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Quantifiers, like “some” or “few,” are frequent in daily language. Linguists posit at least
three distinct classes of quantifiers: cardinal quantifiers that rely on numerosity, majority
quantifiers that additionally depend on executive resources, and logical quantifiers that
rely on perceptual attention. We used BOLD fMRI to investigate the roles of frontal
and parietal regions in quantifier comprehension. Participants performed a sentence-
picture verification task to determine whether a sentence containing a quantifier accurately
describes a picture. A whole-brain analysis identified a network involved in quantifier
comprehension: This implicated bilateral inferior parietal, superior parietal and dorsolateral
prefrontal cortices, and right inferior frontal cortex. We then performed region-of-interest
analyses to assess the relative contribution of each region for each quantifier class. Inferior
parietal cortex was equally activated across all quantifier classes, consistent with prior
studies implicating the region for quantifier comprehension due in part to its role in the
representation of number knowledge. Right superior parietal cortex was up-regulated in
comparison to frontal regions for cardinal and logical quantifiers, but parietal and frontal
regions were equally activated for majority quantifiers and each frontal region is most highly
activated for majority quantifiers.This finding is consistent with the hypothesis that majority
quantifiers rely on numerosity mechanisms in parietal cortex and executive mechanisms
in frontal cortex. Also, right inferior frontal cortex was up-regulated for logical compared
to cardinal quantifiers, which may be related to selection demands associated with logical
quantifier comprehension. We conclude that distinct components of a large-scale fronto-
parietal network contribute to specific aspects of quantifier comprehension, and that this
biologically defined network is consistent with cognitive theories of quantifier meaning.
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INTRODUCTION
Quantifiers are extraordinarily common in language. Phrases such
as “at least three,” “less than half,” and “some” are very frequent.
In formal semantic terms, these phrases serve the function of
asserting a property about a set and mapping it to a truth-value.
For example, in the phrase “at least three blue birds,” the prop-
erty is the number of blue birds and the truth-value here is
whether this quantity of blue birds falls above the limit “three.”
While we know a great deal about the formal semantic proper-
ties of generalized quantifiers (Barwise and Cooper, 1981; van
Benthem, 1986), we understand little about the neural basis for
quantifier comprehension. In this study, we examine the neu-
roanatomic basis for quantifier comprehension in healthy adults
with fMRI.

There are several classes of quantifiers (Clark and Grossman,
2007). Cardinal quantifiers such as “at least three” have an explicit
number component. Comprehension of a cardinal quantifier thus
depends on the ability to consider the number specified in the
quantifying phrase, enumerating the relevant target states, and
then comparing that quantity to the quantifier. “Majority” quan-
tifiers like “most” or “less than half” involve a number component
and additionally depend on computational resources such as

strategic processing and working memory before the truth state-
ment can be evaluated. To evaluate a majority quantifier like “less
than half of the birds are blue,” the total number of relevant states
under consideration (for example, eight birds) must first be eval-
uated, then the number of states required to meet the criterion
in the quantified phrase must be computed (half of eight is four)
and maintained in an active state in working memory, then the
target states must be enumerated (three blue birds), and finally
the quantified target states are compared with the relevant states
maintained in working memory (three is less than four) to evalu-
ate the truth-value of the quantifier. By comparison, Aristotelean,
or “logical”, quantifiers like “some” and “not all” require evalu-
ation of whether one or more objects are contained within, or
absent from, a set. For example, “some” involves detecting a group
of targets; finding a single exception is necessary for “not all” to
be true.

Past work in patients has shown an association between pari-
etal disease and quantifiers, implicating number knowledge in
the comprehension of quantifiers. Studies in non-aphasic patients
show that disease in the inferior parietal lobe interferes with num-
ber knowledge (Cipolotti et al., 1991; Takayama et al., 1994; Mar-
tory et al., 2003; Halpern et al., 2004; Baldo and Dronkers, 2007;
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Koss et al., 2010). Consistent with the idea that number knowl-
edge contributes to the comprehension of quantifiers, disease
in this parietal region in non-aphasic patients with corticobasal
syndrome (CBS) also interferes with the comprehension of car-
dinal quantifiers, logical quantifiers, and majority quantifiers that
depend in part on number knowledge (McMillan et al., 2005, 2006;
Troiani et al., 2009a).

Previous patient work also has related prefrontal regions to
the comprehension of majority quantifiers, implicating execu-
tive resources in the comprehension of quantifiers. Prefrontal
regions have been associated with executive deficits on measures
of working memory (Kimberg and Farah, 1993; Bechara et al.,
1998; Thompson-Schill et al., 1999; Possin et al., 2013) and strate-
gic processing (Sirigu et al., 1995; Amunts et al., 2004; Possin et al.,
2009). Additionally, comprehension of majority quantifiers and
logical quantifiers is compromised in non-aphasic patients with
prefrontal disease due to the behavioral variant of frontotemporal
degeneration (bvFTD; McMillan et al., 2005; Troiani et al., 2009a),
and presumably the executive deficits in these patients interferes
with their comprehension of these quantifiers.

Few fMRI studies have examined the neuroanatomic basis of
quantifiers. Previous work has demonstrated activation of inferior
parietal lobe for cardinal and majority quantifiers (McMillan et al.,
2005; Troiani et al., 2009a; Heim et al., 2012). We reasoned that this
was due in part to the dependence of these quantifiers on num-
ber knowledge, a domain also associated with the inferior parietal
lobe. There has been substantial fMRI work demonstrating the
contribution of the parietal lobe to number knowledge and simple
arithmetical calculation. When participants were asked to consider
either number symbols (represented by Arabic numerals or num-
ber words) or non-symbolic numerical patterns (e.g., 1 cm filled
dot arrays), for example, activation was found in bilateral inferior
parietal lobe (Dehaene et al., 2003; Shuman and Kanwisher, 2004;
Ansari et al., 2006; Castelli et al., 2006; Piazza et al., 2006, 2007;
Wei et al., 2012). Further, the role of executive resources in pro-
cessing majority quantifiers appeared to prompt recruitment of
prefrontal regions (McMillan et al., 2005; Troiani et al., 2009a). We
and others have also reported logical quantifiers, or alternatively
defined sets of quantifying conditions encompassing logical quan-
tifiers, recruiting prefrontal regions (Troiani et al., 2009a; Wei et al.,
2012) as well as inferior parietal regions (McMillan et al., 2005; Wei
et al., 2012).

Together, these prior findings suggest that there is a large-
scale fronto-parietal network that supports the comprehension
of quantifiers, and that the relative contribution of parietal and
prefrontal cortex activation is modulated by quantifier class.
Specifically, parietal cortex appears to support the numerosity
component of quantifier comprehension and prefrontal cortex
appears to support executive and attentional demands. Prior
experiments have focused on whole-brain voxel-wise analyses
of patients and have not directly evaluated the relative con-
tribution of each neuroanatomic region to the comprehension
of each class of quantifier. In this study, we present the
same visual stimuli from a patient study used to probe for
cardinal, majority, and logical quantifiers in an fMRI study
of healthy young adults, and we explicitly evaluate the rela-
tive contributions of parietal and prefrontal cortex activation

in region-of-interest (ROI) analyses for each quantifier class.
Moreover, we used very small numerosities to minimize the
potential confound that may be associated with activation for
number knowledge in the same brain region. We hypothe-
sized that inferior parietal lobe activation would be present
for all quantifiers due to the role of this region in supporting
number knowledge, a crucial component of quantifier mean-
ing, and that prefrontal activation would be more associated
with executive resources that play a role in majority and logical
quantifiers.

MATERIALS AND METHODS
PARTICIPANTS
We recruited 17 right-handed young adults (10 females) from
the University of Pennsylvania community, with a mean age of
23.1 years (SD = 2.98, range 18–28) and a mean education of
15.7 years (SD = 2.11, range 12–20). One additional participant
was recruited but excluded from all analyses due to excessive move-
ment. All participants were volunteers recruited in accordance
with a protocol approved by the University of Pennsylvania Insti-
tutional Review Board including an informed consent procedure,
and they were financially compensated for their participation.

EXPERIMENTAL TASK
We generated a total of 120 quantifier stimulus items equally dis-
tributed across three conditions: cardinal (e.g., “at least three birds
are in the cage”), majority (e.g., “at least half of the birds are
in the cage”), and logical (e.g., “Some of the birds are in the
cage”). An additional 40 “precise” number stimulus items were
generated for a high-level baseline condition, which contained
an explicit number in the absence of a quantifier (e.g., “Two
birds are in the cage”). These stimuli used small numbers within
the range of the approximate number system to minimize any
potential confound associated with larger numerosities processed
by the precise number system. We also generated 40 filler items
that required a true/false response but did not contain a num-
ber or a quantifier (e.g., “Birds are in the cage”). Each of the
200 total sentence materials was paired with a colored picture
depicting a small number (<5) of familiar objects (e.g., birds)
in a natural context (e.g., in a cage; see Figure 1 for sample
stimulus materials). There were a total of 40 unique pictures
repeated equally across each quantifier and baseline condition.
Half of the sentence and picture pairs were true and half were
false.

Stimulus materials were embedded in a list of null event proce-
dures and presented in a randomized order using an event-related
design implemented in E-Prime. Participants were first presented
with a fixation and sentence for 3000 ms and then a sentence and
picture for 3000 ms. The participants viewed sentence materials
on a back-projected screen and were instructed to respond using
a fiber optic response pad to indicate whether they thought the
sentence accurately described the picture. Prior to scanning, the
participants were presented with a trial practice session and were
given feedback about their performance. We did not provide feed-
back during the fMRI task to minimize a potential confound of
negative or positive reward. Stimulus materials were counterbal-
anced across five experimental blocks, each containing 40 trials
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FIGURE 1 | Sample true-response stimulus material for a logical

quantifier (“There are some birds in the tree”), a precise quantifier

(“There are two birds in the tree”), cardinal quantifier (“There is at

least one bird in the tree”), and a majority quantifier (“More than half

of the birds are in the tree”).

and lasting approximately 7 min. Participants were provided a
short, 2 min break between each block.

IMAGE ACQUISITION
Images were collected using a 3-T Siemens Tim Trio scanner. Each
session started with acquisition of a high-resolution T1-weighted
MPRAGE structural scan (TR = 1620 ms, TE = 3.09 ms, 192 × 256
matrix). For each experimental block we acquired 144 BOLD
volumes using an EPI sequence (TR = 3 s, TE = 30 ms, flip
angle = 90◦, 64 × 64 matrix, fat saturated), providing 42 axial
slices (with no slice gap) consisting of 3.0 mm isotropic voxels
per TR.

IMAGE ANALYSIS
All preprocessing and analysis was performed using SPM8
(http://www.fil.ion.ucl.ac.uk/spm/software/spm8) software. Ima-
ges were reconstructed from their native DICOM format to
NIFTI file format. We then modeled the data for each indi-
vidual subject. We performed high-pass (>128 s) filtering to
remove low-frequency drift. We modeled portions of the time
series that correspond to correct responses to stimuli for each
subject. All BOLD whole-brain volumes then were realigned to
the first volume in the time series (Friston et al., 1995) and then
co-registered with the high-resolution structural volume (Ash-
burner and Friston, 1997). We then warped each individual’s
structural volume into MNI152 space using tissue probability
maps and then applied these warps to each functional volume
for that individual. During spatial normalization, functional data
were interpolated to 2 mm isotropic voxels and then smoothed
using a 9 mm full-width-half-maximum Gaussian kernel. Lastly,
we performed a quality control procedure to assess images with
excessive motion or inhomogeneities and excluded these volumes
from our analyses. Exclusion criteria were determined by an anal-
ysis of more than 160 continuous healthy young adult functional
data sets and determining the mean and standard deviations in

each of the 6◦ of motion and in mean image intensity. We lim-
ited volume-to-volume deviations to 3.5 standard deviations from
the mean (intensity difference limit = 6.920 (arbitrary units);
limits of translations, rotations: x = 0.084 mm, 0.00657 radi-
ans, y = 0.275 mm, 0.00236 radians, z = 0.383 mm, 0.00195
radians). In one case, >50% of scans had excessive movement
or inhomogeneities, so we excluded this participant from the
analysis.

The t-test module in SPM was used to compare the contrast
between all quantifier conditions (cardinal, majority, and logi-
cal) relative to the precise number baseline condition. Because
of observed response latency differences for different quanti-
fiers in our data (see below), we removed response time as
a covariate. We did not also covary for unequal task accu-
racy because the hypothesized executive demands associated
with different classes of quantifiers were captured more sensi-
tively by response latency. For this contrast we report a height
threshold of p < 0.05 (uncorrected) with a 20 adjacent voxel
extent and only accept clusters exceeding a peak voxel thresh-
old of p < 0.001. We used this liberal threshold in an effort
to identify all clusters contributing to quantifier comprehen-
sion without risking the possibility that marginally sub-threshold
clusters would be excluded. To assess the relative contribution
of the observed whole-brain contrast clusters we generated the
mean beta-value within each independent cluster that we treated
as a ROI. We then performed ROI analyses using SPSS 20
(IBM, Chicago) software and used Bonferroni correction for all
comparisons.

RESULTS
BEHAVIORAL RESULTS
Overall, participants had excellent accuracy, but were less accurate
evaluating majority quantifiers (M = 85.44%, SEM = 0.02) in
comparison to cardinal [M = 95.59%, SEM = 0.01; t(16) = 4.87;
p<0.001] and logical quantifiers [M = 97.21%, SEM = 0.01;
t(16) = 6.39; p < 0.001]. Accuracy did not differ between cardinal
and logical quantifiers [t(16) = 1.95, p = 0.069].

We observed a similar pattern for response latencies: responses
were slower for majority quantifiers (M = 1797 ms, SEM = 121)
compared to cardinal [M = 1261 ms, SEM = 82; t(16) = 7.28;
p < 0.001] and logical quantifiers [M = 1293 ms, SEM = 86;
t(16) = 6.71; p < 0.001]. Response latencies did not differ between
cardinal and logical quantifiers [t(16) = 0.75; p = 0.46].

IMAGING RESULTS
To identify the fronto-parietal network that supports quanti-
fier comprehension, we first performed a whole brain analysis
evaluating activation for all quantifiers (cardinal, majority, and
logical) relative to the precise number condition used as a high-
level baseline. This contrast revealed activation in seven clusters
(see Table 1 for a summary and Figure 2 for an illustration of
activated clusters). We used the SPM Anatomy toolbox (Eick-
hoff et al., 2005, 2006, 2007) to localize results. These included
four parietal clusters in right inferior parietal, left inferior pari-
etal, right superior parietal, and left superior parietal cortices.
Right inferior parietal activation was present in PFm and PGa
(Caspers et al., 2008). PF, PFa, PFm, (Caspers et al., 2008), and
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Table 1 | Anatomic locations of activation of quantifier conditions relative to precise number baseline.

Local maximum in

macroanatomic structure

MNI coordinates Z score Cluster size

(voxels)

Supporting

cytoarchitectonic area(s)*
x y z

R inferior parietal 42 −44 48 5.14 1390 PFm, PGa

L superior parietal −12 −68 58 4.04 713 7A, 7P

R middle frontal (dorsolateral

prefrontal)

40 36 24 3.96 702

R superior parietal 6 −66 58 3.8 899 7A, 7P

L inferior parietal −58 −40 40 3.42 1264 PF, hIP1, PFm PGa

L middle frontal (dorsolateral

prefrontal)

−44 52 8 3.37 548

R inferior frontal 46 16 40 3.22 408 Area 44

*Cytoarchitectonic areas (Amunts et al., 1999; Choi et al., 2006; Caspers et al., 2008; Scheperjans et al., 2008a,b) were considered “supporting” if >10% of the
activated cluster was in the region.

FIGURE 2 | Regions of activation for all quantifier conditions relative

to precise number baseline.

hIP1 (Choi et al., 2006) contributed to left inferior parietal activa-
tion. Superior parietal activation was present bilaterally in regions
7A and 7P (Scheperjans et al., 2008a,b). We also observed 3 frontal
clusters in right dorsolateral prefrontal cortex (dlPFC), left dlPFC,
and right inferior frontal cortex, including Brodmann Area 44
(Amunts et al., 1999).

To evaluate the relative contribution of each of these clus-
ters, we calculated the mean beta value in each ROI during
the activation associated with each quantifier. We first per-
formed an ANOVA with Bonferroni-corrected post hoc t-test
contrasts for each quantifier class to evaluate the relative net-
work activation associated with each quantifier (see Figure 3).
For cardinal quantifiers [F(6,112) = 3.90, p = 0.001], we observed
significantly increased activation in right superior parietal cor-
tex relative to right inferior frontal (p = 0.003), left dlPFC
(p = 0.022), and marginal right dlPFC (p = 0.078). For logi-
cal quantifiers [F(6,112) = 3.43; p = 0.004], we also observed
increased right superior parietal activation relative to each of the
frontal regions, including left dlPFC (p = 0.002), right dlPFC
(p = 0.05), and marginal right inferior frontal (p = 0.065). While
we observed an effect approaching significance for majority quan-
tifiers [F(6,112) = 2.17, p = 0.051], post hoc contrasts did not
reveal any significant differences across regions, suggesting that
frontal regions were activated as robustly as parietal activations

for majority quantifiers. Together, these findings suggest the rela-
tively increased activation of superior parietal cortex for cardinal
and logical quantifiers compared to frontal cortex and addition-
ally highlight relatively equal amounts of frontal and parietal
activation for majority quantifiers.

To further investigate the relative involvement of frontal cortex
for quantifier comprehension, we performed pairwise compar-
isons between types of quantifiers within each frontal ROI (see
Figure 4). We performed paired-samples t-tests with Bonfer-
roni correction. We observed increased right dlPFC activation for
majority quantifiers relative to cardinal quantifiers [t(16) = 3.42;
p = 0.027]. We also observed increased right dlPFC and left dlPFC
activation for majority quantifiers relative to logical quantifiers
[right: t(16) = 3.17; p = 0.05; left: t(16) = 3.19; p = 0.05].
We additionally observed increased right inferior frontal cortex
activation for logical quantifiers relative to cardinal quantifiers
[t(16) = 3.46; p = 0.027]. In summary, these comparisons across
quantifier classes suggest that majority quantifier comprehension
is supported by bilateral dlPFC in comparison to other quantifier
classes, and that logical quantifier comprehension is additionally
supported by right inferior frontal cortex.

Some of our clusters spanned across multiple cytoarchitectonic
areas. For these clusters, we investigated whether there were dif-
ferences in activation between constituent sub-regions. For each
condition in each macroanatomical structure, we performed an
ANOVA with Bonferroni-corrected post hoc t-test contrasts com-
paring the mean activation of the cytoarchitechonic areas and
found no significant effects.

DISCUSSION
There is increasing evidence that parietal and frontal cortices con-
tribute to the comprehension of quantifiers (McMillan et al., 2005,
2006, 2013; Troiani et al., 2009a,b; Morgan et al., 2011; Heim et al.,
2012). In this study, we identified a large-scale network in parietal
and frontal cortex that supports the comprehension of multiple
classes of quantifiers, and we evaluated the relative contribu-
tion of these components to each class of quantifier. Within the
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FIGURE 3 | Relative activation of each region of interest identified in the whole-brain analysis for each independent quantifier. Bars with asterisks (*)
represent p < 0.05 Bonferroni-corrected.

FIGURE 4 | Relative activation of ROIs in frontal cortex for cardinal, logical, and majority quantifiers. Bars with asterisks (*) represent p < 0.05
Bonferroni-corrected.

fronto-parietal network recruited by all quantifiers, we observed
that dlPFC is up-regulated during the comprehension of majority
quantifiers compared to other quantifier classes and that right
inferior frontal cortex is recruited for the comprehension of log-
ical quantifiers compared to cardinal quantifiers. We also found
that right superior parietal cortex is more strongly activated than
frontal cortical regions for logical and cardinal quantifiers. Infe-
rior parietal cortex was activated equally often for all types of
quantifiers.

The fronto-parietal processing system for quantifiers has been
demonstrated in previous fMRI studies (McMillan et al., 2005;
Troiani et al., 2009a). Even though we are studying the mean-
ing of words, we argued that these findings cannot be easily
attributed to activation of the core language processing system
since the brain regions implicated in quantifier comprehen-
sion are not in left peri-Sylvian brain regions. Indeed, many
of the activations are in the right hemisphere. We reasoned
instead that quantifier comprehension depends in part on num-
ber knowledge because of the overlap of the inferior parietal

regions thought to contribute to both quantifier comprehen-
sion and number knowledge. We used very small numbers in
the present study to minimize the potential confound that larger
numbers may depend in part on verbal mediation of precise
number processing (Dehaene, 1997; Feigenson et al., 2004). Our
baseline condition consisted of precise numbers describing the
same pictures, a high-level baseline that further diminishes the
possibility that the activations we are associating with quanti-
fier processing are due to verbally mediated use of numbers
or to visuo-spatial processing associated with picture stimuli.
Finally, these activated frontal and parietal regions do not
encompass brain regions typically thought to be engaged in
core language processing. Additional evidence associating pari-
etal regions with quantifier comprehension comes from patient
studies, where quantifier comprehension deficits are found in non-
aphasic patients who have parietal disease and whose performance
is correlated with impaired number knowledge (McMillan et al.,
2006; Troiani et al., 2009a; Morgan et al., 2011). These findings
are broadly consistent with a model of semantic memory related
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to embodied cognition (Barsalou, 2008), where the meaning of
a quantifier depends in part on the representation of quantity
and magnitude information subserving an approximate number
system in semantic memory.

Within this fronto-parietal network, we observed unique pat-
terns of activation for each class of quantifier. This is consistent
with the hypothesis that there are several partially distinct classes of
quantifiers. In previous patient studies, we related cardinal quan-
tifiers to gray matter atrophy in parietal cortex, while majority
quantifiers were associated with atrophy additionally in dorsolat-
eral prefrontal cortex (Troiani et al., 2009a; Morgan et al., 2011).
Logical quantifiers were related to disease in more anterior por-
tions of the frontal lobe in these studies. Below we discuss the
unique combinations of these frontal and parietal regions in the
neural representation of this fMRI study examining quantifier
comprehension.

Parietal cortex is often implicated as playing a critical role
for supporting number knowledge, broadly including the ability
to perform number identification, counting, calculations, num-
ber magnitude comparisons, and other similar tasks, in fMRI
(Dehaene et al., 2003; Piazza et al., 2007; Wei et al., 2012) and
patient (Cipolotti et al., 1991; Takayama et al., 1994; Martory et al.,
2003; Halpern et al., 2004; Baldo and Dronkers, 2007; Koss et al.,
2010) studies. Previous fMRI studies of quantifier comprehension
have also consistently reported parietal cortex activation (McMil-
lan et al., 2005; Troiani et al., 2009a; Heim et al., 2012) and patients
with neurodegenerative disease in parietal cortex have difficulty
with interpreting quantifier meaning (McMillan et al., 2005, 2006;
Morgan et al., 2011; Troiani et al., 2009a). Together, these find-
ings have been interpreted as evidence for the role of number
knowledge contributing to quantifier comprehension. Further-
more, consistent with conceptual processing theories (Binder
et al., 1999), linguists have proposed similarities between num-
ber knowledge and quantifiers, regardless of the inclusion of an
explicit number component (Barwise and Cooper, 1981; van Ben-
them, 1986). Neuroimaging studies have supported this notion
and found inferior parietal cortex activation when processing
quantifiers without explicit number components, such as logical
quantifiers (McMillan et al., 2005; Wei et al., 2012). This suggests
that though number knowledge itself is not required specifically
for the processing of a logical quantifier, logical quantifiers are
semantically related to cardinal quantifiers and majority quan-
tifiers that require number knowledge. Thus, the processing of
logical quantifiers may draw upon cognitive resources similar
to those used when processing cardinal quantifiers and majority
quantifiers.

The precise locus of parietal activation associated with quan-
tifier comprehension has varied from study-to-study. One study
reported that both inferior parietal and superior parietal cortices
are activated during quantifier comprehension and that the rela-
tive magnitude of activation for each region was related to specific
task demands (Heim et al., 2012). Thus, superior parietal cor-
tex was recruited relative to the magnitude of target items, while
inferior parietal was up-regulated in proportion to processing dif-
ficulty as measured by response latencies. In a different study
it was suggested that inferior parietal is more related to num-
ber knowledge associated with cardinal quantifiers while superior

parietal cortex including posterior cingulate is more related to the
spatial distribution of attention during comprehension of logi-
cal quantifiers (Troiani et al., 2009a). However, the latter study
did not control for response latencies and thus it is difficult
to interpret whether inferior parietal cortex activation was con-
founded by longer response latencies for cardinal compared to
logical quantifiers. In the current study, we discovered a significant
difference between the response latencies of different quantifier
classes. In hopes of examining differences in the neuroanatom-
ical patterns of activation during the processing of each type
of quantifier, as opposed to examining differences in difficulty
of quantifier processing, we factored out response latencies as
a nuisance covariate in our whole-brain analysis. We observed
that inferior parietal cortex was equally activated across quanti-
fier classes. Thus, inferior parietal cortex appears to contribute
a core component of quantifier comprehension that cannot be
easily explained by task-related attributes reflected in response
latencies. Right superior parietal cortex was up-regulated in com-
parison to frontal cortex for cardinal and logical quantifiers.
This may be related in part to the spatial distribution of atten-
tion when viewing a visual array for specific attributes to which
we must attend when evaluating the truth-value of a quanti-
fier (Corbetta et al., 1995; Corbetta and Shulman, 2002). Future
research is required to assess the contribution of superior parietal
cortex.

In addition to parietal cortex, prefrontal cortex has been impli-
cated in the comprehension of specific classes of quantifiers. For
example, majority quantifiers are hypothesized to require addi-
tional executive resources, such as working memory and strategic
planning, in order to evaluate the quantity of target items in a
set, maintain this numerosity in an active cognitive state while the
quantity of total items in a set is evaluated, and then to compare
these quantities. Non-aphasic patients with bvFTD have disease in
dlPFC and have difficulty with majority quantifier comprehension
despite relatively preserved cardinal quantifier comprehension
(McMillan et al., 2006; Troiani et al., 2009a; Morgan et al., 2011).
FMRI activation in dlPFC also was reported previously for major-
ity quantifier comprehension in healthy adults (McMillan et al.,
2005; Troiani et al., 2009a). Our observation in the current study
of selective bilateral dlPFC activation for majority quantifier
comprehension relative to cardinal and logical comprehension is
consistent with these prior reports.

Right inferior frontal cortex was selectively activated for log-
ical quantifiers compared to cardinal quantifiers. Right inferior
frontal cortex was also previously implicated in quantifier pro-
cessing (Heim et al., 2012). Inferior frontal cortex has been
associated with many processes, including a role in selection
within semantic memory (Thompson-Schill, 2003). However,
other work has observed rostral prefrontal activation for logi-
cal quantifiers (Troiani et al., 2009a) and patients with disease
in rostral prefrontal cortex have difficulty with logical quantifier
interpretation (Morgan et al., 2011). The basis for this discrepancy
is unclear. Other researchers have proposed that right inferior
frontal cortex has a role in controlling attention (Corbetta and
Shulman, 2002), as would be required to discriminate between the
objects of interest and the background in our study. While pre-
vious work examining quantifier comprehension has used simple
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objects and colored circles independent of a contextualizing back-
ground, the current study probed quantifier comprehension in
the context of complex scenes, possibly resulting in the inferior
frontal activation we observed. Similarly, when processing car-
dinal quantifiers, focus may be drawn to a location of interest
defined by the prompt; yet, when considering a logical quan-
tifier that requires a single exception from the stated condition
to confirm the truth-value of the condition, processing of the
entire scene, as opposed to a particular region, is required.
Additional work will be needed to investigate the basis for this
difference.

Earlier work examining quantifiers has also shown activation
in left inferior frontal cortex that we did not find in the cur-
rent study (McMillan et al., 2005). In one instance, left inferior
frontal cortex was activated when comparing “approximate” judg-
ments to “precise” judgments (McMillan et al., 2005). Presently,
however, a “precise quantifier” is defined to mean exclusively con-
ditions in which the quantifier is a number, whereas previously
“precise judgment” referred to any condition in which the target
objects must be counted in order to determine the scene’s rela-
tion to the target sentence. Further, we did not present stimuli
with numerosity discrepancies as large as those presented in the
past work, potentially decreasing our sensitivity to the left infe-
rior frontal activation associated with approximate judgments that
were found previously.

In conclusion, this fMRI study adds to the mounting evidence
suggesting that a large-scale fronto-parietal network contributes
to quantifier comprehension. We additionally demonstrated that
parietal cortex selectively supports cardinal and logical quanti-
fier comprehension, dlPFC selectively supports majority quantifier
comprehension, and right inferior frontal cortex supports logical
quantifier comprehension. Together, these findings emphasize the
relative importance of distinct neuroanatomical mechanisms for
supporting distinct semantic classes of quantifiers.
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