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Abstract: Dissecting the genomic basis of local adaptation is a major goal in evolutionary biology
and conservation science. Rapid changes in the climate pose significant challenges to the survival of
natural populations, and the genomic basis of long-generation plant species is still poorly understood.
Here, we investigated genome-wide climate adaptation in giant sequoia and coast redwood, two
iconic and ecologically important tree species. We used a combination of univariate and multivariate
genotype–environment association methods and a selective sweep analysis using non-overlapping
sliding windows. We identified genomic regions of potential adaptive importance, showing strong
associations to moisture variables and mean annual temperature. Our results found a complex
architecture of climate adaptation in the species, with genomic regions showing signatures of selective
sweeps, polygenic adaptation, or a combination of both, suggesting recent or ongoing climate
adaptation along moisture and temperature gradients in giant sequoia and coast redwood. The
results of this study provide a first step toward identifying genomic regions of adaptive significance
in the species and will provide information to guide management and conservation strategies that
seek to maximize adaptive potential in the face of climate change.

Keywords: selective sweeps; polygenic adaptation; GEA; climate adaptation; Sequoiadendron gigan-
teum; Sequoia sempervirens

1. Introduction

Understanding the genomic architecture of local adaptation is of great biological
interest and paramount to predicting species’ responses to present and future changes in
the climate. Populations’ response to shifts in trait optima because of changes in the climate
will depend on the genetic basis of the trait and the population demography [1]. In traits
controlled by many genes, natural selection will increase the frequency of advantageous al-
leles until the trait matches the new trait optimum [2]. Recent improvements in sequencing
methods and genotyping approaches have allowed the detection of signatures of recent
or ongoing positive selection from their molecular signature on neutral polymorphism in
species genomes [2–4]. While most of this knowledge comes from model and domesticated
species, the genomic architecture of local adaptation in natural populations of long-lived
non-model species remains understudied [5].

Empirical and theoretical studies have suggested the presence of three different modes
in the process of adaptation: hard sweeps, soft sweeps, and polygenic adaptation. In the
classical hitchhiking model [6,7], new mutations spread rapidly to fixation due to natural
selection, reducing genetic variation at neutral linked sites as they spread. These hard
sweeps have received significant attention due to their distinctive signatures in the genome
that are easily identified using genome-wide markers [8]. In this mutation-limited mode
of adaptation, beneficial mutations are thought to be rare and therefore unlikely to be
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present as standing genetic variation. More recent studies have proposed that selective
sweeps arising from selection on standing variation or from recurrent mutation (soft
sweeps) are more common than originally thought [9–11]. Both hard and soft sweeps
reflect only recent or on-going adaptive events since signals such as an excess of rare alleles
(picked up by Tajima’s D), LD and haplotype statistics typically fade quickly (~0.01–0.1 Ne
generations) [11]. In on-going adaptive events, the beneficial allele is still segregating in
the population (partial sweep) until it reaches fixation and becomes a complete sweep [11].
In addition to sweeps at individual loci, relatively minor shifts in the allele frequencies of
large numbers of small-effect loci (polygenic adaptation) can result in the rapid adaptation
of phenotypic traits [12–14]. Selective sweeps and polygenic adaptation have rarely been
studied together except for some theoretical [1,3,15–17] and a few empirical studies [18].

In contrast to genome scans that look for markers with high levels of population
differentiation (Fst), multivariate genome-wide environment association (GEA) methods
are more likely to identify the signals of subtle shifts in allele frequencies in weakly selected
loci characteristic of polygenic adaptation [19–22]. Multivariate methods, which analyze
many loci simultaneously, are better suited since they consider how sets of markers covary
in response to the environment [20]. Constrained ordination procedures, such as principal
component analysis (PCA) and redundancy analysis (RDA), combine the advantages of
both multivariate methods and genotype-environment association procedures to detect
adaptive variation based on genomic data [21,23,24]. Despite the high dimensional nature
of genotype and environment, the latent factor mixed model (LFMM), which is a univariate
genotype-environment association method, is also a frequently used GEA method [25].

Despite rich literature on the presence of local adaptation based on field and common
garden experiments, the genomic basis of adaptation in conifer species lags behind other
plant species. Non-model species attributes, such as long-generation times, large popula-
tion sizes, and highly outcrossing rates, together with large genome sizes (10–30 Gb) have
limited the development of genome-wide studies [26]. Genome-wide environmental asso-
ciation studies have been mostly based on pre-selected candidate genes in conifers [27–29],
with just a few exceptions [19,30–33]. In all recent genome-wide studies in conifer species,
adaptation to the environment occurred through many genes of small effect, characteristic
of polygenic adaptation.

Giant sequoia (Sequoiadendron giganteum) and coast redwood (Sequoia sempervirens)
are ancient species the fossil records of which date back to the Jurassic period, a time
period in which they were more widely distributed across the northern hemisphere [34,35].
These iconic species are also some of the longest-lived trees on Earth, with records of
3200- and 2200-year-old trees, respectively [36]. Giant sequoia, the most “massive species”
on Earth due to its enormous wood volume, of up to 1000 m3 [37], is a diploid species
with a genome size of 8.125 Gbp [38]. Generally considered as an outcrossing, sexually
reproducing species, giant sequoias can also reproduce vegetatively up to 20 years of age.
Giant sequoias are monoecious, meaning that pollen-producing and seed-bearing cones
are borne of different branches of the same individual and develop serotinous cones, which
require fire to release seeds [39]. The species grows in discrete groves on the western slope
of the Sierra Nevada mountains at 830–2700 m of elevation. The elevational range includes
a highly disjunct range consisting of approximately 75 groves and spanning around 420 km
north to south [39]. Giant sequoias depend on the melting of the accumulated snow pack
from the Sierra mountains and are the most moisture demanding species of the Sierra
Nevada mixed conifer forests [40].

Coast redwood (Sequoia sempervirens) is considered the tallest tree species on Earth,
reaching up to 115 m [41]. It is a hexaploid species with a genome size of 26.5 Gbp [42].
The species is monoecious and reproduces mostly asexually but can infrequently produce
flowers and seeds every 10 or 20 years. It is characterized by a particular red-colored wood
and an endemic narrow natural distribution range [43]. Once extensively distributed along
the Pacific Coast in Oregon and California, populations of coast redwood were severely
affected by intensive logging, leading to a reduction by more than 90% of their original
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natural distribution by the late 19th century [44]. Both coast redwood and giant sequoia
are currently listed as endangered species by the International Union for Conservation
of Nature (IUCN) Red List of Threatened Species [45]. Despite their unique ecological
and economic importance, the genomics of local adaptation in coast redwood and giant
sequoia are insufficiently studied [38,40,46–50]. The objectives of this research were to
dissect the genomic basis of local adaptation to climate in natural populations of giant
sequoia and coast redwood by (i) locating genomic regions showing signals of natural
selection that might provide information about the mode of adaptation, (ii) identifying the
main environmental variables driving adaptation in the species, and (iii) understanding
the main biological functions of genes associated with environmental variation.

2. Materials and Methods
2.1. DNA Extraction, Sequencing, and SNP Calling

Fresh needle tissue was collected from previously established common gardens span-
ning the natural distribution of the species (Figure 1). Coast redwood was collected from
the hedge orchard growing in Russell Reserve (UC Field Station, Contra Costa County, CA,
USA), and giant sequoia was collected from the Foresthill Divide Seed Orchard (Foresthill,
CA, USA). A selected ramet was collected from each of the surviving 92 coast redwood
(SESE) and 90 giant sequoia (SEGI) genets. In the lab, samples were flash-frozen in liquid
nitrogen, stored in a −80 ◦C freezer for 48 h, and lyophilized. DNA was extracted with
an E–Z 96 Plant DNA kit (Omega Biotek, Norcross, GA, USA). DNA was submitted to
the UC Davis Genome Center for hybridization of baits for targeted sequencing. Exome
capture was used to obtain loci from across the genome, from which SNPs were then
identified and used in subsequent analyses. Exome capture reduces the complexity of large
genomes by sequencing only coding regions and avoiding repeat regions of the genome.
Details of the exome capture design can be found in [51]. The total capture region was
22.078 Mbp in SEGI and 37.529 Mbp in SESE. Libraries were pooled and sequenced on
an Illumina NovaSeq 6000 platform. Sequencing capture raw reads were aligned against
the genome assemblies of coast redwood v2.1 (treegenesdb.org/FTP/Genomes/Sese) and
giant sequoia v2.0 (treegenes.db.org/FTP/Genomes/Segi) using Bowtie2 v2.2.9 [52]. Align-
ments were sorted and later processed in parallel using SAMtools v1.3.1 and BEDtools
v2.25.0 and SNPs were called using BCFtools with default parameters [53,54]. Haplotypes
were called using Genome Analysis Toolkit (GATK v.4.1.7.0) HaplotypeCaller and Geno-
typeGVCF [55]. Functional annotations were obtained from the giant sequoia and coast
redwood reference genome annotations (treegenesdb.org) by BLASTP [56] sequence align-
ment against the NCBI non-redundant protein sequences database (nr) using an e-value
< 1 × 10−10. BCFtools was used to merge variant call format (VCF) files of individuals for
further analysis [57].

2.2. Population Structure

The non-model-based principal component analysis (PCA) method was used to quan-
tify the genetic structure in SEGI and SESE. Raw genotyping data containing high lev-
els of missing data were filtered and imputed using TASSEL v.5.2.72 [58] with the fol-
lowing parameters: minor allele frequency (maf) = 0.05 and maximum allele frequency
(max−maf) = 0.9. A minimum count (minimum number of samples in which the site
must have been scored to be included in the filtered data set) of 50 was implemented for
SEGI and 30 for SESE. The imputation was applied using the LD-KNNi method [59] at
TASSEL. The PCA [60] was calculated using TASSEL with a merged VCF file containing 71
individuals of SEGI and 92 individuals of SESE. The ggplot2 R package (R version 4.0.4)
was used for PCA visualization. Furthermore, the Python2.x fastStructure algorithm based
on a variational framework for posterior inference of K clusters was used for population
structure analysis [61]. To run fastStructure, .bed, .bim, and .fam files were generated using
PLINK v.1.9 software with filtering parameters of maf = 0.05 and max−maf = 0.4 for SEGI
and SESE.



Genes 2021, 12, 1826 4 of 17

The minimum count (mac) of 50 was implemented for SEGI and 30 for SESE using
PLINK [62]. The chooseK.py script at fastStructure was used in order to choose the
appropriate number of model components (K) that explain the genetic structure in the
dataset. Models in fastStructure were replicated 10 times, with K values from 1 to 10. The
pophelper R package was performed to visualize the ancestry bar plots generated from
population assignments from the fastStructure results. All R packages were carried out on
R version 4.0.4 at RStudio (https://www.rstudio.com/, accessed on 15 April 2021).

Genes 2021, 12, x FOR PEER REVIEW 4 of 18 
 

 

used for PCA visualization. Furthermore, the Python2.x fastStructure algorithm based on 
a variational framework for posterior inference of K clusters was used for population 
structure analysis [61]. To run fastStructure, .bed, .bim, and .fam files were generated using 
PLINK v.1.9 software with filtering parameters of maf = 0.05 and max−maf = 0.4 for SEGI 
and SESE. 

 
Figure 1. Sampling distribution of coast redwood and giant sequoia. 

The minimum count (mac) of 50 was implemented for SEGI and 30 for SESE using 
PLINK [62]. The chooseK.py script at fastStructure was used in order to choose the appro-
priate number of model components (K) that explain the genetic structure in the dataset. 
Models in fastStructure were replicated 10 times, with K values from 1 to 10. The 
pophelper R package was performed to visualize the ancestry bar plots generated from 
population assignments from the fastStructure results. All R packages were carried out on 
R version 4.0.4 at RStudio (https://www.rstudio.com/, accessed on 15 April 2021). 

2.3. Genome-Wide Patterns of Diversity and Differentiation 
Patterns of nucleotide diversity (pi) were estimated using non-overlapping sliding 

windows with a step of 1000 (window-pi-step option) and a window size of 10 kbp (win-
dow-pi) in VCFtools [57]. Levels of genetic differentiation among populations were esti-
mated using the Fixation index (Fst) method from [63], with the -weir-fst-pop option in 
VCFtools [57]. Data were analyzed using sliding windows with a step of 1000 (--fst-win-
dow-step option) and a window size of 10 kbp (--fst-window-size option) in VCFtools. Fst 
was estimated using a priori populations (groves or provenances) based on geographic 
location. Other population genomics statistics estimated with VCFtools included a chi-
squared test of the Hardy–Weinberg equilibrium per SNP (--hardy) and an estimation of 

Figure 1. Sampling distribution of coast redwood and giant sequoia.

2.3. Genome-Wide Patterns of Diversity and Differentiation

Patterns of nucleotide diversity (pi) were estimated using non-overlapping sliding
windows with a step of 1000 (window-pi-step option) and a window size of 10 kbp
(window-pi) in VCFtools [57]. Levels of genetic differentiation among populations were
estimated using the Fixation index (Fst) method from [63], with the -weir-fst-pop option
in VCFtools [57]. Data were analyzed using sliding windows with a step of 1000 (–fst-
window-step option) and a window size of 10 kbp (–fst-window-size option) in VCFtools.
Fst was estimated using a priori populations (groves or provenances) based on geographic
location. Other population genomics statistics estimated with VCFtools included a chi-
squared test of the Hardy–Weinberg equilibrium per SNP (–hardy) and an estimation of
the observed and expected number of homozygous sites and inbreeding coefficient (F) per
individual (–het).

2.4. Signatures of Positive Selection in Outlier Regions

Genomic regions of exceptionally high or low differentiation were tested for evidence
of natural selection in both species using non-overlapping sliding windows of 10 kbp in
VCFtools. Signatures of positive selection were considered significant in genomic regions
meeting three criteria: (1) increased levels of genomic differentiation accounted by Fst

https://www.rstudio.com/
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values that are much larger than the average Fst across windows (after an initial analysis
of overall Fst levels, an Fst > 0.1 was used as threshold), (2) reduced levels of nucleotide
diversity (closer to zero), and (3) negative Tajima’s D values, indicating a skewed allele
frequency spectrum toward rare alleles.

2.5. Linkage Disequilibrium (LD) Analysis

Linkage disequilibrium (LD) was measured based on the concept of the square of the
correlation coefficient between two loci (r2), indicating the ability of the alleles present in a
marker to predict the presence of alleles on a second marker located at a certain genetic
distance measured in base pairs [64]. Squared correlation coefficients (r2) among all pairs
of SNPs within a distance of 500 kbp were calculated using PLINK v.1.9 [62]. To quantify
LD, we used TASSEL-filtered dataset and ran PLINK with the following parameters for
all r2 values using –ld-window 100, –ld-window-kb 500 kb, and r2 threshold 0. Non-
linear regression of pairwise r2 against the physical distance between sites (in base pairs)
was performed to estimate the decay of LD in both SESE and SEGI. The decay line was
calculated by nonlinear regression to the LD plot using the Hill and Weir equation [65].

2.6. Genome-Wide Environmental Association (GEA)

Coordinates (latitude, longitude, and elevation) representing the geographic origin
of the sampled trees were collected for SESE individuals. For SEGI, only the geographic
origin of the groves was known; therefore, the coordinates of the centroid of the grove
polygon were employed as the geographic origin to obtain environmental data from public
databases. Environmental data were obtained from WorldClim 2.0 [66] and ClimateNA [67].
All data were based on the averages for years 1962–1990 and included seasonal and annual
variables. Environmental variables were selected based on previous ecological and physio-
logical studies in the species [48,51]. Correlations among all geographic (latitude, longitude,
and elevation) and environmental variables were tested in R v3.6.1. Associations among
markers and variables were tested using univariate and multivariate methods. Latent
factor mixed model (LFMM) version 2 [68] was used to identify univariate genome-wide
environmental associations. The K values were determined using PCA, and the ridge
approach was used at LFMM [68]. LFMM is computationally efficient and provides statisti-
cally optimal corrections, resulting in improved power and control for false discoveries.
In the analysis, the lfmm ridge function was used in the lfmm method for estimating
latent confounders (or factors). LFMM uses fitted latent factor mixed models to evaluate
associations between a SNP genotype matrix and the environmental variable [69]. In
addition, a redundancy analysis (RDA) multivariate GEA was implemented in the vegan
R package [70]. Since RDA is a regression-based method, it can be subject to problems
when using highly correlated predictors [71]; therefore, an r > 0.7 was used to exclude
highly correlated environmental factors. The function “pairs panels” was used to visualize
correlations among the environmental factors.

2.7. Functional Gene Annotations and Enrichment Analyses

The genomic positions of significant SNPs were used to identify the annotated
genes by scanning the genomic VCF files of SEGI and SESE. Subsequently, the identi-
fied significant SNPs were annotated using annotation files downloaded from TreeGenes
(https://treegenesdb.org/TripalContactProfile/588450, accessed on 1 March 2021). The
annotation was confirmed using some other approaches, such as pfam [72], blastp [56] and
BlastKOALA [73]. Pfam was obtained using the HMMER [74] at default parameters with
e-value 1.0 to search for protein families. To search for similar hits, blastp ran at the expected
threshold 0.05; matrix, BLOSUM 62; and database, non-redundant protein sequence (nr).
BlastKOALA in KEGG [75] was performed for protein pathways and functional annotation.
Identical matching genes were chosen for identifying annotation and KEGG pathways.
Gene ontology (GO) enrichment analyses for biological process, molecular function, and

https://treegenesdb.org/TripalContactProfile/588450
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cellular component were calculated with Blast2GO [76]. False Discovery Rate (FDR) was
used for correction for multiple testing.

3. Results
3.1. Sequence Capture and SNP Datasets

A total of 630,166 and 804,682 SNPs were called for 96 SEGI and 92 SESE individuals,
respectively. From them, 52,987 (9.2%) SNPs from 71 SEGI individuals and 64,358 (8.0%)
SNPs from 92 SESE individuals were retained after filtering using TASSEL. The missing
SNPs statistics before and after imputation for each of the SEGI and SESE individuals are
reported in Supplementary Tables S1 and S2, respectively. The filtered SNP dataset was
retained for further analyses. The imputed dataset was only used for RDA.

3.2. Population Structure

To better understand the genetic structure in the datasets, a principal component
(PCAs) and a fastStructure analyses were used to analyze the SNP data. The optimal
number of inferred ancestral components (K) was estimated by the chooseK.py script.
In giant sequoia, the output showed K = 2 as the model complexity that maximizes
marginal likelihood and K = 8 as the number of model components that better explained
the structure in dataset. In coast redwood, K = 1 maximized marginal likelihood and K = 3
explained the structure in dataset. Therefore, K = 2–8 was selected to describe the genetic
structure of giant sequoia and K = 3 was selected for coast redwood (Figure 2). The PCA
analysis showed consistent results to fastStructure, identifying eight genetic clusters in
giant sequoia and three clusters in coast redwood (Supplementary Figure S1). These results
were consistent with previous studies in the species using more individuals but fewer
molecular markers [46,48].
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3.3. Genome-Wide Patterns of Diversity and Differentiation

Nucleotide diversity (pi) estimated using non-overlapping sliding windows averaged
0.0001842 for SESE and 0.00008 for SEGI. Average Fst was estimated as 0.01127 for SESE
and 0.01593 for SEGI (Supplementary Figure S2). A chi-squared test suggested that 86.5% of
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SNPs are in the Hardy–Weinberg equilibrium in SESE and 46.4% in SEGI. Significant levels
of inbreeding (F) as estimated based on the observed and expected number of homozygous
sites per individual was found in seven SEGI individuals. No evidence of inbreeding was
found in SESE individuals (Supplementary Figure S3).

3.4. Signatures of Positive Selection in Outlier Regions

Negative Tajima’s D values were found in 1390 sliding windows, each containing
between 182 and 411 SNPs, with a total of 3351 SNPs distributed across the 11 chromosomes
of the SEGI genome. From those, 17 genomic regions across all 11 chromosomes (with the
exception of chromosomes 6 and 9), each containing one or more consecutive windows,
showed elevated Fst values, higher than 0.1, and reduced nucleotide diversity, suggesting
signatures of positive selection (Figure 3; Supplementary Table S3). Similarly, 336 sliding
windows containing 614 SNPs across 125 scaffolds in the SESE genome also harbored
negative Tajima’s D values. From these, 29 genomic regions across 21 scaffolds containing
one or more sliding windows showed elevated Fst values and reduced nucleotide diversity
(Supplementary Table S4).
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Figure 3. Selective sweeps in the giant sequoia genome. Patterns of nucleotide diversity (PI) and
differentiation (Fst and Tajima’s D) were evaluated using sliding windows to locate genomic regions
showing signatures of positive selection. Five of the longest outlier genomic regions in chromosomes
1, 3, 5 and 10 are shown.

3.5. Genome-Wide Linkage Disequilibrium (LD)

The pattern of LD decay was quantified based on the filtered 52,987 SNPs genotyped
in 71 individuals of SEGI and 64,358 SNPs genotyped in 92 individuals of SESE. The
LD decay analysis of up to 500 kb of physical distance in SEGI and SESE is shown in
Supplementary Figure S3. In SEGI, LD rapidly decayed between 0 and 100 kb and plateaued
at ~300 kb. In contrast, LD decayed more rapidly in SESE, reaching r2 levels of 0.02 at
<100 k (Supplementary Figure S4).
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3.6. Genome-Wide Environmental Association (GEA)

In SEGI, associations were tested among the SNP markers and six environmental
variables: mean annual precipitation (MAP), mean summer precipitation (MSP), num-
ber of frost-free days (NFFD), frost-free period (FFP), precipitation as snow (PAS), and
climate moisture deficit (CMD). In SESE, tested environmental variables included annual
heat moisture index (AHM), mean annual temperature (MAT), MAP, and CMD. Results
indicated strong correlations among all environmental factors (Supplementary Figure S5),
suggesting the combined effect of groups of individual variables associated with an aspect
of climate. Since RDA requires no missing data, an imputation approach was applied to
the TASSEL-filtered dataset of total 52,987 SNPs for SEGI and 33,578 SNPs for SESE using
the LD-KNNi method [59] at TASSEL. The multivariate RDA method identified significant
associations between 292 SNP markers, matching 51 candidate genes, and six environmen-
tal variables for SEGI (Figure 4; Supplementary Table S5; Supplementary Figure S6). From
these, we observed 68 SNP markers associated with CMD, 11 SNPs with FFP, 83 SNPs with
MAP, 61 SNPs with MSP, 44 SNPs with NFFD, and 26 SNPs with PAS in SEGI. In SESE,
RDA identified 1016 significant SNPs matching 297 candidate genes. From these, 281 SNPs
were associated with AHM, 217 SNPs with CMD, 218 SNPs with MAP, and 300 SNPs
with MAT, as measured by their loadings along the RDA axis (Supplementary Table S6).
These results identified SNPs showing associations with multivariate aspects of California’s
Mediterranean climate.
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Figure 4. Results of multivariate RDA and distribution maps of environmental variables. Data triplots
to highlight SNP loadings on RDA axes 1 and 2 (a) in SESE and (d) in SEGI. Candidate SNPs are
shown as colored points with coding by most highly correlated environmental predictors. SNPs not
identified as candidates (neutral SNPs) are shown in light gray. Blue vectors represent environmental
predictors. Distribution maps of climate moisture deficit (CMD) and annual heat moisture index
(AHM) across collected samples are displayed in (b) and (c), respectively, for SESE. CMD and mean
annual precipitation (MAP) distribution maps are displayed in figures (e) and (f), respectively.

LFMM results using K = 8, with an FDR threshold of 0.10, detected only three candi-
date SNPs in response to the environmental predictors MAP, MSP, NFFD, FFP, PAS and
CMD in giant sequoia. These three candidate SNPs were at chromosome 2 and gene SEGI
30997, which were annotated as AP-2 complex subunit alpha (Supplementary Table S5).
In coast redwood, a total 71 candidate SNPs (eight different genes) were identified in
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response to environmental predictors MAP, MAT, AHM, and CMD. Most of these candi-
date SNPs were located at genes SESE_067476 and SESE_121765 at scaffold 181730 and
were annotated as cytochrome P450 family and respiratory burst oxidase, respectively
(Supplementary Table S6). The genomic positions of significant SNPs are shown in the
Manhattan plots in Supplementary Figure S7. A Venn diagram analyses between GEA
methods identified 10 common SNP markers in both RDA and LFMM methods in SESE
and no common markers in SEGI (Supplementary Table S7; Supplementary Figure S8).

Significant numbers of SNPs were involved in different metabolic and cellular pro-
cesses in giant sequoia and coast redwood. For example, genes SEGI_09259 and SEGI_19226,
associated with CMD environmental variable, were annotated as oxidoreductases and part
of the ribosome biogenesis pathway system, respectively. Genes SEGI_01196, SEGI_17061,
SEGI_02591, and SEGI_22391, associated with MAP, were involved in translation fac-
tors, MAPK signaling pathway, mRNA surveillance, and N-Glycan biosynthesis, respec-
tively. MSP-associated genes were involved in linoleic acid metabolism, valine, leucine
and isoleucine degradation, thermogenesis, and transfer RNA biogenesis. Some NFFD-
associated genes were involved in N-Glycan biosynthesis and EGFR tyrosine kinase
inhibitor resistance pathways (Supplementary Table S8). In SESE, major pathways of
genes associated with annual heat moisture deficit were annotated as involved in glycoly-
sis/gluconeogenesis, nitrogen metabolism, axon regeneration, glycine, serine and threonine
metabolism, plant hormone signal transduction, flavonoid biosynthesis, MAPK signaling
pathway, longevity regulating pathway, fatty acid degradation, and flavone and flavonol
biosynthesis pathways. Genes associated with climate moisture deficit were involved in
the pathways of DNA replication, Ubiquitin system, endocytosis, DNA replication, meiosis,
zeatin biosynthesis, plant–pathogen interaction, circadian rhythm, glycosyltransferases,
glycine, serine and threonine metabolism, MAPK signaling pathway, and monoterpenoid
biosynthesis. Similarly, the major pathways of genes associated with mean annual precip-
itation were oxidoreductases, plant–pathogen interaction, RNA transport, amyotrophic
lateral sclerosis, cyanoamino acid metabolism, propanoate metabolism, biosynthesis of
secondary metabolites, calcium signaling pathway, cGMP-PKG signaling pathway, serine
and threonine metabolism, pentose phosphate pathway, MMDE, C metabolism, and amino
acid and nucleotide sugar metabolism (Supplementary Table S9).

3.7. Gene Enrichment Analyses

Results of Blast2GO suggested significant (p-value < 0.0001) over-representation of gene on-
tology in organic substance, primary, nitrogen compound, cellular, and macromolecule metabolic
processes in giant sequoia (Supplementary Table S10; Supplementary Figures S9 and S10). In
coast redwood, over-represented GO terms included metabolic processes (cellular, primary,
nitrogen compound, organic substance, phosphorous, protein, organonitrogen, cellular aromatic
compound, macromolecule, and phosphate-containing compound); biosynthetic processes (or-
ganic substance, cellular, and cellular macromolecule); binding (heterocyclic compound, small
molecule, carbohydrate derivative, protein, organic cyclic compound, ion, nucleic acid, nucle-
oside phosphate, nucleotide, ribonucleotide, purine, adenyl, phosphorous-containing groups
anion, and ATP); protein modification; and catalytic, oxidoreductase and transferase activities
(Supplementary Table S11; Supplementary Figure S11).

4. Discussion
4.1. Selective Sweeps and Polygenic Adaptation Drive Genomic Architecture in the Species

The results of this study suggest a complex architecture of local adaptation to cli-
mate in coast redwood and giant sequoia shaped by on-going diversifying and stabilizing
natural selection acting on a number of genes associated with moisture-related variables.
Climate adaptation in the species is mostly driven by many genes of small effect widely
distributed across the genomes of coast redwood and giant sequoia, suggesting widespread
genomic changes consistent with polygenic adaptation. While recent genome-wide en-
vironmental association studies in conifer species have consistently reported polygenic
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adaptation [19,30–33], our study suggests a more complex genomic architecture in coast
redwood and giant sequoia, with regions of the genomes undergoing polygenic adaptation,
other regions with sweep-like signatures, and a smaller third group of genomic regions
showing signatures of both polygenic adaptation and selective sweeps.

Despite rich literature on the population genetics and quantitative genetics models
of adaptation, the question of whether selective sweeps can occur at QTLs is still poorly
understood [12,13]. Chevin and Hospital [3], based on a model with one major locus
and infinitely many minor loci, predicted a very low probability of selective sweeps at
QTLs. In contrast, other studies have found selective sweeps using simulations of various
multi-locus models [16,17] and suggested that sweeps are present even for traits under
weak selection where the genomic background explains most of the variation [1]. More
recently, it has been suggested that a sudden change in the environment producing a
change in the phenotype optimum might produce an initial phase in which directional
selection introduces small allele frequency differences that are aligned or opposed to the
shift and a final longer phase maintained by stabilizing selection [77].

In our study on coast redwood, we found that 79% of the scaffolds showing signatures
of selective sweeps were also associated with regions identified by multivariate RDA
(Supplementary Table S4). However, only three of these scaffolds showed signatures of
sweeps and polygenic adaptation in the same regions or close genomic location within
the scaffolds. Additional testing suggested these results are not likely to have happened
by chance (Prob = 0 with 5000 and 10,000 bootstrap). An example of these genes is
the transmembrane protein SESE_103346 gene (scaffold 142490), which showed sweep
signatures, was associated with mean annual temperature and annual heat moisture index,
and was in relatively close proximity to other genes associated with climate moisture
deficit within the same scaffold (Supplementary Table S6). The WAT1-related protein
SESE_031985 gene (scaffold 195192) showed sweep signatures, was associated with mean
annual precipitation and annual heat moisture index, and was in relatively close proximity
to other genes associated with climate moisture deficit and annual heat moisture index
within the same scaffold (Supplementary Table S6). Finally, about 10 non-coding SNPs
were co-located in a genomic region (within scaffold 353338) that showed sweep signatures
and was associated with mean annual temperature.

In all cases, the presence of selective sweeps, based on negative Tajima’s D; increased
Fst; and reduced genetic variance, in which the advantageous alleles have not yet reach
fixation (partial sweeps), suggests the presence of on-going directional or diversifying
natural selection acting on genes involved in key metabolic processes, stress, transport, and
reproduction in both coast redwood and giant sequoia (Supplementary Tables S3 and S4).
This suggests on-going or recent genome-wide changes as a consequence of rapidly chang-
ing climate conditions, which might be beneficial for the survival of the species in the
long term. This adaptive response is most likely aided by standing genetic variation, as
expected in long-generation species [78], despite the low levels of nucleotide diversity
found in both coast redwood and giant sequoia in this study. Considering the very slow
mutation rates in conifers [79], the hard-sweep-like signatures observed in this study could
also have originated from standing variation since hard sweeps might sometimes originate
when a single copy from standing variation is the ancestor of all beneficial alleles [11].
Further evidence on this topic will require the identification of the ancestral alleles using
an outgroup species in genealogical or coalescent history studies [11].

4.2. Patterns of Genomic Diversity and Divergence

Highly outcrossing conifers are expected to have a rapid LD decay. It has been
reported that the r2 decayed to less than 0.20 within approximately 1500 bp based on
19 candidate genes in loblolly pine [80]. In spruces, LD displayed diverse patterns among
different genes or the same genes in different species, declining rapidly to half between
a few base pairs and 2000 bp [81]. In Douglas-fir, LD decayed by greater than 50% over
relatively short segments from r2 = 0.25 to 0.10 within 2000 bp based on 18 genes [82]. In
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this study, we found a rapid decay of LD in both coast redwood and giant sequoia, even
though the former is mostly an asexual species. In spite of the genome-wide low levels of
nucleotide diversity, coast redwood showed an elevated number of heterozygous sites per
individual, based on the inbreeding coefficient F (Supplementary Figure S2). This could
be due to an accumulation of alleles during mitotic divisions in asexual reproduction [83].
Alternatively, a mostly asexual species, such as coast redwood, could take advantage of
non-additive genetic variation in the presence of a heterozygous advantage to achieve an
equilibrium where most individuals are heterozygous [84].

4.3. Moisture-Related Variables Drive Adaptation in the Species

Our study indicates that climate adaptation in the species is driven by many genes
involved in important biological functions related to metabolic processes, stress and sig-
naling pathways, growth, plant defense, gene expression regulation, and other mech-
anisms that strongly depend on variation in moisture-related environmental variables
(Supplementary Tables S8 and S9). In our GEA analysis, we identified 292 SNPs associated
with different environmental variables, such as climate moisture deficit (CMD), mean
annual precipitation (MAP), mean summer precipitation (MSP), number of frost-free days
(NFFD), frost-free period (FFP), and precipitation as snow (PAS) in giant sequoia, and
1016 significant SNPs associated with annual heat moisture index (AHM), mean annual
temperature (MAT), MAP, and CMD in coast redwood (Figure 4), suggesting that the study
of climate adaptation requires the analysis of groups instead of individual environmental
variables. Previous studies have identified modular aspects of climate adaptation in species
such Pseudotsuga menziesii [30], Pinus contorta [85], and Pinus taeda [19]. Other GEA studies
were able to identify sets of loci associated with specific climate variables, such as relative
humidity and vapor water deficit, in Abies alba [86]; maximum temperature and annual
precipitation in Pinus cembra and Pinus mugo [87]; aridity index in Eucalyptus [88]; mean
annual temperature and precipitation in Populus trichocarpa [89]; and mean coldest-month
temperature, extreme minimum temperature over a 30-year period, and mean annual
precipitation in P. trichocarpa [90].

4.4. Functional Annotation of Genes Associated with Environmental Variables

Trees respond to changes in the environment in numerous ways, reflected as physio-
logical, genetic, cellular, and morphological changes [91]. In this study, we identified genes
associated with different environmental factors involved in many important biological
processes, such as secondary metabolism (terpene, steroids, vitamins, mitochondrial, and
chloroplastic), growth and reproductive development, transcription regulation, stress and
signal transduction, disease resistance, and DNA processes.

Plant secondary metabolites play a crucial role in adaptation to climate change [92].
In coast redwood, we found secondary metabolism genes associated with several mois-
ture and temperature variables. For example, SESE_068947 was associated with climate
moisture deficit; SESE_021525, SESE_025033, and SESE_072616 were associated with mean
annual precipitation; and SESE_038374 and SESE_075615 were associated with mean annual
temperature. Other important genes involved in secondary metabolism (terpene biosynthe-
sis) are the members of the cytochrome P450 supergene family [93]. We found cytochrome
P450 genes SEGI_33526 associated with mean summer precipitation, SESE_100967 and
SESE_120015 associated with annual heat moisture index, and SESE_067476 associated
with climate moisture deficit and mean annual precipitation. Members of the cytochrome
P450 (CYP450) superfamily have been shown to play essential roles in regulating secondary
metabolite biosynthesis in Aralia elata (Miq.) [94]. A comprehensive genome-wide compar-
ative expression analysis of CYP93 genes in 60 green plants revealed that CYP93 genes in
dicots and monocots are preferentially expressed in the roots and tend to be induced by
biotic and/or abiotic stresses [95].

Plants employ complex signaling pathways to regulate the expression of genes that
allow resistance to environmental stress [96] The ubiquitin-proteasome system controls
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many cellular processes by degrading specific proteins and regulates key biological pro-
cesses, such as hormonal signaling, growth, embryogenesis, senescence and environmental
stress, and DNA repair [97,98]. Protein degradation starts when an E1 enzyme joins a
Ubiquitin protein in a three-step conjugation cascade (E1 > E2 > E3) that detects specific
ubiquitination signals [99]. Our study identified gene SESE_030219 annotated as E3 ubiq-
uitin ligase, SESE_123278 as ubiquitin fusion degradation, and SESE_004990 as ubiquitin
carboxyl-terminal hydrolase. E3 Ubiquitin-ligases act as central regulators of many key
cellular and physiological processes, including responses to biotic and abiotic stresses in
plant species [100]. Recent functional genomics studies have revealed that about 5% of the
Arabidopsis genome codes for proteins are involved in the ubiquitination pathway [101].

It has been reported that calcium-dependent signaling and mitogen-activating protein
kinases (MAPKs) act during abiotic stress. For instance, in Populus euphratica, calcium-
dependent protein kinase 10 (CPK10) is expressed under drought and frost and activates both
drought- and frost-responsive genes to induce stress tolerance [102]. In Populus trichocarpa,
MAPK cascades are involved in the promotion of antioxidant stress responses and the expres-
sion of drought-related genes [103,104]. In our study, we identified genes SEGI_01196 and
SEGI_29292, which were associated with mean annual precipitation and were involved in
the MAPK signaling pathway. In coast redwood, MAPK signaling pathway genes included
SESE_052680, associated with annual heat moisture index; SESE_027642 and SESE_105796,
associated with climate moisture deficit; SESE_121765, SESE_062974, and SESE_121765, asso-
ciated with mean annual precipitation; and SESE_032016, SESE_035122, and SESE_085808,
associated with mean annual temperature.

Stress-inducible dehydrins belonging to the late-embryogenesis abundant (LEA) pro-
tein family are regulated by transcription factors (TFs) binding to specific responsive
elements, such as ABRE, CRT/DRE/LTRE, MYB, and MYC [105]. Dehydrins are a major
group of versatile proteins that play a role in many oxidative stress responses. For example,
they participate in the protection of membrane integrity [106]. In our study, we identi-
fied genes SESE_085808 (transcription factor, MYC2) and SESE_066024 (MYB-like protein)
(Supplementary Table S9).

The most-known R proteins in plants are the nucleotide-binding (NB) site leucine-rich
repeat (LRR), which play important roles in plant defense responses to various pathogens.
Plant NB-LRR proteins often have, at the N terminus, a Toll/Interleukin-1 receptor (TIR) or
coiled coil (CC) domain. In plants, the functions of two additional TIR-containing protein
families, TIR-NB site (TN) and TIR-unknown/random (TX), have been investigated in
Arabidopsis thaliana, suggesting that TN proteins might act in guard complexes monitoring
pathogen effectors [107–109]. The study of Zhang et al. [110] provided a set of 167 NBS-
LRR genes for Dioscorea rotundata, which may serve as a primary resource for functional
NBS-LRR genes against various pathogens [110]. Xu et al. [111] found that the NBS-LRR
gene (ZmNBS25) in maize enhances disease resistance in rice and Arabidopsis [111]. In our
study, we have identified SESE_037263, SESE_107044, and SESE_026090 as TIR/NBS/LRR
disease resistance proteins that were associated with the annual heat moisture index in
coast redwood.

Finally, we annotated several other genes with transporter functions, such as SESE_111042
(NRT1/PTR_family), SESE_115496 (detoxification), SESE_039889 (sugar transporter),
SESE_090540 (folate-biopterin transporter), SESE_050983 and SESE_026109 (amino acid trans-
porter), SESE_079497 (nucleobase-ascorbate transporter), and SESE_094426 (NPF family trans-
porter) (Supplementary Table S9). The NRT1/PTR family protein NPF7.3/NRT1.5 reported in
Arabidopsis is an indole-3-butyric acid transporter that is involved in root gravitropism [112].
Amino acid transporters have been identified in several model crop species, such as Arabidop-
sis [113], tomato [114], barley [115], maize [116] and rice [117].

5. Conclusions

This study provides a step toward our understanding of the genomics of adaptation to
changing climates in giant sequoia and coast redwood, by identifying genomic regions and
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genes of adaptive significance and by reporting the geographical locations of populations
or groves of importance for conservation.
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component analysis (PCA) results, Figure S2: Levels of Inbreeding (F) in (a) giant sequoia and
(b) coast redwood, Figure S3: Plot of linkage disequilibrium (r2) against physical distance between
SNPs genotyped in 71 individuals of SEGI (a) and 92 individuals of SESE (b), Figure S4: Correlations
among the environmental variables of SEGI (a) and SESE (b), Figure S5: Data triplots to highlight
SNP loadings on RDA axes 1, 3 in SESE (a) and SEGI (b), Figure S6: Manhattan plots of LFMM
analysis for SEGI (a) for SESE (b), Figure S7: Venn diagram showing the number of unique and
shared significant SNP markers between RDA and LFMM GEA analyses in SEGI (a) and SESE (b),
Figure S8: GO enrichment analysis of biological processes in SEGI, Figure S9: GO enrichment analysis
of molecular function in SEGI, Figure S10: GO enrichment analysis of biological process (bp) in SESE,
Figure S11: GO enrichment analysis of molecular function (mf) in SESE, Table S1: SNPs statistics
before and after imputation for giant sequoia individuals, Table S2: SNPs statistics before and after
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Table S7: Significant SNPs shared among GEA methods in coast redwood, Table S8: Functional
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Table S9: Functional annotation of candidate genes associated with different environmental variables
in coast redwood, Table S10: GO enrichment analysis for BP, MF and CC in SEGI, and Table S11: GO
enrichment analysis for BP, MF and CC in SESE.
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