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Activating killer cell immunoglobulin-like receptors (KIR) in macaques are thought to be
derived by genetic recombination of the region encoding the transmembrane and
intracellular part of KIR2DL4 and a KIR3D gene. As a result, all macaque activating KIR
possess a positively charged arginine residue in the transmembrane region. As human
KIR2DL4 associates with the FCER1G (also called Fc receptor-gamma, FcRg) adaptor,
we hypothesized that in contrast to human and great ape the activating KIRs of macaques
associate with FcRg instead of DAP12. By applying co-immunoprecipitation of transfected
as well as primary cells, we demonstrate that rhesus macaque KIR3DS05 indeed
associates with FcRg and not with DAP12. This association with FcRg results in
increased and substantially stabilized surface expression of KIR3DS05. In addition, we
demonstrate that binding of specific ligands of KIR3DS05, Mamu-A1*001 and A1*011,
resulted in signal transduction in the presence of FcRg in contrast to DAP12.

Keywords: adaptor association, Co-immunoprecipitation (co-IP), rhesus macaque (Macaca mulatta), DAP12,
FCER1G, activating KIR, Activating killer cell immunoglobulin-like receptors, NK cell
INTRODUCTION

Stimulatory NK cell receptors usually do not transmit signals directly but through association with
activation motif-containing accessory proteins DAP12 and FcRg (also called g and encoded by the
FCER1G gene). This non-covalent interaction is mediated by basic residues (lysine and arginine) in
the transmembrane region of the receptor and an acidic residue (aspartic acid) in the adaptor
proteins. The prototypical activating KIRs in human interact with DAP12 (1–4), while KIR2DL4 is
the only KIR known so far to associate with the FcRg adaptor (5). Responsible for this different usage
of adaptor proteins are positions of the charged amino acid residues in the transmembrane regions
(6): a lysine and an aspartic acid residue can be found in prototypical KIRs and DAP12 at position 9,
respectively, while KIR2DL4 has an arginine and FcRg an aspartic acid residue at position 4 and 3,
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respectively. Both adaptors contain a single immunoreceptor
tyrosine-based activation motif (ITAM) of the sequence D/
ExxYxxL/I(x6–8)YxxL/I in their cytoplasmic region, which is
responsible for signal transduction upon binding of a specific
ligand by the associated receptor. In addition, these adaptor
proteins contribute to stabilization of the cell surface expression
of interacting stimulatory receptors of different types such as
CD16 (7), NKp30 and NKp46 (8), NKp44 (9), KIR (4, 5, 10),
CD94/NKG2C (3, 11), ILT1 (12) and many others (13).

KIR genomics in rhesus macaques is more complex as in
humans (14–21) and the genomic diversity and plasticity are
focused on lineage II KIR, i.e. to genes encoding three-domain
KIR proteins. In contrast to the other KIR genes, human and
macaque KIR2DL4 are orthologous (14, 22). Interestingly, the
activating rhesus macaque KIR genes were formed by
recombination between a KIR3D gene and KIR2DL4 (14) and
subsequent splice site mutation in intron 8 (23). Thus, the
transmembrane region of activating KIR proteins and of
KIR2DL4 are very similar. Hence, all activating rhesus
macaque KIR proteins possess an arginine residue at position 4
of the transmembrane region instead of a lysine residue that is
found in human and great ape activating KIR at position 9.
Which of the two adaptor proteins can associate with macaque
activating KIR was so far unknown. Here we demonstrate that a
prototypical rhesus macaque activating KIR protein indeed
interacts with FcRg and not with DAP12.
MATERIALS AND METHODS

Rhesus Macaque PBMC Samples
Peripheral blood samples of 8 rhesus macaques kept at the
German Primate Center were obtained from the Animal
Husbandry Unit of the DPZ for MHC class I genotyping
purposes. Peripheral blood mononuclear cells (PBMC) were
isolated as described previously (24). Briefly, peripheral blood
was diluted with RPMI medium (1:1) and transferred to a
leucosep tube filled with ficoll. After 40 min centrifugation at
800 x g, the PBMC layer was removed carefully and the cells
were washed with RPMI. Leftovers of PBMCs from genotyping
were used for co-immunoprecipitation experiments. As the
exact KIR genotype of the animals was not known, we pooled
PBMCs of 4 animals (about 5x106 cells in total). Two pools of
samples were frozen and stored at -140°C until use for
co-immunoprecipitation (see below).

Expression Constructs
The rhesus macaque KIR3DS05 with a C-terminal AcGFP tag
was described before (25). We cloned C-terminal myc-tagged
versions of either rhesus macaque DAP12 or FcRg in multiple
cloning site A of the pIRES expression plasmid (Clontech) and
AcGFP-tagged KIR3DS05 in multiple cloning site B. Multiple
cloning sites A and B in this vector are separated by an internal
ribosomal entry site (IRES). Such bicistronic mRNA expression
ensures simultaneous expression of the activating KIR3DS05 and
either the DAP12 or the FcRg adaptor protein in transfected cells.
Frontiers in Immunology | www.frontiersin.org 2
Transfection and Transfected Cell Lines
Plasmid DNA was transfected at 1:3 ratio using Lipofectamine
2000 (Thermo Fisher Scientific) into overnight exponentially
grown HEK-293 or HeLa cells in 6-well plates. Transfected cells
were cultured in the MediumHEK293 (DMEM, 10% inactivated
FBS and 0.1% Gentamycin) and incubated for ˜ 60 – 65 hours at
37°C with 5% CO2. Stably transfected HEK-293 cells were
obtained by selection in neomycin-containing medium for at
least 14 d. KIR3DS05AcGFP, KIR3DS05AcGFP+FcRgmyc, or
KIR3DS05AcGFP+DAP12myc in pIRES plasmid DNA were also
transfected in Jurkat cells using the electroporation-based
transfection system Nucleofector II according to the supplier’s
(Lonza) information for Jurkat cells and these cells were cultured
in MediumJurkat (RPMI, 10% inactivated FBS and 0.1%
Gentamycin) at 37°C with 5% CO2.

Flow Cytometry and Cell Sorting
Transfected HEK-293 or HeLa cells (1 – 2 × 106) were harvested
using warm (37 °C) 1x DPBS, centrifuged (5 min, 200 × g) and
resuspended in 100 ml staining solutionA (1x PBS, 0.5% BSA and
0.05% sodium azide) in 1.5 ml tubes. For staining of KIR3DS05,
1.1 mg of monoclonal mouse anti-macaque pan-KIR3D antibody
1C7 (26) was applied for 1 hour at RT. After the incubation, cells
were washed with 1xDPBS and 1 ml APC goat anti-mouse-IgG
antibody (Biolegend) was used in resuspended cells in 100 ml
staining solutionA for 30 min at RT.

For intracellular staining of myc-tagged adaptor proteins,
cells were fixed with fixation buffer (Biolegend), permeabilized
with intracellular staining permeabilization wash (Biolegend),
and blocked with blocking buffer (1x PBS and 2% BSA). Rabbit-
anti-myc-tag antibody (1:150) (Cell signaling technology) was
then applied for 40 min at RT. Finally, 1 µl Brilliant Violet 421
conjugated donkey anti-rabbit IgG secondary antibody
(Biolegend) was added and incubated for another 30 min at
RT with staining solutionA.

Live/dead staining of cells was performed in 100 ml ice cold
Zombie aqua fixable viability kit (Biolegend) for 10 min at RT
(dark) and dead cells were excluded from analysis. Cells were
analyzed in a BD LSR II flow cytometer (BD Biosciences) and
data were analyzed using FlowJo 10.7.

Cells were sorted using the SH800 cell sorter (Sony) and
subsequently cultured in appropriate culture medium.

Analysis of Stabilization of KIR3DS05
Expression by Adaptor Proteins
After antibiotic selection, stably expressing KIR3DS05AcGFP,
KIR3DS05AcGFP+FcRgmyc and KIR3DS05AcGFP+DAP12myc

HEK-293 cells were suspended in sorting buffer (1x PBS, 2%
FCS and 2 mM EDTA). Only AcGFP-expressing cells were then
gated and equal number of cells (around 80 – 90% AcGFP-
positive) were sorted and cultured in MediumHEK. We then
reanalyzed the cells using antibody 1C7 and used identical
frequency of 80 – 90% KIR3DS05-positive cells as starting
point in all experiments. After different passages with intervals
of two to three days, an aliquot of cells was removed after each
passage to measure KIR3DS05 expression by flow cytometry.
April 2021 | Volume 12 | Article 678964
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Stimulation of KIR3DS05 and Adaptor
Protein-Expressing Cells
Stimulation of KIR3DS05 was performed using HEK-293 cells
expressing AcGFP-tagged MHC class I ligands Mamu-A1*001 or
A1*011 and as control the non-interacting Mamu-B*030 (25).
Jurkat cells expressing KIR3DS05 with and without adaptor
proteins (see above expression constructs) were incubated with
these Mamu class I-expressing HEK-293 cells (overnight
exponentially grown) in 12-well plates for 14 hours in
MediumJurkat. As readout of stimulation via KIR3DS05 and
associated adaptor protein, we measured expression of CD69
by flow cytometry. The non-adherent Jurkat cells were carefully
removed from the adherent HEK-293 cells, centrifuged (5 min,
300 x g) and resuspended in 100 ml staining solutionA for
staining with 3 ml APC anti-human CD69 antibody
(Biolegend) for 40 min at RT. Jurkat cells were differentiated
from accidentally transferred HEK-293 cells in flow cytometry
based on forward and side scatter characteristics.

Co-Immunoprecipitation (Co-IP)
About 1 – 2 × 106 sorted HEK-293 cells stably expressing
KIR3DS05AcGFP, KIR3DS05AcGFP+FcRgmyc or KIR3DS05AcGFP+
DAP12myc were grown individually in T25 tissue culture flask in
MediumHEK293 at 37°C with 5% CO2. The culture medium was
discarded and the cells were washed with ice cold 1× DPBS. After
discarding the DPBS, cells were lysed in 400 ml ice cold lysis buffer
(10 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% N-Dodecyl b-D-
maltoside (Thermo Fisher Scientific), 0.4 mM EDTA and 1 tablet
protease-inhibitor-cocktail complete mini (Roche Diagnostic)) for
20 min at 4°C with gentle shaking. After centrifugation (15 min,
16000 × g), the collected lysate was pre-cleared using 40 µl Protein
G sepharose beads (GE healthcare) and the protein concentration of
the lysate was determined in a Qubit 4 fluorometer using Qubit
protein assay kits (Thermo Fisher Scientific). Subsequently, 4.4 mg
of monoclonal antibody 1C7 was added to ˜40 mg pre-cleared lysate
and incubated overnight at 4°C with rotation. Protein G beads were
added and incubated for another 5 hours at 4°C. After washing the
beads, bound proteins were released by incubation in 30 ml 5x SDS-
PAGE reducing protein loading buffer (Bosterbio) at 95°C for 5 min
and centrifuged for 5 min, 10000 × g at RT. The supernatant was
collected and either used directly for SDS gel electrophoresis or was
stored at -20°C.

About 5 × 106 rhesus macaque pooled PBMCs were lysed as
described above and pre-cleared lysates were subjected to Co-IP
with 1C7 antibody in reducing buffer. The collected samples were
ready to use for SDS-page or stored at – 20°C.

Western Blot
Prepared lysate and co-immunoprecipitated protein samples
(˜ 16 ml) were separated in 14% Bis-Tris gels or 8 – 16% Mini-
protean-TGX stain free protein gels (Bio-Rad) and blotted on a
nitrocellulose pure transfer membrane (Ultracruze) or Trans-
Blot Turbo mini PVDF (Bio-Rad) using the Trans-Blot Turbo
Transfer system (Bio-Rad). After blocking in Pierce protein-free
blocking buffer (Thermo fisher scientific), FcRgmyc or DAP12myc
Frontiers in Immunology | www.frontiersin.org 3
were detected using 1 mg/ml rabbit anti-myc antibody (1:1000;
Abcam) and a secondary antibody goat anti-rabbit
immunoglobulin horse radish peroxidase (HRP)-conjugated
(1:1500; Dako) in reducing condition in blocking buffer. FcRg
and DAP12 were detected in rhesus macaque PBMCs using
polyclonal antibodies goat anti-FcRg and rabbit anti-DAP12
(both with 1:1000 dilution), and as secondary antibodies HRP-
conjugated rabbit anti-goat immunoglobulin and goat anti-
rabbit immunoglobulin (both in 1:1500 dilution; all polyclonal
antibodies from Santa Cruz Biotechnology) in Every blot
blocking buffer (Bio-Rad).

Confocal Laser Microscopy
Preparation and staining of transiently transfected HEK-293 cells
were the same as described above for flow cytometry. Cells were
stained with 1C7 antibody and as secondary antibody 1 ml of PE
goat anti-mouse IgG (Biolegend) to detect cell surface-expressed
KIR3DS05 and were subsequently fixed, permeabilized, blocked
and stained intracellularly with 0.5 mg anti-myc antibody
(Abcam) and 0.25 mg APC conjugated goat anti-rabbit IgG
(Abcam) to detect myc-tagged adaptors. Finally, a drop of
Fluoromount-G mounting medium with DAPI (Thermo Fisher
Scientific) was applied on a microscope glass slide (Carl Roth),
and the stained cells were transferred onto the mounting
medium and incubated for 5 min at RT, before fixing the cells
with a cover slip (24 × 24 mm). The images were captured with
the Plan-Apochromat 63x/1.40 oil objective in confocal laser
microscope LSM 800 (Carl Zeiss) fitted with ZEN 2.3 software
(Carl Zeiss) and mean fluorescence intensity (MFI) value of
KIR3DS05 (1C7) and FcRg/DAP12 (anti-myc) in 11 individual
stained cells were measured using the same software.

Statistical Analysis
Differences between two groups were analyzed by applying a
Student’s t-test (parametric, unpaired, two-tailed, 95%
confidence level) using GraphPad Prism 9. Differences between
groups with p values >0.05 were regarded as not
statistically significant.
RESULTS

Identification of the Adaptor Protein for
Rhesus Macaque Activating KIR
To find out the interacting adaptor proteins of activating KIR
proteins in rhesus macaques, we expressed AcGFP-tagged
KIR3DS05 alone or together with myc-tagged FcRg or DAP12
adaptor protein in HEK-293 cells. Equal numbers of
KIR3DS05AcGFP expressing cells were sorted and their lysate
was used for Co-IP with anti-rhesus macaque KIR antibody 1C7
(26). The cell lysis buffer contained N-Dodecyl b-D-maltoside,
which was previously shown to be superior to other detergents in
identifying receptor-adaptor complexes in NK cells (9). Western
blot analysis with an HRP-conjugated anti-myc antibody was
performed to detect which adaptor protein is associated with
April 2021 | Volume 12 | Article 678964
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KIR3DS05. Bands of the expected size of 10 –13 kDa were detected
for both FcRg and DAP12 in the respective control samples
(Figure 1A). When KIR3DS05 was immunoprecipitated, we
detected only the FcRg protein, but not DAP12 (Figure 1A). To
confirm this finding obtained from transfected cells and tagged
adaptor proteins, we immunoprecipitated KIR proteins from two
pools of rhesus macaque PBMCs with anti-rhesus pan-KIR3D
antibody 1C7 (26) and used polyclonal antibodies against FcRg
and DAP12 in western blots. In accord with the transfection
experiments, also in primary cells only FcRg and not DAP12 was
found in immunoprecipitated PBMC samples (Figure 1B). These
findings clearly demonstrate that stimulatory KIR in rhesus
macaques interact with the FcRg adaptor protein and not
with DAP12.

FcRg Adaptor Protein Promotes High Cell
Surface Expression of Rhesus Macaque
Activating KIR
Enhanced cell surface expression was previously demonstrated
for human KIR2DS1, KIR2DS2, KIR2DS4 (10), and KIR3DS1 (4)
in the presence of DAP12, and for human KIR2DL4 in the
presence of FcRg (5). Thus, we transiently transfected AcGFP-
tagged KIR3DS05 with or without adaptor proteins in HEK-293
and HeLa cells and compared its cell surface expression in flow
cytometry. In both cell lines, KIR3DS05AcGFP revealed about
2 – 3 times higher cell surface expression in the presence of
FcRg as compared to the presence of DAP12 or without any
adaptor (Figures 2A, B). The enhanced expression is seen in
both %-positive cells and mean fluorescent intensity. This higher
expression is not due to transfection efficiency as reflected by
comparable GFP expression in both experimental settings
(Figure 2C), while 89.0% ( ± 4.8%) of these GFP-positive cells
express KIR3DS05 in combination with FcRg and only 40.2%
(± 2.7%) of the GFP-positive cells express KIR3DS05 in the
Frontiers in Immunology | www.frontiersin.org 4
absence of any adaptor protein or 49.6% ( ± 7.6%) with DAP12
(Figures 2C, D).

Expression of KIR3DS05AcGFP with myc-tagged FcRg and
DAP12 in transfected HEK-293 cells was also investigated by
confocal laser microscopy. Strong signals of KIR3DS05 (green)
and co-localization of KIR3DS05 with FcRgmyc (red) complexes
were detected, whereas weaker signals of KIR3DS05 and no
clear signs of co-localization with DAP12myc were observed
(Figure 3A). The measured MFI from a comparable area
among these cells shows stronger KIR3DS05AcGFP expression
when FcRgmyc is present as compared to co-expression with
DAP12 (Figure 3B). The positive correlation of KIR3DS05 and
myc expression was more evident with FcRg (Figure 3C). The
ratio of % cells expressing KIR3DS05 and adaptor and only the
adaptor being 1.4 in the combination of KIR3DS05 with FcRg
and 0.5 in combination with DAP12.

As KIR3DS05AcGFP was expressed from a bicistronic mRNA
with either FcRgmyc or DAP12myc, the similar amount of the two
adaptor proteins in both settings implies that also comparable
amounts of KIR3DS05 protein are present. Thus, the observed
differences in KIR3DS05 cell surface expression are due to
functional differences in pairing of KIR3DS05 with these two
adaptor proteins and not to experimental variation.

FcRg Adaptor Protein Stabilizes Cell
Surface Expression of Rhesus
Macaque KIR3DS05
As the proper adaptor protein stabilizes expression of activating
human KIR proteins, we tested whether the presence of FcRg also
results in stabilized KIR3DS05 cell surface expression. Thus, we
sorted 80-90% AcGFP-positive HEK-293 cells stably transfected
with either KIR3DS05AcGFP, KIR3DS05AcGFP+FcRg or
KIR3DS05AcGFP+DAP12 and stained these cells with 1C7
antibody to measure KIR3DS05 cell surface expression in the
A B

FIGURE 1 | Co-immunoprecipitation of adaptor proteins. (A) Immunoprecipitation of KIR3DS05 was performed with anti-rhesus macaque pan-KIR3D antibody 1C7
(26) as indicated (IP). As positive control we used cell lysates of KIR and adaptor protein-expressing cells. Anti-myc antibody was used in blots to detect myc-tagged
FcRg and DAP12 adaptor proteins. A representative figure is shown from five independent experiments. The molecular weight of rhesus macaque FcRg and DAP12
is 13.2 and 10.8 kDa, respectively, and the size difference is hardly detectable in the western blot analyses. (B) Lysates of rhesus macaque PBMCs were used
directly (pos. control) or were subjected to immunoprecipitation with antibody 1C7 (IP). Detection of adaptor proteins in western blots was performed with anti-FcRg
and anti-DAP12 polyclonal antibodies. To control for unspecific binding of the polyclonal anti-adapter protein antibodies in western blot, we used FcRg and DAP12
negative cells (untransfected HEK-293 cells; neg. control). The results from one out of two independent experiments are shown.
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different cell passages every 2 - 3 days (Figure 4A). KIR3DS05
expressed in the absence of any adaptor protein rapidly leads to
reduced cell surface expression over time and a similar loss was
noticed for KIR3DS05 in the presence of tagged DAP12: only about
3 - 7% KIR3DS05-positive cells remained after 5 passages (Figure
4B). Contrasting this loss is a relatively stable expression of
KIR3DS05 in the presence of FcRg and only a slow reduction
noticed over time (Figures 4A, B). The differences between
KIR3DS05AcGFP+FcRg and the other two conditions are
statistically significant for all time points, whereas the comparison
between KIR3DS05AcGFP+DAP12 and KIR3DS05AcGFP is
statistically significant only after passage 1 (p=0.0372) but not
thereafter (Figure 4B). Thus, FcRg not only physically interacts
with KIR3DS05, its association also stabilizes cell surface expression
of this stimulatory KIR protein.

Stimulatory Signals of Activating KIR Are
Transmitted via FcRg
After demonstrating that FcRg is the proper adaptor protein for
activating KIR, we investigated whether signal transduction can
Frontiers in Immunology | www.frontiersin.org 5
be demonstrated in the presence of FcRg as compared to
DAP12. KIR3DS05 was particularly suitable as its ligand
specificity was determined by us before (25). For this, we
transfected KIR3DS05AcGFP, KIR3DS05AcGFP+FcRgmyc or
KIR3DS05AcGFP+DAP12myc in Jurkat cells. Also in Jurkat cells,
which lack endogenous expression of both FcRg and DAP12, the
expression of KIR3DS05 was higher in the presence of FcRg
(31.8%) as compared to DAP12 (17.5%) or without adaptor
protein (15.7%; Figure 5A). These transfected cells were then
stimulated for 14 h with HEK-293 cells expressing KIR3DS05
ligands Mamu-A1*001AcGFP and Mamu-A1*011AcGFP as well as
the non-interacting Mamu-B*030AcGFP as control. The Mamu
class I protein expression of about 85% positive cells and the MFI
according to AcGFP expression was comparable between the
three cell lines (Figure 5B). As readout of stimulation, we
measured CD69 expression on Jurkat cells by flow cytometry.
Following stimulation with the cognate ligands Mamu-A1*001
and Mamu-A1*011, CD69 is strongly induced (17.1-22.0%) on
Jurkat cells expressing KIR3DS05+FcRg. In contrast, very little
CD69 expression was noticed on Jurkat cells expressing
A B

C D

FIGURE 2 | Flow cytometry analysis of rhesus macaque KIR3DS05 cell surface expression in the presence of myc-tagged FcRg or DAP12 adaptor proteins.
(A) Histograms of a representative experiment of HEK-293 and HeLa cells transiently transfected with AcGFP-tagged KIR3DS05, either alone or in combination with
either DAP12 or FcRg (thick lines). Monoclonal anti-rhesus macaque KIR antibody 1C7 was used to detect KIR3DS05 expression indicated as percent positive cells.
Untransfected HEK-293 and HeLa cells were used as respective negative controls of 1C7 staining (thin lines). (B) Mean fluorescence intensity of KIR3DS05
expression in transfected cells among independently performed experiments (HEK-293 n=5; HeLa n=3). (C) HEK-293 cells after transfection with AcGFP-tagged
KIR3DS05 were gated on the singlet cells and then 1C7-stained cells were measured within the fraction of AcGFP-positive cells population. A representative
experiment is shown. (D) 1C7-stained cells within the AcGFP-positive fraction were measured in individual experiments (n=3). ns, statistically not significant.
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KIR3DS05AcGFP alone (0.6-0.9%) or in combination with
DAP12myc (2.8-3.6%; Figure 5C). In the presence of the non-
interacting Mamu-B*030, no CD69 induction was seen in all
three experimental settings as anticipated (Figure 5C).

Altogether these results demonstrate that in rhesus macaques
the FcRg protein is the adaptor that interacts with activating KIR
such as KIR3DS05. The presence of FcRg is necessary not only
for the stable expression of KIR3DS05 on the cell surface, but
also for signal transduction. Figure 6 summarizes our findings
and the functional consequences of differential presence of the
two adaptor proteins for expression and function of activating
KIR in rhesus macaques.
DISCUSSION

The association of signaling adaptor molecules and activating
KIR proteins in Old World monkeys such as rhesus macaques
was unknown so far. Here we could unambiguously show by
different methods that a prototypical activating KIR protein of
rhesus macaques associates with the FcRg and not the DAP12
adaptor protein.

For the simultaneous expression of an activating KIR protein
together with either the FcRg or DAP12 adaptor, we used an IRES-
containing expression vector. To ensure equal expression of FcRg
and DAP12 adaptor proteins, we placed the genes for adaptors
Frontiers in Immunology | www.frontiersin.org 6
upstream and the KIR3DS05-encoding gene downstream of the
IRES sequence in the expression vector. The downstream position
of a gene is known for lower expression efficiency as compared to
the position upstream of the IRES (28). Through this order of the
genes in the expression construct, we achieved not only
simultaneous expression of adaptor and KIR, but also that the
amount of KIR3DS05 is likely less than the adaptor protein and,
hence, KIR3DS05 and not the adaptor protein would (if at all) be
the limiting factor in the following experiments. After
demonstrating the association of KIR3DS05 and FcRg by co-
immunoprecipitation in transfected HEK-293 cells as well as in
rhesus macaque PBMCs, we analyzed in transfected cells the surface
expression of KIR3DS05 in the presence or absence of adaptor
proteins in flow cytometry. These experiments showed that the
highest percentages of KIR3DS05-positive cells as well as the highest
mean fluorescence intensity were achieved when FcRg was present
and not DAP12. Furthermore, also confocal microscopy not only
indicated that KIR3DS05 co-localizes with FcRg but showed also the
highest expression level of KIR3DS05 in this combination. These
data indicate that the KIR-interacting FcRg obviously stabilized the
cell surface expression of KIR3DS05 and that its absence results in
low cell surface expression of KIR3DS05. Indeed, when we followed
the heterologous expression of KIR3DS05 with or without adaptors
over several cell passages, its expression remained high in the
presence of FcRg with just very few loss over time, whereas the
expression of KIR3DS05 with DAP12 or without any adaptor
A

C

B

FIGURE 3 | Confocal laser microscopy analysis of rhesus macaque AcGFP-tagged KIR3DS05 cell surface expression in the presence of myc-tagged FcRg or
DAP12 adaptor proteins. (A) Cells were stained as indicated. In the merged figures, yellow color indicates co-localization of KIR3DS05 (green) and adaptor (red).
DAPI staining (blue) shows cell nuclei. Scale bar represents 10.20 µm. (B) Single confocal sections of 11 randomly chosen individual cells were also used to analyze
mean fluorescence intensity values using the ZEN software (version 2.3). The means of columns were calculated and corresponding experiments were compared.
Statistical significance of differences is shown. ns, not significant. (C) Flow cytometric analysis of correlation of cell surface expressed KIR3DS05 in combination with
adaptor proteins in cells stained with 1C7 and anti-myc antibodies. The gates indicate: a = 1C7 and myc-positive; b = only myc-positive.
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protein rapidly decreased over time. Thus, the higher percentage of
KIR3DS05-expressing cells that was noticed after transfection is
most probably due to the stabilizing capability of FcRg. This also
indicates a crucial role of FcRg in the regulation of stimulatory
KIR3D proteins in macaque NK cells. Indeed, when FcRg is absent
or only the ‘wrong’ adaptor is present, signal transduction upon
interaction with a cognate ligand is abrogated as shown by our co-
incubation experiments with rhesus macaque MHC class I proteins.
It should be mentioned that we noticed a small but statistically
significant effect of the presence of DAP12 on the stability of cell
surface expression of KIR3DS05 (Figures 2 and 4). A possible
explanation for this observation might be that we used transfected
cells with a strong promoter and, thus, higher levels of adaptor
expression than under normal conditions of endogenous promoter
control. Indeed, this effect was only seen shortly after transient
transfection (Figure 2) or after start of a time-course kinetic
experiment with stably transfected cells (Figure 4). This ectopic
expression of DAP12 in the cell membrane may contribute to
slightly stabilizing KIR3DS05 cell surface expression on the short
term, but due to lack of molecular interaction, DAP12 is not able to
stabilize it over time.

It was previously shown that genes encoding activating KIRs
in rhesus macaques were most probably derived from
Frontiers in Immunology | www.frontiersin.org 7
recombination involving KIR2DL4 and inhibitory KIR3D genes
(14, 23). Thus, our data shown here are not only in accord with
human KIR2DL4 associating with FcRg (5), our data also
support the finding that activating KIR in macaques were
indeed derived from such gene recombination during evolution
of Old World monkey KIR genes. Besides Old World monkeys,
an arginine residue instead of a lysine in the transmembrane
region of activating KIR is also present in New World monkeys
(29, 30) and in small apes (31). In contrast, all hominid species
(great apes and human) display a lysine residue in activating KIR
proteins that associate with the DAP12 adaptor. This indicates
that in the evolution of primates, a change from FcRg to DAP12
in the usage of the activating KIR-associating adaptor protein
along with corresponding adaptations in the transmembrane
region of activating KIR were fixed in the lineage leading to
extant hominid primates. Hence, the usage of FcRg for activating
KIR in platyrrhini (NewWorld monkeys), catarrhini (OldWorld
monkeys) and gibbons is likely the ancestral situation. The
reason for the change in the usage of specific adaptors for
activating KIR in hominid primates is unknown. The evolution
of KIR genes in primates is very dynamic and frequently leads to
formation of new genes by recombination (14–23), most
probably driven by infections. Thus, it appears advantageous to
A

B

FIGURE 4 | Stability of AcGFP-tagged KIR3DS05 expression in the presence of myc-tagged FcRg and DAP12 adaptor proteins. HEK-293 cells stably
transfected with AcGFP-tagged KIR3DS05 either alone or in combination with either myc-tagged FcRg or DAP12 adaptor proteins were followed for
KIR3DS05 expression over time (one cell passage corresponds to 2-3 days). (A) Flow cytometric analysis of KIR3DS05 cell surface expression measured
with antibody 1C7 after each passage of the cells. (B) Identical percentages of KIR3DS05-positive proteins were used as starting point (passage 0) and
expression of KIR3DS05 (% positive cells) was measured after each passage of the cells. The results of three independent experiments and of unpaired t
tests are shown (ns, not significant).
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A

B C

FIGURE 5 | Signal transduction via adaptor protein resulting from interaction of KIR3DS05 with its cognate ligands. Transfected (bold lines) and untransfected
control (thin lines) cells are shown. (A) Jurkat cells were transfected with plasmids carrying AcGFP-tagged KIR3DS05 and either myc-tagged DAP12 or FcRg. Cell
surface expression of KIR3DS05 was analyzed in FACS using antibody 1C7. (B) Flow cytometric analysis of AcGFP expression in HEK-293 cells stably transfected
with constructs encoding AcGFp-tagged versions of Mamu class I that were described previously (25, 27). (C) The transfected Jurkat cells were incubated for 14 h
with the HEK-293 cells expressing the KIR3DS05 ligands Mamu-A1*001 and A1*011 or the non-interacting Mamu-B*030 as negative control. Recognition of the
ligands and signal transduction in the transfected Jurkat cells was monitored by CD69 expression in flow cytometry.
FIGURE 6 | Functional consequences resulting from presence of different adaptor proteins in rhesus macaque NK cells expressing stimulatory KIR receptors.
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have at hand different opportunities for adaptor proteins in order
to cope with different requirements from activating KIR. Indeed,
the broad expression of FcRg, DAP12 or DAP10 in different cells
of the immune system, their association with diverse receptors
and their stabilizing role of receptor expression mirror their
importance and their regulatory roles (10, 13, 32, 33). Adaptive
NK cells in humans generated as a consequence of infection with
cytomegalovirus (CMV) are characterized by loss of FcRg
expression through epigenetic silencing (34, 35). While such
loss of FcRg is thought to result in concomitant loss of
stimulatory receptors as shown for NKp46 and NKp30 (8, 35–
38), it also results in increased killing capacity of adaptive NK
cells mediated via CD16 (34, 35, 39). This might be explained by
association of CD16 with both FcRg and TCRϛ signaling proteins
(7, 40–42) and the higher number of ITAMs in TCRϛ compared
to FcRg. Thus, CMV-associated adaptive human NK cells are
regulated by loss of FcRg to sharpen CD16-mediated recognition
of antibody-tagged cell targets. FcRg-deficient adaptive NK cells
were also reported in CMV-infected rhesus macaques (43). We
hypothesize, that loss of FcRg in adaptive NK cells of macaques
not only sharpens their CD16-mediated effector function as
described previously by others (44), but that concomitant loss
of activating KIRs further refines their immune function: moving
towards antibody-driven and away from ligand (MHC class I)-
driven recognition. If this would indeed be the case, then
macaque activating KIRs are expected to have a more
Frontiers in Immunology | www.frontiersin.org 9
prominent role in shaping adaptive NK cell functions as their
human counterparts.
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