized by its SCF-type E3 ligase, composed
of Skp1, Cul1, the F-box protein, Skp2 and Roc1, and the
Cks1 cofactor [34–39], this complex then mediates the
subsequent degradation of p27 by the 26S proteasome.

Recent data from T187A knock-in and Skp2–/– mice also
suggest that p27 proteolysis in early G1 is independent of
T187 phosphorylation [19,40]. In early G1, growth factors
stimulate p27 proteolysis in a manner independent of
T187 phosphorylation and possibly also of Skp2 [19,40].
This initial mitogen-stimulated p27 degradation in early G1
might be linked to p27 export [25] and would allow an
incremental activation of cyclin E–Cdk2 that is then fol-
lowed by rapid, progressive Cdk2 activation as cyclin
E–Cdk2 mediates T187 phosphorylation-dependent p27
degradation in late G1 and S phase.

Deregulation of p27 in human cancers
The human p27KIP1 gene resides on chromosome 12 p13.
Loss of a single allele of p27KIP1 confers increased sus-
ceptibility to chemical carcinogenesis in mice [41] and is
not uncommon in a number of human malignancies
[42–44]. However, p27KIP1 does not follow Knudson’s
classic ‘two-hit hypothesis’ of tumor suppression: in
tumors that show reduction to hemizygosity at the p27KIP1

locus, silencing of the remaining allele is rare [42–44].
p27 is rarely mutated in human cancers. However,
decreased concentrations of p27 protein might be impli-
cated in human tumorigenesis or oncogenic progression
in many human malignancies. Whereas p27 protein is
expressed at high concentrations in all normal epithelia
examined, including breast, prostate, ovary, skin, oral
epithelium, and esophageal, gastric, colonic, and pul-
monary mucosa, loss of p27 protein is frequently seen in
carcinomas involving all these tissues [7]. Indeed,
decreased concentrations of p27 protein have been
observed in up to 60% of human carcinomas [7,45]. Multi-
variate analyses of p27 along with other known clinical
and pathologic prognostic markers have shown that loss
of p27 protein has independent prognostic potential in
primary carcinoma of the breast, lung, colon, prostate, and
many other malignancies including lymphomas, glioma,
and melanoma [46–57] (reviewed in [7,45]). Although
p27 function is rarely disrupted at the genetic level, it is
frequently diminished in human cancers because of accel-
erated proteolysis, sequestration by other proteins, and
cytoplasmic mislocalization. The next sections elaborate
how the normal mechanisms of p27 regulation become
disrupted in human cancers.

Accelerated p27 proteolysis
Most, if not all, cases of decreased p27 concentrations in
human cancers are a reflection of accelerated proteolysis
[7,45]. Lysates from a number of different tumor types
show increased proteolytic activity toward p27
[47,52,58–60]. As noted above, a major mechanism of
p27 proteolysis involves its recognition by SKP2, a com-
ponent of the SCFSkp2 ubiquitin ligase. An association
between decreased p27 protein and increased Skp2 con-
centrations has been observed in a subset of colorectal,
prostatic, small cell lung, gastric, and oral carcinomas, and
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in lymphomas [60–65]. In oral squamous carcinoma,
tumors with increased Skp2 always showed decreased
p27 immunostaining. However, most oral cancers with low
p27 did not show increased Skp2. Thus, causes other
than increased Skp2 mediate p27 loss in a majority of
cases [66]. Increased Skp2 might account for p27 loss in
a minority of breast and prostate cancers with low p27
(J Slingerland and L Kapusta, unpublished work).

Loss of p27 function can be mediated by oncogenic acti-
vation of multiple receptor tyrosine kinase and signal trans-
duction pathways. These are reviewed below.

p27 sequestration by binding proteins
In human cancers, p27 can also be sequestered by asso-
ciated proteins that reduce its ability to bind and inhibit
cyclin E–Cdk2. Some human lymphomas show the
sequestration of p27 into active cyclin D1–Cdk4 com-
plexes, potentially decreasing the p27 available for cyclin
E–Cdk2 inhibition [67]. Overexpression of c-Myc can
induce one or more heat-labile proteins that bind p27 and
impair its binding to cyclin E–Cdk2 [68]. This effect is
independent of p27 degradation and, in at least some cell
types, is not due to increased cyclin D1 or D2. In other
cancers, oncogenic activation of c-myc leads to p27
sequestration through the upregulation of cyclin D1 and
D2 concentrations [69,70]. c-Myc also represses the
expression of several negative cell cycle regulators includ-
ing p15, p21, and p27 (reviewed in [71]). c-Myc activation
can arise through oncogenic mitogen signal transduction.
Cyclin D1 and c-Myc expression are induced early in G1
after growth factor stimulation through the mitogen-acti-
vated protein kinase (MAPK) pathway [72–74]. Further-
more, activation of the phosphoinositide 3-kinase
(PI3K)/PKB pathway increases the translation of c-Myc
[50] and cyclin D1, and stabilizes D-type cyclins [75–77].

Cytoplasmic mislocalization of p27
Tumors that retain abundant p27 often show p27 mislocal-
ization in the cytoplasm away from nuclear cyclin–Cdk
targets [7]. Cytoplasmic localization would prevent p27
from binding and inhibiting nuclear cyclin–Cdk targets [78].
Cytoplasmic p27 is observed in certain lymphomas, in up to
55% of ovarian cancers, 80% of thyroid tumors, and 35%
of colon cancers, with decreased p27 concentrations in the
more poorly differentiated, advanced forms of these neo-
plasms [50,79–81]. Localization of p27 in the cytoplasm
has also been described in 48% of esophageal dysplasias
and 26% of Barrett’s associated adenocarcinoma, and is
associated in the latter with reduced survival [52].

We and others recently reported cytoplasmic mislocaliza-
tion of p27 in up to 40% of primary human breast cancers
[78,82–84]. These three studies showed that PKB phos-
phorylates p27 at T157 in its nuclear localization signal
region. Cells with genetic loss of PTEN (the gene encoding

PTEN [phosphatase and tensin homolog deleted on chro-
mosome 10]) or amplification of HER2/neu showed cyto-
plasmic mislocalization of p27 that was reversed by the
PI3K inhibitor LY294002. Liang and colleagues [84]
showed that p27 phosphorylation by PKB impaired the
nuclear import of p27 in vitro. All three studies showed a
consistent association between PKB activation and cyto-
plasmic p27 staining in primary breast cancers. Moreover,
cytoplasmic p27, but not nuclear p27, isolated from primary
cancers reacted with an anti-p27 antibody specific for
phosphorylation on T157 [83]. Cytoplasmic p27 was corre-
lated with tumor dedifferentiation (increased tumor grade)
and poor prognosis [84]. Thus, oncogenic activation of the
PI3K/PKB pathway and the PKB-dependent phosphoryla-
tion of p27 is probably one of the mechanisms underlying
the cytoplasmic mislocalization of p27 in human cancers.

Although PKB-dependent T157 phosphorylation affected
the subcellular localization of p27, transfection of constitu-
tive PKB did not affect p27 protein concentrations in
normal human mammary epithelial cells [84]. Activation of
PKB and mislocalization of p27 were not statistically asso-
ciated with decreased p27 concentrations in primary
breast tumors. Thus, the increased p27 proteolysis
observed after PI3K activation in many cell types might
involve PI3K-dependent effectors other than PKB.

It is worth noting that cytoplasmic sequestration of p27
might not be equivalent to a loss of function of these Cdk
inhibitors. Cytoplasmic p27 probably does not exist as a
monomer. Cytoplasmic p27 might have functions other
than Cdk inhibition; for example p27 might alter Ras func-
tion through the inactivation of GRB2 [85,86]. The phos-
phorylation event or events that alter the subcellular
localization of p27 might also change KIP function.

Regulation of p27 proteolysis by receptor
tyrosine kinase and Ras signaling
Ras effector pathways have key roles in p27 proteolysis
[87–89]. The isolation of p27 and cloning of the p27 gene
by the Reed group was facilitated by p27 upregulation by
lovastatin, a potent inhibitor of Ras [12]. In fibroblasts,
dominant-negative ras transfection increased p27 concen-
trations and caused G1 arrest; moreover, Ras-mediated
activation of the MAPK-stimulated p27 proteolysis
[87,88]. MAPK kinase (MEK1) transfection increased p27
degradation, and a MEK1 inhibitor, PD98059, abolished
Ras effects on p27 [88,90]. Although p27 contains
several MAPK consensus sites and MAPK can phosphory-
late p27 in vitro and reduce its ability to bind Cdk2
[88,91], it is not clear that p27 is a direct target of MAPK
in vivo [88]. Constitutive Ras activation in epithelial cells
can mislocalize p27 to the cytoplasm and increase p27
binding to Cdk6 [92]. This might reflect Ras-dependent
PI3K/PKB activation. In some cell types, Ras-stimulated
RhoA activation may mediate p27 proteolysis [72,93,94].

Available online http://breast-cancer-research.com/content/6/1/13
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Several groups have shown that signaling dependent on
Her2/ErbB2 and epidermal growth factor receptor can
activate p27 proteolysis in a MEK/MAPK-dependent
manner [95–97]. This is potentially of relevance to the
accelerated p27 proteolysis observed in human breast
and prostate cancers. Her2 overpression is observed in
up to 30% of primary breast and other human cancers and
is associated with increased tumor invasiveness and a
poor patient outcome [98–100]. Primary breast cancers
overexpressing Her2 exhibit decreased p27 concentra-
tions [101,102]. Her2/ErbB2 overexpression can also
upregulate c-Myc and D-type cyclins, and this might facili-
tate p27 sequestration in cyclin D–Cdk complexes and an
associated increase in cyclinE–Cdk2 activity [103].

Constitutive expression of Bcr–Abl leads to the activation
of p27 proteolysis and prevents the upregulation of p27
protein by TGF-β and by serum and mitogen deprivation
[104]. Bcr–Abl is constitutively active in chronic myeloid
leukemia cells and constitutively activates several key reg-
ulators of survival, proliferation, and adhesion including
Ras, Src, PI3K, and MAPK kinases [105–108].

Activation of p27 proteolysis through the
PI3K pathway
In addition to effects of PI3K/PKB on p27 localization
noted above, several studies suggest that the PI3K
pathway also regulates p27 protein stability. Activation of
the PI3K pathway decreases p27 concentrations, and
PI3K inhibition by LY294002, by kinase-dead PKB/Akt, or
by the overexpression of PTEN, a lipid phosphatase that
opposes PI3K activation, have all been shown to increase
p27 concentrations in certain cell types [109–111]. PI3K
activation increased p27 proteolysis in hematopoietic cells
expressing BCR/Abl, in prostate cancer cells, and in
PTEN-null embryonic stem cells [112–114]. PTEN might
inhibit p27 proteolysis through the repression of SKP2, the
F-box component of the SCFSkp2 ubiquitin ligase complex
that mediates cyclin E–Cdk2-dependent p27 degradation.
p27 concentrations were decreased and Skp2 was
increased in PTEN-deficient mouse embryonic stem cells
[115]. Restoring PTEN expression in a PTEN-deficient line
and PI3K inhibition by LY294002 both decreased SKP2
gene expression. However, PTEN mediates arrest in G0,
and thus the effect of PTEN on Skp2 concentrations in
these studies might also reflect the destabilization of Skp2
protein associated with G1 arrest. Skp2 stability is depen-
dent on the cell cycle, and its proteolysis is maximal in qui-
escent cells [116]. In human prostate, Skp2 protein
concentrations are inversely correlated with p27 and the
PTEN tumor suppressor protein [117].

p27 stability may also be linked to the PI3K/PKB pathway
through the PKB-dependent phosphorylation of tuberin, a
tumor suppresor encoded by the tuberous sclerosis
complex 2 (TSC2) gene. The TSC2 gene is mutated in up

to 50% of tuberous sclerosis patients. Tuberous slerosis
family members develop benign hyperproliferative tumors
with high frequency. TSC2 mutations are also seen in up to
30% of high-grade astrogliomas and in human lung cancers
(reviewed in [118,119]). Loss of functional TSC2 or tuberin
protein is associated with increased cyclin E–Cdk2, p27
mislocalization and decreased p27 due to  p27 proteolysis
that is independent of phosphorylation at T187 [120]. PKB
has been recently shown to phosphorylate tuberin
(reviewed in [118,119]) and this relieves its inhibitory action
on mTOR. Inhibition of mTOR by rapamycin is known to sta-
bilize p27 [121,122]. Thus, the increased stability of p27
after inhibition of PI3K might result in part from inhibition of
PKB, activation of TSC2 and subsequent inhibition of
mTOR. It will be of interest to determine how downstream
effectors of mTOR might regulate p27 proteolysis.

Although PI3K activation might decrease SKP2 transcrip-
tion, and through PKB inactivate TSC2 and activate
mTOR, the effects of this pathway on p27 stability are
clearly dependent on cell type [84]. As noted earlier, acti-
vation of PKB alone might not suffice to trigger p27 degra-
dation in some tumors. High PKB activity was not
statistically associated with decreased p27 protein con-
centrations in primary breast cancers [84].

Activation of the PI3K effector PKB/Akt has been shown
to phosphorylate p27 and to lead to its cytoplasmic
sequestration in part by impaired nuclear import
[78,82–84]. Cytoplasmic sequestration would tend to
impair the cyclin E–Cdk2-dependent phase of p27 prote-
olysis because cyclin E–Cdk2 is nuclear. Moreover,
because nuclear p27 export in early G1 involves p27
phosphorylation, the cytoplasmic p27 that accumulates in
PKB-activated cells might not be appropriately condi-
tioned for export-linked proteolysis. Cytoplasmic p27 in
these tumors might be relatively stable. Thus, the net
effect of the oncogenic activation of the PI3K pathway on
p27 stability might be complex in vivo, and the relative
importance of PI3K effector pathways in certain cell types
and concomitant changes in other signaling pathways
might lead to important differences, dependent on cell
type and tumor, in p27 regulation by the PI3K pathway.

The prognostic role of p27 in human breast
cancer
Several groups have reported p27 studies in primary
breast cancers. The first studies that identified p27 as an
independent prognostic indicator involved three different
breast cancer populations [47,123,124]. Tan and col-
leagues [47] studied the prognostic significance of p27 in
202 patients with breast cancers less than 1 cm in size. A
low concentration of p27 protein, defined as less than
50% of tumor nuclei staining positively by immunohisto-
chemistry, was associated with a 3.4-fold increased risk of
death (P = 0.0306) on multivariate analysis.

Breast Cancer Research    Vol 6 No 1 Arnaout and Slingerland
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In a study of 168 unselected breast cancers, Catzavelos
and colleagues [123] found that low p27 (less than 50%
of tumor nuclei staining positive) was a strong indepen-
dent predictor of reduced disease-free survival with a
2.7-fold increased risk of disease relapse (P = 0.017).
Breast tumors with low p27 were shown to have high
cyclinE/Cdk2 activity [123,125].

Porter and colleagues [124] assayed p27 in the primary
breast cancers of 278 women under the age of 45 years.
Decreased p27 concentration was a significant indepen-
dent predictor of poor overall survival (relative risk 2.7;
P = 0.01). Patients whose breast cancers showed both
low p27 and elevated cyclin E proteins had the highest
mortality, but both of these factors were significant on mul-
tivariate analysis. An inverse correlation between cyclin E
and p27 concentrations has been observed in breast
cancers [125], whereas increased concentrations of
cyclin D1 were associated with both higher p27 concen-
trations and low tumor grade in another study [46].

A decrease in p27 concentrations might precede tumor
invasion [123,126,127], and invasive lobular carcinoma
seems to show increased p27 staining compared with
invasive ductal carcinoma [128,129]. Two studies have
also found an association between low p27 together with
Her2/neu overexpression and reduced disease-free sur-
vival [101,102].

Several subsequent studies of breast cancer patients
have also shown that the frequent decrease in p27 corre-
lates with poor patient outcome. These studies have con-
firmed the correlation between low p27 and high tumor
grade, negative estrogen receptor status and low cyclin
D1 expression, and some have shown that low p27 is cor-
related with increased Ki67 or a high S-phase fraction
[102,125,130–134]. Whereas several studies confirm the
independent prognostic significance of p27 [46,131,132,
135], others failed to find p27 to be prognostically signifi-
cant on multivariate analysis [102,130,133,136]. The
Gillet study used a different scoring method from most
[130]. A study of 198 breast cancer patients with a
17-year median follow-up concluded that tissue expres-
sion of p27 might be important for predicting 5-year, but
not longer (more than 10-year) breast-cancer-specific sur-
vival [136]. This observation was not supported by our
study in node negative breast cancers (see below).

Although node-negative breast cancers have a better
prognosis than node-positive cancers, up to 30% of node-
negative patients suffer recurrence and death from breast
cancer. It would be of value to define variables other than
traditional histopathologic features (size, lymphovascular
invasion, tumor grade, and estrogen receptor status) to
help define which patients merit aggressive treatment and
who could safely be spared adjuvant chemotherapy. The

Porter study showed that p27 was prognostic in the node-
negative patient group, but this lacked statistical power on
multivariate analysis [124]. Wu and colleagues analyzed
97 patients with node-negative breast cancer. A
decreased p27 concentration (less than 50% of tumor
nuclei positive) was an independent prognostic factor with
relative risks of 5.7 (P = 000.1) and 3.7 (P = 0.049) for
disease-free and overall survival, respectively [132].

In an analysis of 118 Ashkenazi Jewish women with node-
negative disease, a decreased p27 concentration con-
ferred a 10-fold increased risk of disease relapse
(P=0.03) [135]. Paradoxically, Barbareschi and col-
leagues [137] found high p27 concentrations to be prog-
nostically significant in their node-negative subset analysis.
We have recently completed a large study of 1057
prospectively accrued node-negative breast cancer
patients with a median follow-up of 9 years. Decreased
p27 concentration was strongly correlated with estrogen-
receptor-negative status and high grade. With a scoring
cut-off of 25% to define low/high p27 values, low p27 (less
than 25% of tumor cells positive) was an independent
prognostic factor with a relative risk of 1.54 (P=0.02) and
this was durable over the extended median follow-up of
9 years (C Catzavelos and J Slingerland, manuscript in
preparation). It is noteworthy that two prostate cancer
studies have also used the lower threshold of p27 (less
than 25%) to define the worst prognostic group [53,54].

The failure to find p27 to be of prognostic significance in
some of the more recent reports might reflect differences
in tumor fixation, p27 staining and scoring methods, and
the prolonged storage time of the archival tumor blocks
used in these studies. In our attempts to stain p27 in more
than 800 tumors recovered during the 1970s, we needed
to increase antigen retrieval; even with high concentrations
of antibody, tumor staining was variable and unreliable (M
Dowsett, A Alkarain and J Slingerland, unpublished work).
Prolonged storage of tumor blocks and fixation differences
might account for the different results published recently.
For p27 to become part of the panel of prognostic tests
applied in the routine evaluation of breast cancers at diag-
nosis, it will be necessary to establish a uniform methodol-
ogy for tumor processing, staining, and scoring.

As noted above, p27 is detectable in the cytoplasm of up
to 40% of primary breast cancers, and this has been con-
sistently associated with PKB/Akt activation. Cytoplasmic
p27 was correlated with tumor de-differentiation
(increased tumor grade) and poor survival [84]. The pres-
ence of cytoplasmic p27 was not statistically correlated
with low concentrations of nuclear p27 protein. Some
cancers showed both decreased p27 concentrations and
cytoplasmic p27 localization, and these had the lowest
survival rate, whereas those with high p27 concentrations
and nuclear localization fared the best [84]. Thus, inde-

Available online http://breast-cancer-research.com/content/6/1/13
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pendent mechanisms might regulate the cytoplasmic mis-
localization of p27 in some tumors and its accelerated
degradation in others. p27 proteolysis and mislocalization
are regulated by major downstream effectors of receptor
tyrosine kinases, including PKB and MAPK. It will be of
interest to determine the additional pathways that predi-
cate one effect or the other, or, in some tumors, the coex-
istence of both p27 protein loss and cytoplasmic
mislocalization. Taking into account the localization of p27
might be an additional variable that adds to the prognostic
potential of p27 evaluation in breast cancers.

Conclusion
Since its discovery and cloning a decade ago
[11,12,14,138], p27 has proved to be ubiquitously
expressed and a frequent target for deregulation in
cancer. The loss of a single p27 allele is not infrequent in
human cancers. In mice, haploinsufficiency for p27 medi-
ates an increased susceptibility to carcinogens. p27 func-
tion is impaired in a majority of human cancers through
accelerated proteolysis, sequestration by other proteins,
and an imbalance of mechanisms regulating nuclear
import and export. Decreased p27 protein concentration
is associated with cancer cell dedifferentiation and poor
patient outcomes in a majority of breast cancer studies
including node-negative disease. The broad clinical appli-
cation of p27 in the prognostic evaluation of breast cancer
will require the development of a consensus on methods
of tumor fixation staining and scoring. As the growth factor
signaling pathways that regulate p27 in normal cells and
lead to its deregulation in cancers are elucidated, it is to
be hoped that therapeutic avenues for the restoration of
p27 function will emerge.
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