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Abstract: Persistent chronic liver diseases increase the scar formation and extracellular matrix
accumulation that further progress to liver fibrosis and cirrhosis. Nevertheless, there is no antifibrotic
therapy to date. The ketogenic diet is composed of high fat, moderate to low-protein, and very
low carbohydrate content. It is mainly used in epilepsy and Alzheimer’s disease. However, the
effects of the ketogenic diet on liver fibrosis remains unknown. Through ketogenic diet consumption,
-hydroxybutyrate (bHB) and acetoacetate (AcAc) are two ketone bodies that are mainly produced in
the liver. It is reported that bHB and AcAc treatment decreases cancer cell proliferation and promotes
apoptosis. However, the influence of bHB and AcAc in hepatic stellate cell (HSC) activation and
liver fibrosis are still unclear. Therefore, this study aimed to investigate the effect of the ketogenic
diet and ketone bodies in affecting liver fibrosis progression. Our study revealed that feeding a
high-fat ketogenic diet increased cholesterol accumulation in the liver, which further enhanced the
carbon tetrachloride (CCly)- and thioacetamide (TAA)-induced liver fibrosis. In addition, more severe
liver inflammation and the loss of hepatic antioxidant and detoxification ability were also found in
ketogenic diet-fed fibrotic mouse groups. However, the treatment with ketone bodies (bHB and AcAc)
did not suppress transforming growth factor-3 (TGF-f)-induced HSC activation, platelet-derived
growth factor (PDGF)-BB-triggered proliferation, and the severity of CCly-induced liver fibrosis
in mice. In conclusion, our study demonstrated that feeding a high-fat ketogenic diet may trigger
severe steatohepatitis and thereby promote liver fibrosis progression. Since a different ketogenic diet
composition may exert different metabolic effects, more evidence is necessary to clarify the effects of
a ketogenic diet on disease treatment.

Keywords: high-fat ketogenic diet; liver fibrosis; B-hydroxybutyrate; acetoacetate; hepatic stel-
late cells

1. Introduction

Liver fibrosis is caused by a protracted wound healing process that ultimately results
in liver failure [1]. Chronic liver diseases (caused by the hepatitis virus infection, alcohol
abuse, non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH),
etc.) can progress to advanced fibrosis [2]. The terminal stage of progressive liver fibrosis is
cirrhosis and it has a 1-7% risk of developing primary hepatocellular carcinoma yearly [1].
It is reported that cirrhosis affects about 1-2% of the global population and leads to more
than 1 million deaths annually worldwide [3]. However, no antifibrotic therapy has been
approved to date.

Hepatic stellate cells (HSCs) are considered as a central driver of liver fibrosis [4].
HSCs maintain a non-proliferative quiescent phenotype in the normal liver. While under
liver injury, HSCs become activated and transdifferentiated from vitamin-A-storing cells

Int. ]. Mol. Sci. 2021, 22, 2934. https:/ /doi.org/10.3390/1jms22062934

https:/ /www.mdpi.com/journal/ijms


https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-9836-1503
https://doi.org/10.3390/ijms22062934
https://doi.org/10.3390/ijms22062934
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22062934
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22062934?type=check_update&version=3

Int. J. Mol. Sci. 2021, 22,2934

20f 15

to myofibroblasts [5]. The activated HSCs are characterized by enhanced extracellular
matrix (ECM) production and are proliferative, chemotactic, contractile, and inflamma-
tory [5]. Previous studies have proposed several mechanisms that regulate HSC activation
including fibrogenic and proliferative cytokines, HSC-ECM interactions, and the hedgehog
pathway [4]. Especially, transforming growth factor-f3 (TGF-3) and platelet-derived growth
factor (PDGF) are generally considered the most important cytokines in regulating HSC
activation [4]. TGF-f is a fibrogenic cytokine that induces downstream SMAD protein
phosphorylation and promotes o-smooth muscle actin (x-SMA) and collagen production
by activated HSCs [6,7]. PDGF is a chemoattractant that drives HSC proliferation and
migration via MAPK and AKT pathway activation [8]. Therefore, targeting regulatory
mechanisms will provide advantages in developing antifibrotic strategies.

Currently, the ketogenic diet has emerged as a potential therapy for different diseases.
The ketogenic diet is composed of high fat, moderate to low-protein, and very low car-
bohydrate content [9]. It is reported that ketogenic diets are highly appreciated in the
therapy of epileptic seizures and reduces 50% of the frequency of seizures after using it
for 3 months [10]. In liver disease, the ketogenic diet ameliorated NAFLD progression by
promoting weight loss and decreasing the amount of triglyceride in the liver [11]. Our lab
previously reported that a ketogenic diet significantly inhibited liver cancer cell growth in
mice [12,13]. Conversely, it is also reported that the ketogenic diet aggravates neurodegen-
eration and mitochondrial deterioration in a transgenic mouse model [14]. However, the
influence of the ketogenic diet on liver fibrosis is still unknown.

While consuming a ketogenic diet, the increased fat and limited carbohydrate metabolism
lead to increased ketone body production in the body, which is also called physiologic
ketosis [9]. Notably, the production of ketone bodies from fatty acids primarily occurs in
the liver and is further transported to the extrahepatic tissues [15]. The three endogenous
ketone bodies include p-hydroxybutyrate (bHB), acetoacetate (AcAc), and acetone [15]. In
particular, bHB and AcAc are the two predominant ketone bodies in the human body [16].
It is reported that treatment with bHB inhibited lipopolysaccharide-induced inflammatory
genes expression in murine microglial BV-2 cells [17]. Besides, previous studies indicated
that both bHB and AcAc treatment decreased cell growth and increased cell apoptosis in
pancreatic cancer cells [18]. However, the role of ketone bodies in affecting HSC activation
and liver fibrosis remains unknown. Therefore, the aim of this study was to investigate the
effect of the ketogenic diet and ketone bodies in affecting liver fibrosis progression.

2. Results
2.1. Ketogenic Diet Enhanced Carbon Tetrachloride-Induced Liver Fibrosis

To define the role of the ketogenic diet in affecting liver fibrosis progression, we first
used the carbon tetrachloride (CCly)-induced liver fibrosis mouse model in our experiment
(Figure 1A). The results demonstrated that the ketogenic diet-fed fibrotic mouse group had
markedly increased serum alanine aminotransferase (ALT) levels compared with the CCly-
alone group (Figure 1B). Furthermore, we examined the protein and mRNA expression
levels of fibrotic markers. In Figure 1C, we show that mice fed with a ketogenic diet
significantly increased CCly-induced x-SMA expression. The mRNA expression levels of
«-SMA, collagen type 1 alpha 2 (Colla2), TGF-3, and Desmin were also increased in the
ketogenic diet-fed fibrotic mouse group compared with the CCly-alone group (Figure 1D).
Besides, the results from hematoxylin and eosin (H&E) staining indicated that ketogenic
diet supplementation enhanced CCly-induced liver damage (Figure 1E). The Sirius red
staining and Masson’s trichrome staining were also performed to evaluate the collagen
deposition in the liver from four groups. We showed that the collagen deposition was
markedly increased in the liver from the ketogenic diet-fed fibrotic mouse group (Figure
1E). Notably, supplementation with the ketogenic diet alone did not induce liver fibrosis or
cause any liver damage.
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Figure 1. Ketogenic diet enhanced the severity of carbon tetrachloride (CCly)-induced liver fibrosis. (A) Study design of the
in vivo experiment. (B) Serum samples were collected at the end of the experiment, and the serum alanine aminotransferase
(ALT) was assessed. (C) Representative results from Western blot analyses of x-SMA expression and (D) qPCR analyses
of x-SMA, Colla2, transforming growth factor-p (TGF-f3), and Desmin gene expression. (E) Representative hematoxylin
and eosin (H&E), Sirius red, and Masson’s trichrome staining images of liver tissues. Scale bars: 0.1 mm. **, p < 0.01;
***,p <0.001 vs. white bar. #, p < 0.05; ##, p < 0.01 vs. black bar. N = 5 in each group. Data are shown as means + SEM.

2.2. Ketogenic Diet Increased the Severity of Thioacetamide-Induced Liver Fibrosis

To confirm our findings, we used thioacetamide (TAA) to set up the second fibrotic
mouse model (Figure 2A). In Figure 2B, we show that the ketogenic diet-supplemented
fibrotic mouse group had markedly increased serum ALT levels compared with the TAA-
alone group. Besides, mice fed with a ketogenic diet significantly increased TAA-induced
protein and mRNA expression levels of fibrotic markers, including «-SMA, Colla2, TGF-§3,
and Desmin (Figure 2C,D). Moreover, the results of histologic examination revealed that the
ketogenic diet significantly increased TAA-induced liver damage and collagen deposition
(Figure 2E). These data demonstrate that the ketogenic diet increased the severity of both
CCly- and TAA-induced liver fibrosis.
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Figure 2. Ketogenic diet enhanced the severity of thioacetamide (TAA)-induced liver fibrosis. (A) Study design of the
in vivo experiment. (B) Serum samples were collected at the end of the experiment, and the serum ALT was assessed.
(C) Representative results from Western blot analyses of x-SMA expression and (D) gPCR analyses of x-SMA, Colla2,
TGEF-, and Desmin gene expression. (E) Representative H&E, Sirius red, and Masson’s trichrome staining images of liver
tissues. Scale bars: 0.1 mm. *, p < 0.05; **, p < 0.01; ***, p < 0.001 vs. white bar. #, p < 0.05; ##, p < 0.01 vs. black bar. N =5 in
each group. Data are shown as means + SEM.

2.3. Treatment with bHB Did Not Influence TGF-B-Induced HSC Cell Activation

To test whether the level of ketone bodies is a major determinant of enhancing the
severity of liver fibrosis, we first evaluated the effect of bHB on HSC activation. We found
that treatment with bHB increased the TGF-f3-induced a-SMA expression in LX2 cells, while
there was no significant effect in HSC-T6 cells (Figure 3A). Besides, the mRNA expression
level of x-SMA was not changed after treatment with bHB in both cells (Figure 3B). The
mRNA expression levels of Colla2 were similar after treatment with 5 mM of bHB in both
cells but slightly increased after treatment with 10 mM of bHB in LX2 cells (Figure 3B).
We also evaluated the TGF-B-induced phosphorylation of SMAD protein. The results
showed that after treatment with 5 or 10 mM of bHB, the protein expression level of
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phosphor-SMAD were not significant changed in both LX2 and HSC-T6 cells (Figure 3C).
Taken together, these results suggest that bHB is not able to affect TGF-f3-induced HSC
cell activation, which means that bHB is not the key factor for the effect of increasing the
severity of liver fibrosis.
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Figure 3. Effects of 3-hydroxybutyrate (bHB) on TGF-f1-induced LX2 and HSC-T6 cell activation. (A,B) LX2 and HSC-T6
cells were treated with 10 ng/mL TGF-$ and 0, 5, or 10 mM of bHB for 24 h. Western blot and gPCR were used to evaluate
the protein and mRNA expression of a-SMA and Colla2. (C) LX2 and HSC-T6 cells were treated with 0, 5, or 10 mM of bHB
for 24 h and then subjected to 10 ng/mL TGF-f for the indicated time periods, and the lysates were analyzed by Western

blot and quantification to detect SMAD protein phosphorylation. *, p < 0.05; **, p < 0.01 vs. relative control. #, p < 0.05 vs.

black bar. Data are shown as means =+ SD.

2.4. AcAc Treatment Shows No Effect on TGF-B-Induced HSC Cell Activation

Since AcAc is another important type of ketone body, we next evaluated the effect of
AcAc on HSC activation. We found that treatment with AcAc did not influence TGF-f3-
induced protein and mRNA expression levels of x-SMA, and Colla2 expression in LX2
cells (Figure 4A,B upper). Conversely, treatment with AcAc increased the protein and
mRNA expression levels of «-SMA in HSC-T6 cells, while the mRNA expression level
of Colla2 was not changed (Figure 4A,B lower). Furthermore, treatment with AcAc did
not influence TGF-B-induced phosphorylation of SMAD protein in both LX2 and HSC-T6
cells. These data indicated that AcAc is also not able to affect TGF-B-induced HSC cell
activation. It is well known that PDGF-mediated HSC proliferation is also an important
aspect of the progression of liver fibrosis [19]. Therefore, we further analyzed the effect
of both bHB and AcAc on PDGF-induced mitogen-activated protein kinases (MAPK) and
AKT signaling activation in HSC cells. Our results demonstrated that treatment with either
bHB or AcAc did not influence the PDGF-induced phosphorylation of mitogen-activated
protein kinase kinase (MEK), extracellular signal-regulated kinases (ERK), P38, JNK, and
AKT in both LX2 and HSC-T6 cells (Supplementary Figure S1A,B). In addition, the cell
viability showed no difference among 0, 1, 5, and 10 mM of bHB and AcAc treatment of
HSC cells (Supplementary Figure S1C). These data indicated that both bHB and AcAc did
not influence HSC proliferation and PDGF-induced MAPK and AKT signaling.
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Figure 4. Effects of acetoacetate (AcAc) on TGF-f1-induced LX2 and HSC-T6 cell activation. (A,B) LX2 and HSC-T6 cells
were treated with 10 ng/mL TGF-f and 0, 5, or 10 mM of AcAc for 24 h. Western blot and qPCR were used to evaluate the
protein and mRNA expression of x-SMA and Colla2. (C) LX2 and HSC-T6 cells were treated with 0, 5, or 10 mM of AcAc
for 24 h and then subjected to 10 ng/mL TGF-f for the indicated time periods, and the lysates were analyzed by Western
blot and quantification to detect SMAD protein phosphorylation. *, p < 0.05; **, p < 0.01; ***, p < 0.001 vs. relative control.
##, p <0.01 vs. black bar. Data are shown as means + SD.

2.5. Administration of bHB and AcAc Did Not Ameliorate CCly-Induced Liver Fibrosis in Mice

Next, we used the CCly-induced liver fibrosis mouse model with intraperitoneal
injection of both bHB and AcAc to further confirm what we had observed in the cell
experiments (Figure 5A). The results showed that CCly successfully induced liver fibrosis
with increased serum ALT levels, while treatment with either bHB or AcAc did not influence
the results (Figure 5B). In addition, ketone body supplementation with either bHB or AcAc
did not influence CCly—induced a-SMA and Colla2 expression in the liver (Figure 5C,D).
Moreover, the results of histologic examination revealed that bHB or AcAc supplementation
did not affect CCls-induced liver damage and collagen deposition (Figure 5E). These data
demonstrated that intraperitoneal injection of both bHB and AcAc did not affect the severity
of CCly-induced liver fibrosis.

2.6. Ketogenic Diet Increased the Cholesterol Quantity, Which Further Enhanced Liver
Inflammation and Reduced Antioxidant and Detoxification Gene Expression

From Figures 3-5, we concluded that ketogenic diet-induced ketone body production
in mice is not the key factor that augments the severity of CCly- and TAA-induced liver
fibrosis in mice. Surprisingly, when we examined the result of H&E staining again, we
found that the ketogenic diet-supplemented fibrotic mouse group possessed more lipid
accumulation in the liver tissue (Figures 1E and 2E). Previous studies reported that higher
cholesterol levels in the liver increased the severity of liver fibrosis [20]. Since the ketogenic
diet is composed of a high percentage of fat, it is worth studying whether mice fed with a
ketogenic diet affected the cholesterol composition. Therefore, we first examined the serum
level of cholesterol and low-density lipoprotein cholesterol (LDLC) in different groups of
mice. The results showed that both cholesterol and LDLC quantity in serum were higher in
the ketogenic diet-fed fibrotic mouse group compared with the CCly- or TAA-alone groups
(Figure 6A). The quantification of total and free cholesterol in the liver also demonstrated
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that a ketogenic diet increased the amount of cholesterol in the liver (Figure 6B). Next, we
examined whether the increased cholesterol amount further influenced liver inflammation
or antioxidant and detoxification ability. The results showed that the mRNA and protein
expression levels of TNF-oc and F4/80 were elevated in the ketogenic diet-fed fibrotic mouse
group compared with the CCly- or TAA-alone groups (Figure 6C,D). The mRNA expression
levels of antioxidant enzymes, including superoxide dismutase 1 (SOD1), superoxide
dismutase 2 (SOD2), and catalase, were decreased in CCly- and TAA-treated mice, while
the expression levels of these markers were lower in ketogenic diet-fed groups without
statistical significance (Figure 6E upper). The detoxification enzymes including Cypla2
and Gsta3 were also lower in the CCly- or TAA-alone groups, while the expression levels
of Cypla2 and Gsta3 were much lower in ketogenic diet-fed groups (Figure 6E lower).
These data demonstrated that the ketogenic diet increased the cholesterol quantity in the
liver and thereby enhanced liver inflammation and reduced antioxidant and detoxification
ability.
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Figure 5. Ketone body supplementation did not influence the severity of CCly-induced liver fibrosis. (A) Study design of

the in vivo experiment. (B) Serum samples were collected at the end of the experiment, and the serum ALT was assessed.
(C) Representative results from Western blot analyses of x-SMA expression and (D) qPCR analyses of x-SMA and Colla2
gene expression. (E) Representative H&E, Sirius red, and Masson’s trichrome staining images of liver tissues. Scale bars:
0.1 mm. *, p < 0.05; **, p < 0.01; ***, p < 0.001 vs. relative control. N = 5 in each group. Data are shown as mean + SEM.
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Figure 6. Ketogenic diet increased the cholesterol quantity and further enhanced CCly- and TAA- induced liver fibrosis,
liver inflammation, and the loss of antioxidant and detoxification ability. (A) Serum samples were collected at the end of the
experiment, and the serum cholesterol and low-density lipoprotein cholesterol (LDLC) were assessed. (B) Intracellular total
and free cholesterol were measured by using a colorimetric cholesterol quantification kit. (C) QPCR analyses of F4/80 and
TNEF- gene expression. (D) Representative F4/80 immunohistochemistry staining of livers from each treatment group.
Scale bars: 0.1 mm. (E) QPCR analyses of SOD1, SOD2, Catalase, Cypla2, and Gsta3 gene expression. *, p < 0.05; **, p < 0.01
vs. white bar. #, p < 0.05; ##, p < 0.01 vs. black bar. N = 5 in each group. Data are shown as means & SEM.
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3. Discussion

A ketogenic diet consists of a high fat content with a moderate protein content and
a very low carbohydrate content [9]. It is mainly used in plenty of nervous system dis-
eases like epilepsy and Alzheimer’s disease [21]. It is reported that the ketogenic diet
promotes neuroprotective effects by regulating neuronal cell death and oxidative stress [22].
Recently, several studies investigated the function of the ketogenic diet in liver diseases.
NAFLD/NASH is one of the risk factors causing liver fibrosis, and approximately 10
to 30% of patients will develop to cirrhosis in the end [23-25]. It is reported that losing
weight, ameliorating insulin resistance, and reducing hyperlipidemia will help improve
NAFLD progression [25]. Studies indicated that the low-carbohydrate ketogenic diet have
beneficial effects on patients with NAFLD [26-28]. Schugar et al. demonstrated that the
ketogenic diet ameliorated NAFLD progression by promoting weight loss and decreasing
the amount of triglyceride in the liver [11]. However, they also pointed out that long-term
maintenance on a ketogenic diet stimulated the occurrence of NAFLD as well as glucose
intolerance [11]. In liver cancer, it is reported that use of a ketogenic diet diminished
diethylnitrosamine-induced liver tumor in mice [29]. Previously, we also reported that a
ketogenic diet significantly inhibited liver cancer cell growth in NOD/SCID mice [12,13].
Since the influence of the ketogenic diet on liver fibrosis is still unknown, crucial evidence
is needed to evaluate the possibility of developing dietary interventions in liver fibrosis.
Surprisingly, our data revealed that the ketogenic diet failed to postpone the progression
of CCly- or TAA-induced liver fibrosis but aggravated the accumulation of collagen fibers
in mice.

To figure out the mechanisms of how the ketogenic diet aggravates fibrosis progression,
we further assessed the correlation between ketone bodies and liver fibrosis. Consuming
the ketogenic diet can increase the circulatory pool of ketone bodies. bHB and AcAc are
the two predominant ketone bodies in the human body [16]. Previous studies showed that
treatment with bHB conferred substantial protection against oxidative stress in mice [30].
Chen et al. revealed that bHB has an anti-inflammatory and hepatoprotective role in alco-
holic hepatitis [31]. It is also reported that mitochondrial AcAc metabolism in macrophages
protects against liver fibrosis [32]. Since the role of both bHB and AcAc in affecting HSC
cells activation and liver fibrosis progression remains unclear, we further conducted the
in vitro and in vivo experiment in our study. Surprisingly, our data reveal that treatment
with bHB and AcAc did not influence hepatic stellate cell activation and the severity of
CCly-induced liver fibrosis in mice. Therefore, we know that ketone body production by
consuming a ketogenic diet in mice is not the key factor that augments the severity of
liver fibrosis. We carefully examined our data again and we found that the H&E staining
results demonstrated that the ketogenic diet-fed fibrotic mouse group possessed more lipid
accumulation in the liver tissue (Figures 1E and 2E). Moreover, the ketogenic diet increased
the cholesterol quantity and further enhanced liver inflammation, and reduced antioxidant
and detoxification gene expression in liver. Previous studies had shown that the abnormal
metabolism of lipids was prone to inflammation [33]. Besides, the high-fat-diet caused
lipid abnormalities, increased oxidative injury, and reduced antioxidant system in rats [34].
Previously, we also reported that higher cholesterol levels in the liver increased the severity
of liver fibrosis [19]. Taking these points together, we revealed that the aberrant cholesterol
accumulation in liver caused by a ketogenic diet promoted liver inflammation, reduced the
antioxidant and detoxification ability, and ultimately aggravated the symptoms of liver
fibrosis.

It is important to note that the different composition (percentage of calories from fat,
protein, and carbohydrate) of ketogenic diets, as well as the specific genetic background,
may exert different metabolic effects between mice and humans. The ketogenic diet has
been proposed to be a strategy for reducing obesity. Without carbohydrates in the diet, the
ketogenic diet allows the body to induce fatty acid mobilization and promotes weight loss
efficiently [35]. Although the ketogenic diet was reported to reduce human obesity and
blood pressure, ketogenic diet feeding may increase serum low-density lipoprotein (LDL)
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and high-density lipoprotein (HDL) significantly [36]. However, some studies indicated
that the ketogenic diet could not contribute to weight loss in mice [37], which is consistent
with our study (data not shown). Apart from triggering lipid metabolism to generate ketone
bodies, gluconeogenesis, the crucial pathway to regulate blood sugar, synthesizes glucose
from protein and fat to supplement the lack of carbohydrates in the body [38]. Recent
studies indicate that the different protein content of the ketogenic diet may lead to entirely
different results. Mice consuming a higher fat to protein ratio may result in body weight
gain in comparison with the chow control [38,39]. With a deep study into the different
composition of protein in a ketogenic diet, it was found that instead of aiding weight loss,
methionine supplementation was more effective than choline in restoring weight gain
in mice [40]. Moreover, both methionine and choline did not suppress lipogenic gene
expression, but methionine supplementation reversed the upregulated expression of fatty
acid oxidation genes [40]. In particular, fibroblast growth factor 21 (FGF21), which has
been reported to play a critical role in lipid oxidation [41], was significantly alleviated
in methionine supplementation in a ketogenic diet [40]. A previous study showed that
hepatic gene expression level and circulating serum concentrations of FGF21 were elevated
in ketogenic diet (KD)-fed mice [42]. Besides, refeeding mice after fasting resulted in
rapid FGF21 suppression in mice [42]. It is also reported that mice lacking FGF21 failed to
respond appropriately to a KD due to impaired ability to mobilize and utilize lipids [42].
These data suggest that FGF21 production and action are important for adaptation under
the use of KD to regulate lipid metabolism appropriately. However, a recent study reported
that significant differences in FGF21 expression and function were found between mice
and humans [43]. Free fatty acid-induced FGF21 expression was found in mice; however,
circulating FGF21 concentrations were found to be decreased in humans [44,45]. Besides,
humans demonstrated a huge range of FGF21 expression between different individuals.
After fasting for 48 h, the FGF21 blood concentrations were not consistent, either showing
no effect, modestly increases, or even a drop in FGF21 levels [46—49]. Mice having an
overall higher metabolism in comparison with humans might be one explanation for this
discrepancy between mice and humans [43]. Therefore, the role of FGF21 in adaptation to
starving for humans is still under debate. As we mentioned above, a KD strongly induced
FGF21 in the liver and its circulating levels in mice [42]. In contrast, a KD did not increase
FGF21 serum levels in humans [46,48,50]. Moreover, it was also found that ketone bodies
appear in the circulation days before FGF21 level induction under long-term fasting [48].
These data further argue against a regulating role for FGF21 in ketogenesis in humans.
Therefore, considering the differences in FGF21 expression and physiological functions
between mice and humans may help the translation of the experimental findings from
bench to bedside. Previous studies revealed that the ketogenic diet reduces blood glucose
levels in rested and exercised rats of different ages, with and without pathology [51]. It
was also noted that the ketogenic diet possessed advantages, especially for endurance
exercise by promoting fat usage for fuel [52]. Monsalves-Alvarez et al. revealed that
mice supplemented with bHB increased exercise capacity, with altered in mitochondrial
shape that met energetic challenge demands in mouse skeletal muscle [53]. Exercise is
an important aspect while using the high-fat ketogenic diet; however, the mice were not
trained to exercise in our CCly- and TAA-induced liver fibrosis models. Therefore, severe
lipid accumulation and subsequent liver damage occurred. Since a different ketogenic
diet composition may exert different metabolic effects, increased sample size and more
experimental designs are necessary to clarify the effects of the ketogenic diet on disease
treatment.

4. Materials and Methods
4.1. Mice

Male C57BL/6 mice (7—8 weeks of age) were purchased from Taiwan National Lab-
oratory Animal Center. Mice were fed with a standard chow diet (No. 5001, LabDiet,
St. Louis, MO, USA) or a ketogenic diet (5T]Q, TestDiet, composed of 15.6% calories from
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protein, 82.3% calories from fat, and 2.1% calories from carbohydrates). The fibrosis model
was generated using intraperitoneal injection of carbon tetrachloride (CCly)(2 mg/kg,
Sigma-Aldrich, St. Louis, MO, USA) or thioacetamide (TAA)(20 mg/kg, Sigma-Aldrich,
St. Louis, MO, USA) 2 times weekly for 6 or 10 weeks. The ketone bodies, including
DL-B-hydroxybutyric acid (bHB)(300 mg/kg, Sigma-Aldrich, St. Louis, MO, USA) and ace-
toacetate (AcAc)(200 mg/kg, Sigma-Aldrich, St. Louis, MO, USA), were intraperitoneally
injected into mice 6 times weekly for 6 weeks. Each group’s liver tissues and serum were
collected at the end of the experiments. All animal procedures were approved by the Insti-
tutional Animal Care and Use Committee of Taipei Medical University (LAC-2020-0115,
approved May 2020).

4.2. Immunohistochemistry Staining and Blood Biochemical Parameters

Liver tissues were fixed with 10% formalin and the sections were stained with hema-
toxylin and eosin (H&E) for histopathological examination. To assess the extent of fibrosis,
Sirius red staining (Abcam, Cambridge, MA, USA) and Masson’s Trichrome staining (Ab-
cam, Cambridge, MA, USA) were carried out following the manufacturer’s instructions.
For immunohistochemistry staining of F4/80, liver sections were incubated with antibodies
against F4/80 (1:200; Cell Signaling, Beverly, MA, USA) and detected by using the Univer-
sal LSABTM2 kit (DakoCytomation, Carpinteria, CA, USA). All sections were investigated
by a light microscope (Olympus CKX41, Olympus Corp., Tokyo, Japan). Serum alanine
aminotransferase (ALT), cholesterol, and low-density lipoprotein cholesterol (LDLC) were
measured with a biochemical analyzer (VetTest, IDEXX, Westbrook, ME, USA).

4.3. Cell Culture

LX2 cells and HSC-T6 cells [20] were cultured in Dulbecco’s modified Eagle’s medium
(DMEM)(Gibco BRL, Grand Island, NY, USA) with 1% fetal bovine serum (FBS)(HyClone,
Logan, UT, USA), penicillin and streptomycin (100 U/mL), nonessential amino acids
(0.1 mM), and L-glutamine (2 mM) at 37 °C in a 5% CO; incubator.

4.4. TGF-PB Treatment

LX2 cells (1 x 10° per well) and HSC-T6 cells (2 x 10° per well) were (1) seeded in
6-well plates and treated with 0, 5, and 10 mM p-hydroxybutyrate (bHB)(Sigma-Aldrich,
St. Louis, MO, USA) or acetoacetate (AcAc)(Sigma-Aldrich, St. Louis, MO, USA), and
10 ng/mL TGF-p (R&D Systems, Minneapolis, MN, USA) for 24 h; and (2) seeded in 6-well
plates, pretreated with or without 5 and 10 mM bHB or AcAc for 24 h, and further treated
with 10 ng/mL TGF-§3 for 0, 15, 30, and 60 min.

4.5. PDGF Treatment

LX2 cells (1 x 10° per well) and HSC-T6 cells (2 x 10° per well) were seeded in 6-well
plates, pretreated with or without 5 and 10 mM bHB or AcAc for 24 h, and further treated
with 10 ng/mL PDGF (R&D Systems, Minneapolis, MN, USA) for 0, 15, 30, and 60 min.

4.6. Cell Viability Assay

LX2 (2 x 10%/well) and HSC-T6 (2 x 10 /well) cells were seeded in 96-well plates
and cultured overnight. The culture medium was replaced with 0, 1, 5, or 10 mM bHB
or AcAc, and incubated for 48 h. The culture medium was removed and we added 50 puL.
of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT Solution, Sigma-
Aldrich, St. Louis, MO, USA) for 2.5 h. Afterwards, 100 ul. DMSO was added to each well
and incubated for 10 min. Absorbance of the colored solution was measured at optical
density (OD) 570 nm with the microplate reader. Untreated cells served as controls. The
cell viability was calculated according to the formula: experimental OD value/control OD
value x 100%.
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4.7. Cholesterol Quantification

A commercial Colorimetric Total Cholesterol Quantification Assay Kit (BioVision,
Mountain View, CA, USA) was used to analyze total and free cholesterol production.
Cholesterol from 5-mg tissue samples was extracted and oxidized by cholesterol oxidase.
A commercial probe was added and the result was detected by using spectrophotometry at
OD 570 nm.

4.8. Western Blotting

Western blotting was performed as previously described [54]. The following anti-
bodies were used in the experiment: anti-a-SMA antibody (1:1000, Abcam, Cambridge,
MA, USA), anti-T/p-SMAD2/3 antibody (1:1000, Cell Signaling, Beverly, MA, USA), anti-
T/p-MEK antibody (1:1000, Cell Signaling, Beverly, MA, USA), anti-T/p-ERK antibody
(1:1000, Cell Signaling, Beverly, MA, USA), anti-T/p-P38 antibody (1:1000, Cell Signaling,
Beverly, MA, USA), anti-T/p-JNK antibody (1:1000, Cell Signaling, Beverly, MA, USA),
anti-T/p-AKT antibody (1:1000, Cell Signaling, Beverly, MA, USA), and anti-o-tubulin
antibody (1:5000, Sigma-Aldrich, St. Louis, MO, USA).

4.9. RNA Extraction and Quantitative RT-PCR

TRIzol reagent (Ambion, Carlsbad, CA, USA) was used to extract total RNA. Two
micrograms of total RNA was subjected to reverse transcription with High-Capacity cDNA
Reverse Transcription Kits (Applied Biosystems, Carlsbad, CA, USA). The relative mRNA
level was determined by qPCR with KAPA SYBR FAST qPCR Master Mix (KAPA Biosys-
tems, Boston, MA, USA) and the gene expression was normalized to that of GAPDH. The
primers used for qPCR are listed as follows: a-SMA: 5'-GTTCAGTGGTGCCTCTGTCA-3'
(forward, F) and 5'-ACTGGGACGACATGGAAAAG-3’ (reverse, R); collagen type 1 alpha 2
(Colla2): 5-TAGGCCATTGTGTATGCAGC-3' (F) and 5'- ACATGTTCAGCTTTGTGGACC-
3’ (R); TGF-B: 5'-CGAAGCGGACTACTATGC-3’ (F) and 5'-GTTGCTCCACACTTGATTT-3
(R); Desmin: 5-CAGGCAGCCAATAAGAAC-3' (F) and 5'-GCCATCTCATCCTTTAGGT-3'
(R); F4/80: 5-CAAGACTGACAACCAGACG-3' (F) and 5-ACAGAAGCAGAGATTATGA
CC-3' (R); TNF-«, 5-TGTAGCCCATGTTGT AGCAAACC-3' (F) and 5-GAGGACCTGGG
AGTAGATGAGGTA-3' (R); SOD1: 5-GCAGGACCTCATTTTAATCCTCACT-3' (F) and 5'-
GTCTCCAACATGCCTCTCTTCAT-3’ (R); SOD2: 5'-CACACATTAACGCGCAGATCA-3
(F) and 5'-GGTGGCGTTGAGATTGTTCA-3' (R); Catalase: 5-GCCTCGCAGAGACCTGAT
GT-3' (F) and 5-CCCCGCGGTCATGATATTAA-3' (R); Cypla2: 5-TCCTGGACTGACTCCC
ACAACT-3' (F) and 5'-GTACTGGGAGAACGCCATCTGTA-3' (R); Gsta3: 5'-ACAAGATTA
TCTCGTTGGCAACAG-3' (F) and 5'-CTTCCACATGGTAGAGGAGTTCAA-3' (R); GAPD
H: 5-TCACCACCATGGAGAAGGC-3' (F) and 5'-GCTAAGCAGTTGGTGGTGCA-3' (R).

4.10. Statistic

The in vitro experiment results are expressed as the means =+ standard deviation (SD),
while the in vivo experiment results are expressed as the means =+ standard error of the
mean (SEM). The data were analyzed by nonparametric tests in SPSS v20.0 software (SPSS
Inc., Chicago, IL, USA). The Mann-Whitney U-test was used to compare 2 independent
groups. Differences were considered statistically significant at p < 0.05.

5. Conclusions

Our study provides experimental evidence to support that a high-fat ketogenic diet
increased the cholesterol quantity in the liver which further promoted CCly- and TAA-
induced fibrotic marker expression, liver inflammation, and the loss of antioxidant and
detoxification ability (Figure 7). Furthermore, ketone body (bHB and AcAc) treatment did
not influence hepatic stellate cell activation and the severity of liver fibrosis in vivo. Taken
together, these results indicate that a high-fat ketogenic diet augments the severity of liver
fibrosis in mice.
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Figure 7. High-fat ketogenic diet feeding may trigger severe steatohepatitis and thereby promote
CCly- and TAA- induced liver fibrosis progression through enhanced liver inflammation and the loss
of antioxidant and detoxification ability.
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