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Abstract The pial arterial vasculature of the human brain is the only blood supply to the 
neocortex, but quantitative data on the morphology and topology of these mesoscopic arteries 
(diameter 50–300 µm) remains scarce. Because it is commonly assumed that blood flow velocities 
in these vessels are prohibitively slow, non- invasive time- of- flight magnetic resonance angiography 
(TOF- MRA)—which is well suited to high 3D imaging resolutions—has not been applied to imaging 
the pial arteries. Here, we provide a theoretical framework that outlines how TOF- MRA can visualize 
small pial arteries in vivo, by employing extremely small voxels at the size of individual vessels. We 
then provide evidence for this theory by imaging the pial arteries at 140 µm isotropic resolution 
using a 7 Tesla (T) magnetic resonance imaging (MRI) scanner and prospective motion correction, 
and show that pial arteries one voxel width in diameter can be detected. We conclude that imaging 
pial arteries is not limited by slow blood flow, but instead by achievable image resolution. This 
study represents the first targeted, comprehensive account of imaging pial arteries in vivo in the 
human brain. This ultra- high- resolution angiography will enable the characterization of pial vascular 
anatomy across the brain to investigate patterns of blood supply and relationships between vascular 
and functional architecture.

Editor's evaluation
This article revisits a classic magnetic resonance imaging technique to image brain vasculature, 
showing that small blood vessels, deemed too difficult to image, could be targeted effectively with 
extremely high- resolution imaging. This proof- of- concept, both theoretical and experimental, may 
be of use for building detailed models of brain physiology and detecting fine alterations of blood 
vessels in disease.
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Introduction
The pial arterial vasculature of the cerebrum consists of smaller distal arteries and arterioles that cover 
the cerebral cortical surface, and connects the branches of the three major supplying arteries of the 
cerebrum—the anterior, middle, and posterior cerebral arteries—with the penetrating intracortical 
arterioles, which deliver blood into the cortical grey matter (Cipolla, 2009; Jones, 1970). Notably, 
the pial arterial vasculature is the only source of blood supply to the neocortex (Mchedlishvili and 
Kuridze, 1984), and its redundancies are organized in three tiers: global re- routing of blood through 
the circle of Willis, intermediate anastomoses between branches originating from the three major 
arteries, and local loops formed by pial anastomoses within the same branch (Blinder et al., 2010; 
Duvernoy et al., 1981).

Although extensive anatomical studies have described topological properties and the relevant 
constituents of the pial arterial vasculature (Pfeifer, 1930; Szikla et al., 1977), quantitative data of 
the human pial arterial vasculature remain scarce (Cassot et al., 2006; Helthuis et al., 2019; Hirsch 
et al., 2012; Payne, 2017; Schmid et al., 2019). The by far still ‘most comprehensive and influential 
work’ (Hirsch et al., 2012) is the detailed description of the pial vasculature by Duvernoy et al., 
1981, which examined 25 brains using intravascular ink injections. As indispensable as this dataset has 
been, 3D reconstructions of the vascular network and surrounding anatomy were not provided in this 
study. A second recent analysis performed by Helthuis et al., 2019, used corrosion casts from four 
brain specimens and provided valuable insights into the branching pattern of the arterial vasculature. 
However, only limited information can be obtained in this way about the morphometry of vessels, in 
particular their position and geometric relationship with the cortex. Further, the elaborate preparation 
and the limitation to ex vivo samples restrict the applicability of these methods when, for example, 
one wants to characterize the large variability across individuals in pial arterial morphometry (Alpers 
et al., 1959; Beevor and Ferrier, 1997; Cilliers and Page, 2017; Gomes et al., 1986; Papantchev 
et al., 2013; Stefani et al., 2000; van der Zwan et al., 1993) and function (Baumbach and Heistad, 
1985; van Laar et al., 2006).

Given the central role of the pial arterial vasculature for healthy human brain function (Hirsch et al., 
2012; Iliff et al., 2013; Xie et al., 2013), its impact on functional magnetic resonance imaging (fMRI) 
signals (Bright et al., 2020; Chen et al., 2020), and its involvement in numerous cerebrovascular 
diseases (Hetts et al., 2017; McConnell et al., 2016), there is a clear need to be able to image the 
pial arterial vasculature in individual subjects to characterize its morphometry and topology including 
arterial diameter and geometric relationship with the cortex (Mut et al., 2014). For example, many 
intracranial pathologies have selective involvement of superficial vessels (Ginat et al., 2013; Herz 
et al., 1975; Hetts et al., 2017; McConnell et al., 2016; Song et al., 2010; Uhl et al., 2003), and 
the outcome of stroke patients is heavily dependent on the status of the collateral circulation (Gins-
berg, 2018; Raymond and Schaefer, 2017). Yet, existing hemodynamic modelling approaches have 
to synthesize the pial arterial vasculature either implicitly (Park et al., 2020) or explicitly (Ii et al., 
2020) from an incomplete quantitative understanding of its morphometry and variability. In addi-
tion, modelling of hemodynamic changes in response to neural activity needs to account for the 
effect of pial vessels (Markuerkiaga et al., 2016; Polimeni et al., 2010; Uludağ and Blinder, 2018). 
Although signal changes in fMRI data using a blood- oxygenation- level- dependent (BOLD) contrast 
arise predominantly on the venous side of the vascular hierarchy (Ogawa et al., 1990), the stron-
gest vascular response to neural activity is located in intracortical arteries and arterioles (Hillman 
et al., 2007; Vanzetta et al., 2005), and significant diameter changes in upstream arteries have been 
observed (Bizeau et al., 2018; Cho et al., 2012; Cho et al., 2008). With the recent interest in cerebral 
blood volume- based fMRI (Huber et al., 2014) and the numerous accounts of vascular contributions 
found in BOLD fMRI signals (Amemiya et al., 2020; Bright et al., 2020; Chen et al., 2020; Drew 
et  al., 2020), including a detailed, subject- specific depiction of the underlying angio- architecture, 
would immensely augment forthcoming modelling initiatives (Havlicek and Uludağ, 2020; Tak et al., 
2014).

So far, numerous approaches exist to image large, macroscopic proximal intracranial arteries such 
as the circle of Willis including its branches and the basal arteries with magnetic resonance imaging 
(MRI) (Carr and Carroll, 2012). Similarly, the density of microscopic, parenchymal vessels can be 
quantified through techniques such as vessel size imaging and capillary density imaging (Kiselev 
et al., 2005; Troprès et al., 2001; Xu et al., 2011), and newer methods for estimates of cerebral 
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blood volume of the arteriolar side of the microvascular tree (Hua et al., 2019). However, direct non- 
invasive imaging of the mesoscopic vessels of the pial arterial network, that is, arteries with a diameter 
between 50 and 300 µm, is not in current use, either in clinical practice or in basic research.

Recent studies have shown the potential of time- of- flight (TOF)- based magnetic resonance angiog-
raphy (MRA) at 7 Tesla (T) in subcortical areas (Bouvy et al., 2016; Bouvy et al., 2014; Ladd, 2007; 
Mattern et al., 2018; Schulz et al., 2016; Von Morze et al., 2007). In brief, TOF- MRA uses the high 
signal intensity caused by inflowing water protons in the blood to generate contrast, rather than an 
exogenous contrast agent. By adjusting the imaging parameters of a gradient- recalled echo (GRE) 
sequence, namely the repetition time (TR) and flip angle, the signal from static tissue in the back-
ground can be suppressed, and high image intensities are only present in blood vessels freshly filled 
with non- saturated inflowing blood. As the blood flows through the vasculature within the imaging 
volume, its signal intensity slowly decreases. (For a comprehensive introduction to the principles of 
MRA, see for example Carr and Carroll, 2012.) At ultra- high field, the increased signal- to- noise ratio 
(SNR), the longer  T1  relaxation times of blood and grey matter, and the potential for higher resolution 
are key benefits (Von Morze et al., 2007). However, the current description of the magnetic reso-
nance physics underlying TOF- MRA (Brown et al., 2014a; Carr and Carroll, 2012) is not tailored to 
imaging pial arteries, because their small diameter and complex branching pattern require particular 
considerations. For example, while the advantage of reduced voxel size for imaging small arteries 
has empirically been shown numerous times (Haacke et al., 1990; Mattern et al., 2018; Von Morze 
et al., 2007), the sentiment prevails (Chen et al., 2018; Masaryk et al., 1989; Mut et al., 2014; Park 
et al., 2020; Parker et al., 1991; Wilms et al., 2001; Wright et al., 2013) that the slower flow in small 
arteries should significantly diminish the TOF effect (Haacke et al., 1990; Pipe, 2001), and perhaps 
for that reason imaging the pial arterial vasculature in vivo has received little attention. Here, we revisit 
the topic of high- resolution TOF- MRA to investigate the feasibility of imaging the pial arterial vascu-
lature in vivo at 7 T. We demonstrate, based on simulations and empirical data, that pial arteries can 
be detected reliably. Note that while some, particularly larger pial arterials, have undoubtedly been 

Figure 1. Properties of the pial arterial vasculature of the human brain. 
 Left: The pial vascular network on the medial orbital gyrus depicted using intravascular India ink injection (adapted with permission from Duvernoy, 
1999; this is not covered by the CC- BY 4.0 license and further reproduction of this panel would need permission from the copyright holder). The arrows 
indicate the average diameter of central pial arteries (260–280 μm), peripheral pial arteries (150–180 μm), and pial arterioles (<50 μm). Pial anastomoses 
are commonly formed by arteries ranging from 25 to 90 μm in diameter. For reference, the diameter of intracortical penetrating arterioles is 
approximately 40 μm (scale bar: 2.3 mm). Right: Pia- arachnoid architecture (adapted with permission from Ranson and Clark, 1959; this is not covered 
by the CC- BY 4.0 license and further reproduction of this panel would need permission from the copyright holder) illustrates the complex embedding 
of pial vessels, which are surrounded by various membrane layers that form the blood- brain barrier, cerebrospinal fluid, and grey matter (Marin- Padilla, 
2012; Mastorakos and McGavern, 2019; Ranson and Clark, 1959).

© 1959, Springer. W. B. Saunders Company Permissions: The left part of Figure 1 is adapted from Duvernoy, 1999, and the right side of Figure 1 is 
adapted from Ranson and Clark, 1959. Relevant permission have been obtained from the publishers. These are not covered by the CC- BY 4.0 license 
and further reproduction of this panel would need permission from the copyright holder
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visualized incidentally in high- resolution images, we present here the first targeted, comprehensive 
account of imaging the pial arteries.

In the following, we first summarize the relevant properties of the pial arterial vasculature, in partic-
ular vessel diameter, blood velocity, and blood delivery time. With this in mind, we revisit the theory 
behind 3D TOF- MRA and derive optimal parameters for imaging these vessels. We then demonstrate 
the supra- linear relationship between vessel contrast and voxel size and explore the requirements for 
accurate vessel detection. This work argues that, from a physiological and theoretical perspective, 
it is indeed possible to image the pial arterial network using a TOF- based contrast. Subsequently, 
we present results from several experiments supporting our hypothesis and ultimately employ high- 
resolution TOF- MRA with prospective motion correction to image the pial arterial vasculature at 
140 μm isotropic resolution.

Theory
Anatomical architecture of the pial arterial vasculature
The pial arterial vasculature consists of smaller arteries and arterioles on the cortical surface (Figure 1, 
left) (Duvernoy, 1999). Pial arteries range in diameter from 280 to 50 μm and connect to the smaller 
(<50  μm) intracortical arterioles. Similar values of 700–30  μm in pial arterial diameter were also 
reported by Nonaka et al., 2003b, who exclusively characterized the calcarine fissure. The recent 
work on the topology of the vascular system by Hirsch et al., 2012, might create the impression 
that mesoscopic pial vessels entirely cover the cortical surface (e.g. Figure 2 in Hirsch et al., 2012). 
However, the segmentation provided by Duvernoy, 1999, shows that pial cerebral blood vessels are 
rather sparse, and only approximately 17% of the human cortex is covered by arteries and 11% by 
veins. (To obtain a rough estimate of their density, we segmented the stylized drawing accompanying 
Figure 1 (Duvernoy, 1999); see also subsection Data analysis below.) Pial arteries exhibit a distinctive 
branching pattern on the cortical surface, in that an arterial branch arises at a nearly right angle from 
its parent vessel (Rowbotham and Little, 1965), usually with a significantly reduced diameter. In the 
absence of ground- truth data, this conspicuous feature constitutes an important prior that can be 
used as an image quality marker: simply, the more right- angled branches are detected, the higher the 
sensitivity to small arteries.

From a cross- sectional point of view cutting through the cortex, pial arteries are embedded in the 
meningeal layers between the pia and arachnoid mater, that is, the subarachnoid space (Figure 1, 
right). Thus, their immediately surrounding tissue is not only grey matter, but a mixture of grey matter, 
cerebrospinal and interstitial fluid, and meningeal and glial tissue (Marin- Padilla, 2012). In the next 
section, we will propose a simplified partial- volume model to account for the small diameter of pial 
arteries. Nevertheless, one should keep in mind that the actual surrounding of pial arteries consists 
of a number of different tissue classes and fluids, with considerable differences in  T1  values, especially 
between grey matter, arterial blood, and cerebrospinal fluid (Rooney et  al., 2007; Wright et  al., 
2008).

Along with their diameter, the blood velocity within pial arteries is an important factor determining 
the TOF contrast. However, blood velocity values in human pial arteries are difficult to obtain due to 
their small size. Using optical imaging in cats, Kobari et al., 1984, measured blood velocities in pial 
arteries ranging from 20 to 200 μm diameter. For example, in pial arteries with a diameter between 
100 and 150 μm, the centreline velocity was 42.1 mm/s. Similar values were obtained by Nagaoka and 
Yoshida, 2006, for arterioles in the human retina using laser Doppler velocimetry, where the average 
centreline velocity for first- order arterioles with an average diameter of 107.9 μm was 41.1 mm/s. The 
only study in humans measuring blood velocity in small cerebral arteries was performed by Bouvy 
et al., 2016, using quantitative flow MRI. They estimated mean blood velocities of 39–51 mm/s in 
the basal ganglia, where arterial diameters range from 175 to 668 μm (Djulejić et al., 2015). Figure 2 
provides a comprehensive overview of all blood velocity values and vessel diameters reported for 
pial arteries. Note that optical imaging methods (Kobari et al., 1984; Nagaoka and Yoshida, 2006) 
are expected to considerably overestimate the mean velocity within the vessel, whereas MRI- based 
measurements can severely underestimate the velocity values due to partial- volume effects (Bouvy 
et al., 2016; Hofman et al., 1995; Tang et al., 1993). This might explain the large discrepancies that 
are apparent in Figure 2 between optical and MRI- based methods. Due to the gradual reduction in 
vessel diameter along the vascular tree, the reported velocity values only apply to the very last branch, 
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and faster velocities are expected along much of the vasculature. For example, blood velocities in the 
three major cerebral arteries exceed the velocity values depicted here by at least an order of magni-
tude (Lee et al., 1997; Molinari et al., 2006).

The blood delivery time for a given voxel containing a vessel is the time it takes for the blood water 
spins to reach that voxel after they first enter the imaging slab, and is a crucial imaging parameter 
when estimating blood signal enhancement in TOF- MRA. To directly compute blood delivery time 
from blood velocity, one would need a detailed velocity profile of the blood and its path along the 
arterial tree together with the exact slab prescription for each scan. While this is not feasible, we can 
find an upper bound on the blood delivery time expected for pial arteries using estimates of arterial 
transit time used in arterial spin labelling (Detre et al., 1992). The arterial transit time, which includes 
the transport of blood water spins from the large carotid arteries in the neck through the pial arterial 
vasculature and the capillaries into the tissue, is estimated to be between 500 and 1500 ms in healthy 
grey matter (Alsop et al., 2015). Since the coverage or slab thickness in TOF- MRA is usually kept 
small to minimize blood delivery time by shortening the path length of the vessel contained within the 
slab (Parker et al., 1991), and because we are focused here on the pial vasculature, we have limited 
our considerations to a maximum blood delivery time of 1000 ms, with values of few hundreds of 
milliseconds being more likely.

In summary, targeting pial arteries places us into an imaging regime of mesoscopic vessels 
(50–300 μm diameter) in a complex branching pattern on a folded surface with blood velocities of 
10–50 mm/s and blood delivery times of 200–700 ms. When revisiting the theory behind TOF- MRA 
for mesoscopic pial arteries, whose diameters are at the size of the imaging voxels or smaller, we thus 
need to consider partial- volume effects, and take into account that: (i) there is no preferential vessel 

Figure 2. Blood dwell time (ms) as a function of blood velocity and voxel size. For small voxel sizes, blood dwell times are short even for low blood 
velocities. The horizontal white lines indicate blood velocities reported in humans (solid lines) in the centrum semiovale (1 and 2) and the basal ganglia 
(3 and 4) (Bouvy et al., 2016), in cats (dashed lines) for various pial artery diameters (Kobari et al., 1984), and human retina (dotted lines) (Nagaoka 
and Yoshida, 2006). For reference, red blood cells in the capillaries are estimated to move at approximately 1 mm/s (Cipolla, 2009; Wei et al., 1993), 
whereas blood velocities in the major cerebral arteries can reach 1000 mm/s (Lee et al., 1997; Molinari et al., 2006).
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orientation; (ii) while the blood delivery times are long relative to macroscopic arteries, they are still 
sufficiently short that the blood arrives in the pial arteries in a small fraction of the overall acquisition 
time; and (iii) the blood passes swiftly through each voxel (i.e. in a time which is short relative to 
commonly used repetition times).

Flow-related enhancement
Before discussing the effects of vessel size, we briefly revisit the fundamental theory of the flow- 
related enhancement (FRE) effect used in TOF- MRA. Taking into account the specific properties of pial 
arteries, we will then extend the classical description to this new regime. In general, TOF- MRA creates 
high signal intensities in arteries using inflowing blood as an endogenous contrast agent. The object 
magnetization—created through the interaction between the quantum mechanical spins of water 
protons and the magnetic field—provides the signal source (or magnetization) accessed via excitation 
with radiofrequency (RF) waves (called RF pulses) and the reception of ‘echo’ signals emitted by the 
sample around the same frequency. The  T1  contrast in TOF- MRA is based on the difference in the 
steady- state magnetization of static tissue, which is continuously saturated by RF pulses during the 
imaging, and the increased or enhanced longitudinal magnetization of inflowing blood water spins, 
which have experienced no or few RF pulses. In other words, in TOF- MRA, we see enhancement for 
blood that flows into the imaging volume. The steady- state longitudinal magnetization  M

tissue
zS   of static 

tissue imaged with a (spoiled) FLASH sequence can be calculated (Brown et al., 2014a) using the 
Ernst equation:

 
Mtissue

zS =
M0

(
1−e−TR/Ttissue

1
)

1−e−TR/Ttissue
1 ·cos θ

,
  

(1)

with  M0  being the thermal equilibrium magnetization before any RF pulses,  TR  the repetition time,  θ  
the excitation flip angle, and  T

tissue
1   the longitudinal relaxation time of the tissue.

To generate a TOF contrast, a higher flip angle than the optimal Ernst angle (Ernst and Anderson, 
1966) is chosen to decrease or suppress the tissue longitudinal magnetization relative to the thermal 
equilibrium value. The flowing blood water spins entering into the excited volume are fully relaxed, 
and as they flow through the imaging volume their longitudinal magnetization  M

blood
z   just before the 

nth RF pulse is (Brown et al., 2014a):

 
Mblood

z
(
nRF

)
= Mblood

zS +

((
e
− TR

Tblood
1

)
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)nRF−1

·
(

M0 − Mblood
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)
.
  

(2)

The number of RF pulses experienced by the blood,  nRF = tdelivery/TR , depends on the blood delivery 
time  tdelivery , that is, the time it takes the blood spins from entering the imaging volume to reaching the 
target vessel, and the repetition time  TR . Hence, the longitudinal magnetization of the blood water 
spins is an exponentially decaying function of the number of applied RF pulses, and inversely related 
to the blood delivery time. We define the FRE, which is the fundamental contrast mechanism in TOF- 
MRA, as the difference in blood longitudinal magnetization and surrounding tissue signal relative to 
the tissue signal (Al- Kwifi et al., 2002):

 
FRE

(
nRF

)
= Mblood

z
(

nRF
)
−Mtissue

zS
Mtissue

zS
.
  

(3)

In classical descriptions of the FRE effect (Brown et al., 2014a; Carr and Carroll, 2012), significant 
emphasis is placed on the effect of multiple ‘velocity segments’ within a slice in the 2D imaging case. 
Using the simplified plug- flow model, where the cross- sectional profile of blood velocity within the 
vessel is constant and effects such as drag along the vessel wall are not considered, these segments 
can be described as ‘disks’ of blood that do not completely traverse through the full slice within one 

 TR , and, thus, only a fraction of the blood in the slice is replaced. Consequently, estimation of the FRE 
effect would then need to accommodate contribution from multiple ‘disks’ that have experienced 
1 to  k  RF pulses. In the case of 3D imaging as employed here, multiple velocity segments within 1 
voxel are generally not considered, as the voxel sizes in 3D are often smaller than the slice thick-
ness in 2D imaging and it is assumed that the blood completely traverses through a voxel each  TR . 
However, the question arises whether this assumption holds for pial arteries, where blood velocity is 
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considerably lower than in intracranial arteries (Figure 2). To comprehensively answer this question, 
we have computed the blood dwell time (note that the blood dwell time is inversely related to the 
critical velocity in 2D MRA but does not need to assume a specific  TR  value), that is, the average time 
it takes the blood to traverse a voxel, as a function of blood velocity and voxel size (Figure 2). For 
reference, the blood velocity estimates from the three studies mentioned above Bouvy et al., 2016; 
Kobari et al., 1984; Nagaoka and Yoshida, 2006 have been added in this plot as horizontal white 
lines. For the voxel sizes of interest here, that is, 50–300 μm, blood dwell times are, for all but the 
slowest flows, well below commonly used repetition times (Brown et al., 2014a; Carr and Carroll, 
2012; Ladd, 2007; Von Morze et al., 2007). Thus, in a first approximation using the plug- flow model, 
it is not necessary to include several velocity segments for the voxel sizes of interest when considering 
pial arteries, as one might expect from classical treatments, and the FRE effect can be described by 
Equations 1–3, simplifying our characterization of FRE for these vessels. When considering the effect 
of more complex flow patterns, it is important to bear in mind that the arteries targeted here are only 
1 voxel thick, and signals are integrated across the whole artery.

Based on these equations, optimal  TR  and excitation flip angle values ( θ ) can be calculated for the 
blood delivery times under consideration (Figure 3). To better illustrate the regime of small arteries, 
we have illustrated the effect of either flip angle or  TR  while keeping the other parameter values 
fixed to the value that was ultimately used in the experiments; although both parameters can also be 
optimized simultaneously (Haacke et al., 1990). Figure 3—figure supplement 1 further delineates 
the interdependency between flip angle and  TR  within a parameter range commonly used for TOF 
imaging at ultra- high field (Kang et al., 2010; Stamm et al., 2013; Von Morze et al., 2007). Note 
how longer  TR  values still provide an FRE effect even at very long blood delivery times, whereas using 
shorter  TR  values can suppress the FRE effect (Figure 3, left). Similarly, at lower flip angles, the FRE 

Figure 3. Optimal imaging parameters for small arteries. :Left: Flow- related enhancement (FRE) was simulated as a function of blood delivery time for 
different repetition times assuming an excitation flip angle of 18° and longitudinal relaxation times of blood and tissue of 2100 and 1950 ms at 7 Tesla 
(T), respectively. Overall, FRE decreases with increasing blood delivery times. In the small vessel regime, that is, at blood delivery times >200 ms, longer 
repetition times result in higher FRE than shorter repetition times. Right: FRE was simulated as a function of excitation flip angle for different blood 
delivery times assuming a  TR  value of 20 ms and longitudinal relaxation rates as above. The excitation flip angle that maximizes FRE for longer blood 
delivery times is lower than the excitation flip angle that maximizes FRE for shorter blood delivery times, and often the optimal excitation flip angle is 
close to the Ernst angle for longer blood delivery times (Ernst angle: 8.2°; optimal excitation flip angles: 37° (100 ms), 21° (300 ms), 16° (500 ms), 11° 
(1000 ms)).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Optimal imaging parameters for small arteries.

https://doi.org/10.7554/eLife.71186
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effect is still present for long blood delivery times, but it is not available anymore at larger flip angles, 
which, however, would give maximum FRE for shorter blood delivery times (Figure 3, right). Due to 
the non- linear relationships of both blood delivery time and flip angle with FRE, the optimal imaging 
parameters deviate considerably when comparing blood delivery times of 100 and 300 ms, but the 
differences between 300 and 1000 ms are less pronounced. In the following simulations and measure-
ments, we have thus used a  TR  value of 20 ms, that is, a value only slightly longer than the readout 
of the high- resolution TOF acquisitions, which allowed time- efficient data acquisition, and a nominal 
excitation flip angle of 18°. From a practical standpoint, these values are also favourable as the low 
flip angle reduces the SAR (Fiedler et al., 2018) and the long  TR  value decreases the potential for 
peripheral nerve stimulation (Mansfield and Harvey, 1993).

The optimizations presented so far have assumed that the voxel is fully filled with blood. However, 
in the case of pial arteries, vessel diameters are often comparable to or smaller than the voxel size. 
In the next section, we will therefore investigate the individual contributions of blood delivery times 
and voxel size to the overall FRE in pial arteries. We will introduce a model that consider the partial- 
volume effects of blood and tissue to allow us to decide whether imaging of pial arteries is limited by 
the physiological properties of the brain vasculature, that is, blood flow rates, or the available image 
resolution.

Introducing a partial-volume model
To account for the effect of voxel volume on the FRE, the total longitudinal magnetization  Mz  needs 
to also consider the number of spins contained within in a voxel (Du et al., 1996; Venkatesan and 
Haacke, 1997). A simple approximation can be obtained by scaling the longitudinal magnetization 
with the voxel volume (Venkatesan and Haacke, 1997). (Note that this does not affect the relative 
FRE definition presented in Equation (3), as the effect of total voxel volume cancels out.) To then 
include partial- volume effects, the total longitudinal magnetization in a voxel  M

total
z   becomes the sum 

of the contributions from the stationary tissue  M
tissue
zS   and the inflowing blood  M

blood
z  , weighted by their 

respective volume fractions  Vrel :

 Mtotal
z = Vblood

rel · Mblood
z + Vtissue

rel · Mtissue
zS .  (4)

For simplicity, we assume a single vessel is located at the centre of the voxel and approximate it to 
be a cylinder with diameter  dvessel  and length  lvoxel  of an assumed isotropic voxel along one side. The 
relative volume fraction of blood  V

blood
rel   is the ratio of vessel volume within the voxel to total voxel 

volume (see section Estimation of vessel- volume fraction and Figure 4—figure supplement 1), and 
the tissue volume fraction  V

tissue
rel   is the remainder that is not filled with blood, or

 Vtissue
rel = 1 − Vblood

rel .  (5)

We can now replace the blood magnetization in Equation (3) with the total longitudinal magnetiza-
tion of the voxel to compute the FRE as a function of vessel- volume fraction:

 
FREPV

(
nRF, lvoxel, dvessel

)
= Mtotal

z
(

nRF, lvoxel, dvessel
)
−Mtissue

zS
Mtissue

zS
.
  

(6)

Note that this can also be written as  FRE2C
(
nRF, lvoxel, dvessel

)
= Vblood

rel
(
lvoxel, dvessel

)
· FRE

(
nRF

)
 .

Figure  4 illustrates the partial- volume FRE ( FREPV ) assuming a pial artery diameter ( dvessel ) of 
200 μm, a  TR  value of 20 ms, an excitation flip angle of 18°, and longitudinal relaxation times of 
blood and tissue of 2100 and 1950 ms, respectively (Huber, 2014, Table 2.1). Therein, two prominent 
regimes appear along the voxel size axis: (i) the blood- delivery- time dominated regime, where as long 
as the voxel is completely filled with blood, that is,  lvoxel < cos π

4 · dvessel , the voxel size has no impact 
on the FRE, and the FRE is solely an exponential function of the blood delivery time (Equation (2), 
Figure 3); (ii) the voxel- size dominated regime, where if the vessel is smaller than the voxel, the FRE 
also depends quadratically on the voxel size (see Estimation of vessel- volume fraction). Note that our 
partial- volume model encompasses both regimes, and because the  FRE2C  definition reverts to the 
classical FRE definition for larger- than- voxel- sized vessels, we will from now on use FRE synonymously 
with  FRE2C . In theory, a reduction in blood delivery time increases the FRE in both regimes, and—if 
the vessel is smaller than the voxel—so would a reduction in voxel size. In practice, a reduction in slab 

https://doi.org/10.7554/eLife.71186
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thickness—which is the default strategy in classical TOF- MRA to reduce blood delivery time—might 
not provide substantial FRE increases for pial arteries. This is due to their convoluted geometry (see 
section Anatomical architecture of the pial arterial vasculature), where a reduction in slab thickness 
may not necessarily reduce the vessel segment length if the majority of the artery is still contained 
within the smaller slab. Thus, given the small arterial diameter, reducing the voxel size is a much more 
promising avenue when imaging the pial arterial vasculature.

Inflow artefacts in sinuses and pial veins
Inflow in large pial veins and the sagittal and transverse sinuses can cause FRE in these non- arterial 
vessels. One common strategy to remove this unwanted signal enhancement is to apply venous 
suppression pulses during the data acquisition, which saturate bloods spins outside the imaging slab. 
Disadvantages of this technique are the technical challenges of applying these pulses at ultra- high 
field due to constraints of the specific absorption rate (SAR) and the necessary increase in acquisition 
time (Conolly et al., 1988; Heverhagen et al., 2008; Johst et al., 2012; Maderwald et al., 2008; 
Schmitter et al., 2012; Zhang et al., 2015). In addition, optimal positioning of the saturation slab 
in the case of pial arteries requires further investigation, and in particular supressing signal from the 
superior sagittal sinus without interfering in the imaging of the pial arteries vasculature at the top 
of the cortex might prove challenging. Furthermore, this venous saturation strategy is based on the 
assumption that arterial blood is traveling head- wards while venous blood is drained foot- wards. For 
the complex and convoluted trajectory of pial vessels, this directionality- based saturation might be 

Figure 4. Effect of voxel size and blood delivery time on the relative flow- related enhancement (FRE), assuming a pial artery diameter of 200 μm. The 
relative FRE represents the signal intensity in the voxel containing the artery relative to the surrounding tissue (Equation (3)). For example, an FRE of 0 
would indicate equal intensity, and an FRE of 1 would indicate twice the signal level in the voxel compared to the surrounding tissue. The FRE decreases 
with blood delivery time due to more signal attenuation (Equation (2)) and with voxel size due to more partial- volume effects (Equation (4)).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Estimation of the blood volume fraction for case (I) voxel in vessel, case (II) vessel intersects voxel, and case (III) vessel in voxel.

Figure supplement 2. Effect of voxel size and blood delivery time on the relative flow- related enhancement (FRE) using either a relative (A,B) (Equation 
(3)) or an absolute (C,D) (Equation (12)) FRE definition assuming a pial artery diameter of 200 μm (A,C) or 2000 µm, that is, no partial- volume effects at 
the central voxel of this artery considered here.

https://doi.org/10.7554/eLife.71186
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oversimplified, particularly when considering the higher- order branches of the pial arteries and veins 
on the cortical surface.

Inspired by techniques to simultaneously acquire a TOF image for angiography and a susceptibility- 
weighted image (SWI) for venography (Bae et al., 2010; Deistung et al., 2009; Du et al., 1994; Du 
and Jin, 2008), we set out to explore the possibility of removing unwanted venous structures from the 
segmentation of the pial arterial vasculature during data post- processing. Because arteries filled with 
oxygenated blood have  T2

∗
  values similar to tissue, while veins have much shorter  T2

∗
  values due to 

the presence of deoxygenated blood (Pauling and Coryell, 1936; Peters et al., 2007; Uludağ et al., 
2009; Zhao et al., 2007), we used this criterion to remove vessels with short  T2

∗
  values from the 

segmentation (see Data analysis for details). In addition, we also explored whether unwanted venous 
structures in the high- resolution TOF images—where a two- echo acquisition is not feasible due to the 
longer readout—can be removed based on detecting them in a lower- resolution image.

Velocity- and TE-dependent vessel displacement artefacts
While isotropic 3D TOF- MRA provides detailed information on the vessel position, the continuous 
motion of blood during image acquisition can lead to vessel displacement artefacts in the phase- 
encoding directions (Brown et al., 2014b; Parker et al., 2003). The magnitude of this misregistration 
artefact depends on the time elapsed between the time of the phase- encoding blip ( tpe ) and the echo 
time ( TE ) and on the blood velocity in the primary phase- encoding direction  y ,  vy :

 ∆ydispl = −vy ·
(
TE − tpe

)
.  (7)

A similar relationship for  ∆zdispl  exists for the secondary phase- encoding direction  z . According to this 
relationship, and based on the reported velocity range in Figure 2, vessel displacements in the phase- 
encoding directions between 25 and 250 μm for a time delay  

(
TE − tpe

)
  of 5 ms can be expected. Flow 

compensation gradients can correct for the effect of constant velocities (Parker et al., 2003), but 
the required large gradient lobes for high- resolution applications would substantially increase the  TE , 
and, consequently, reduce the SNR. For these reasons, no flow compensation in the phase- encoding- 
directions was used for the high- resolution images in this study. However, we do assess the extent of 
vessel displacement using a two- echo low- resolution acquisition.

Considerations for imaging the pial arterial vasculature
We have identified voxel size as the key parameter for imaging pial arteries. While the benefit of 
smaller voxels was conceptually known and empirically shown before (Haacke et al., 1990; Mattern 

Figure 5. Effect of voxel size on flow- related vessel enhancement. Thin axial maximum intensity projections containing a small artery acquired with 
different voxel sizes ranging from 0.8 to 0.3 mm isotropic are shown. The flow- related enhancement (FRE) is estimated using the mean intensity value 
within the vessel masks depicted on the left, and the mean intensity values of the surrounding tissue. The small insert shows a section of the artery as it 
lies within a single slice. A reduction in voxel size is accompanied by a corresponding increase in FRE (red mask), whereas no further increase is obtained 
once the voxel size is equal or smaller than the vessel size (blue mask).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Increase of vessel skeleton length with voxel size reduction.

https://doi.org/10.7554/eLife.71186
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et al., 2018; Von Morze et al., 2007), clear guidelines on how small is sufficiently small and how 
strongly the FRE increases with decreasing voxel size were not established. We can now conclude that 
the voxel size should be at least the size of the pial artery, that is, somewhere between 50 and 280 μm 
in our case, and ideally around 70% of that, that is, 35–200 μm. While this is challenging in practice, 
the strong increase in FRE especially when voxel sizes are similar to vessel size makes a reduction of 
even only 10 or 20 μm worthwhile for imaging pial arteries. Further, we have seen that slow blood 
velocities are an unlikely explanation for loss of FRE in small vessels, because (i) blood delivery times 
to pial arteries are sufficiently short due to the perhaps surprisingly fast blood flow in these meso-
scopic vessels, (ii) the effect of blood delivery time on FRE decreases with increasing blood delivery 
times, and (iii) the addition of partial- volume effects to the FRE estimation predicts the often observed 
drastic loss of contrast in small vessels. Thus, we expect a reduction in voxel size to directly translate 
into an increased sensitivity for small pial arteries.

Results
Effect of voxel size on FRE
To investigate the effect of voxel size on vessel FRE, we acquired data at four different voxel sizes 
ranging from 0.8 to 0.3 mm isotropic resolution, adjusting only the encoding matrix, with imaging 
parameters being otherwise identical (FOV, TR, TE, flip angle, R, slab thickness, see section Data 
acquisition). The total acquisition time increases from less than 2 min for the lowest resolution scan 
to over 6  min for the highest resolution scan as a result. Figure  5 shows thin maximum intensity 
projections of a small artery. While the artery is not detectable at the largest voxel size, it slowly 
emerges as the voxel size decreases and approaches the vessel size. Presumably, this is driven by the 
considerable increase in FRE as seen in the single slice view (Figure 5, small inserts). Accordingly, the 
FRE computed from the vessel mask for the smallest part of the vessel (Figure 5, red mask) increases 
substantially with decreasing voxel size. More precisely, reducing the voxel size from 0.8, 0.5, or 0.4 
mm to 0.3 mm increases the FRE by 2900%, 165%, and 85%, respectively. Assuming an arterial diam-
eter of 300 μm partial- volume FRE model (Introducing a partial- volume model) would predict similar 
ratios of 611%, 178%, and 78%.

However, as long as the vessel is larger than the voxel (Figure 5, blue mask), the relative FRE does 
not change with resolution (see also Effect of FRE definition and interaction with partial- volume model 
and Figure 4—figure supplement 2). To illustrate the gain in sensitivity to detect smaller arteries, 
we have estimated the relative increase of the total length of the segmented vasculature (Figure 5—
figure supplement 1): reducing the voxel size from 0.8 to 0.5 mm isotropic increases the skeleton 
length by 44%, reducing the voxel size from 0.5 to 0.4 mm isotropic increases the skeleton length by 
28%, and reducing the voxel size from 0.4 to 0.3 mm isotropic increases the skeleton length by 31%. 
In summary, when imaging small pial arteries, these data support the hypothesis that it is primarily the 
voxel size, not blood delivery time, which determines whether vessels can be resolved.

Imaging the pial arterial vasculature
Based on these results, we then proceeded to image the pial arterial vasculature at a much higher 
resolution of 0.16 mm isotropic, to verify that small pial arteries can be visualized using a TOF- based 
contrast. Figure 6 shows the axial maximum intensity projection overlaid with a vessel segmentation 
on the left, a coronal projection of the central part of the brain, a sagittal projection and a 3D view of 
the segmentation on the right. Note the numerous right- angled branches emerging from the parent 
artery, indicating the increased sensitivity to small pial arteries, and the overall high vessel density 
compared with acquisitions performed at conventional resolutions (Bernier et al., 2018; Brown et al., 
2014a; Chen et al., 2018; Ladd, 2007; Mattern et al., 2018; Schulz et al., 2016; Stucht et al., 2015; 
Von Morze et al., 2007; Wright et al., 2013).

The horizontal lines in the background presumably stem from stacking multiple slabs containing 
slightly different imaging volumes and potentially imperfect slab profiles. Data acquired with the same 
parameters in an additional participant is shown in Figure 6—figure supplement 1. For reference, 
data from both participants without the overlay of the segmentation are presented in Figure 6—
figure supplements 2 and 3.

https://doi.org/10.7554/eLife.71186
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To assess the benefit of even higher resolution, we acquired TOF data with an isotropic voxel 
size of 140 µm in a second participant using prospective motion correction (Mattern et al., 2018) 
to reduce motion artefacts given the even longer acquisition time and higher resolution (Figure 7). 
Again for reference, data without the overlay of the segmentation are presented in Figure 7—figure 
supplement 1.

The axial maximum intensity projection illustrates the large number of right- angled branches visible 
at this resolution. Similarly, the coronal and sagittal projections demonstrate the high density of the 
vasculature at this level. Note that unwanted signal in non- arterial vessels such as pial veins and the 
superior sagittal sinus has been removed using an auxiliary acquisition as described in the section 
Removal of pial veins below. We have also acquired one single slab with an isotropic voxel size of 

Figure 6. Time- of- flight imaging of the pial arterial vasculature at 0.16 mm isotropic resolution and 50 mm coverage in the head- foot direction. Left: 
Axial maximum intensity projection and outline of the vessel segmentation overlaid in red. Examples of the numerous right- angled branches are 
indicated by orange arrows. Right: Coronal maximum intensity projection and segmentation of the central part of the brain (top), sagittal maximum 
intensity projection and segmentation (middle), and 3D view of the vessel segmentation (bottom).

The online version of this article includes the following video and figure supplement(s) for figure 6:

Figure supplement 1. Time- of- flight imaging of the pial arterial vasculature at 0.16 mm isotropic resolution and 58 mm coverage in the head- foot 
direction showing the results from participant III using the same acquisition protocol as for Figure 6.

Figure supplement 2. Time- of- flight imaging of the pial arterial vasculature at 0.16 mm isotropic resolution and 50 mm coverage in the head- foot 
direction showing the same data of participant I as in Figure 6, but without the overlay of the segmentation.

Figure supplement 3. Time- of- flight imaging of the pial arterial vasculature at 0.16 mm isotropic resolution and 58 mm coverage in the head- foot 
direction showing the same data of participant III as in Figure 6—figure supplement 1 but without the overlay of the segmentation.

Figure 6—video 1. Video of the segmentation of the time- of- flight data acquired with 160 µm isotropic voxel size as shown in Figure 6.

https://elifesciences.org/articles/71186/figures#fig6video1

Figure 6—video 2. Video of the segmentation of the time- of- flight data acquired with 160 µm isotropic voxel size as shown in Figure 6—figure 
supplement 1.

https://elifesciences.org/articles/71186/figures#fig6video2

https://doi.org/10.7554/eLife.71186
https://elifesciences.org/articles/71186/figures#fig6video1
https://elifesciences.org/articles/71186/figures#fig6video2
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0.16 mm with prospective motion correction for this participant in the same session to compare to the 
acquisition with 0.14 mm isotropic voxel size and to test whether any gains in FRE are still possible at 
this level of the vascular tree. Indeed, the reduction in voxel volume by 33% revealed additional small 
branches connected to larger arteries (see also Figure 7—figure supplement 2). For this example, 
we found an overall increase in skeleton length of 14% (see also Figure 5—figure supplement 1). In 
summary, we have found that reducing voxel sizes increases FRE up to at least 0.14 mm isotropic reso-
lution and conclude that partial- volume effects are the main contributor to FRE loss in small arteries.

Figure 7. Time- of- flight imaging of the pial arterial vasculature at 0.14 mm isotropic resolution and 19.6 mm coverage in the foot- head direction. 
Left: Axial maximum intensity projection and outline of the vessel segmentation overlaid in red. Examples of the numerous right- angled branches 
are indicated by orange arrows. Right: Coronal maximum intensity projection and segmentation (top) and sagittal maximum intensity projection and 
segmentation (middle). A comparison of 0.16 and 0.14 mm voxel size (bottom) shows several vessels visible only at the higher resolution. The location 
of the insert is indicated on the axial maximum intensity projection on the left. Note that for this comparison, the coverage of the 0.14 mm data was 
matched to the smaller coverage of the 0.16 mm data.

The online version of this article includes the following video and figure supplement(s) for figure 7:

Figure supplement 1. Time- of- flight imaging of the pial arterial vasculature at 0.14 mm isotropic resolution and 19.6 mm coverage in the foot- head 
direction showing the same data of participant II as in Figure 7, but without the overlay of the segmentation.

Figure supplement 2. Additional examples comparing the flow- related enhancement at 0.14 mm (top) and 0.16 mm (bottom) voxel size showing 
additional small branches visible only at the higher resolution.

Figure supplement 3. Small section of the time- of- flight data (13.44 mm × 9.94 mm × 7 mm) acquired at 0.14 mm isotropic resolution and the 
corresponding segmentation of the pial arterial vasculature from Figure 7 showing the performance of the automatic segmentation used in this study 
(left) and manual segmentation (right).

Figure 7—video 1. Video of the segmentation of the time- of- flight data acquired with 140 µm isotropic voxel size as shown in Figure 7.

https://elifesciences.org/articles/71186/figures#fig7video1

https://doi.org/10.7554/eLife.71186
https://elifesciences.org/articles/71186/figures#fig7video1
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Vessel displacement artefacts
The vessel displacement artefacts in the phase- encoding directions due to blood motion are illus-
trated in Figure 8 using a two- echo TOF acquisition from a fourth participant. At a delay time of 10 
ms between phase encoding and echo time, the observed displacement of approximately 2 mm in 
some of the larger arteries would correspond to a blood velocity of 200 mm/s, which is well within 
the expected range (Figure 2). For the smallest arteries, a displacement of 1 voxel (0.4 mm) can 
be observed, indicative of blood velocities of 40 mm/s. Note that the vessel displacement can be 
observed in all arteries visible at this resolution, indicating high blood velocities throughout much of 
the pial arterial vasculature. Thus, assuming a blood velocity of 40 mm/s (Figure 2) and a delay time 
of 5 ms for the high- resolution acquisitions (Figure 6), vessel displacements of 0.2 mm are possible, 
representing a shift of 1–2 voxels.

Removal of pial veins
Inflow in large pial veins and the superior sagittal and transverse sinuses can cause an FRE in these 
non- arterial vessels (Figure 9, left). The higher concentration of deoxygenated haemoglobin in these 
vessels leads to shorter  T2

∗
  values (Pauling and Coryell, 1936), which can be estimated using a 

Figure 8. Vessel displacement without correction for blood motion. The vessel displacement is illustrated using a maximum intensity projection of the 
first, flow compensated echo of a two- echo time- of- flight (TOF) acquisition with the vessel centreline of the second echo without flow compensation 
overlaid in red. Strong displacements in both phase- encoding directions are present resulting in complex vessel shift patterns (green arrows). While 
furthest vessel displacements are observed in large arteries with faster flow (yellow arrows), considerable displacements arise even in smaller arteries 
(blue arrow).

The online version of this article includes the following video and figure supplement(s) for figure 8:

Figure supplement 1. Explanation of the vessel displacement artefact.

Figure 8—video 1. Illustration of the vessel displacement artefact showing axial maximum intensity projections of the first and second echo of the two- 
echo time- of- flight (TOF) in Figure 8.

https://elifesciences.org/articles/71186/figures#fig8video1

Figure 8—video 2. Illustration of the vessel displacement artefact showing sagittal maximum intensity projections of the first and second echo of the 
two- echo time- of- flight (TOF) in Figure 8.

https://elifesciences.org/articles/71186/figures#fig8video2

https://doi.org/10.7554/eLife.71186
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two- echo TOF acquisition (see also Inflow artefacts in sinuses and pial veins). These vessels can be 
identified in the segmentation based on their  T2

∗
  values (Figure 9, left), and removed from the angio-

gram (Figure 9, right) (Bae et al., 2010; Deistung et al., 2009; Du et al., 1994; Du and Jin, 2008). 
Predominantly, large vessels which exhibited an inhomogeneous intensity profile and a steep loss of 
intensity at the slab boundary were identified as non- arterial (Figure 9, left). Further, we also explored 
the option of removing unwanted venous vessels from the high- resolution TOF image (Figure  7) 
using a low- resolution two- echo TOF (not shown). This indeed allowed us to remove the strong signal 
enhancement in the sagittal sinuses and numerous larger veins, although some small veins, which 
are characterized by inhomogeneous intensity profiles and can be detected visually by experienced 
raters, remain.

Discussion
A new perspective on imaging the pial arterial vasculature
We have outlined the theoretical components and provided empirical evidence for geometrically 
accurate imaging of the pial arterial vasculature of the human brain in vivo. We found that reducing 
the voxel size increases the vessel contrast when imaging the pial arterial vasculature of the human 
brain, in contrast to previous theoretical and empirical treatments of the effect of voxel size on vessel 
contrast (Du et al., 1993; Du et al., 1996; Venkatesan and Haacke, 1997). Further, we could not 
confirm the common assumption that slow blood flow is the main limiting factor for high- resolution 
TOF imaging (Chen et  al., 2018; Haacke et  al., 1990; Masaryk et  al., 1989; Mut et  al., 2014; 
Park et al., 2020; Parker et al., 1991; Wilms et al., 2001; Wright et al., 2013), but instead found 
adequate signal levels even in smallest pial arteries given sufficiently small voxels (Figure 7). Both 
effects are driven by non- linear relationships which might have contributed to their over- and under-
estimation in the literature. In short, FRE depends exponentially on blood delivery times (Figure 3), 
such that it decreases for longer blood delivery times, and quadratically on voxel size (Figure 4), such 
that it increases for smaller voxels—that is, the imaging regime of pial arteries.

Extending classical FRE treatments to the pial vasculature
There are several major modifications in our approach to this topic that might explain why, in contrast 
to predictions from classical FRE treatments, it is indeed possible to image pial arteries. For instance, 
the definition of vessel contrast or FRE is often stated as an absolute difference between blood and 
tissue signal (Brown et al., 2014a; Carr and Carroll, 2012; Du et al., 1993; Du et al., 1996; Haacke 
et al., 1990; Venkatesan and Haacke, 1997). Here, however, we follow the approach of Al- Kwifi 

Figure 9. Removal of non- arterial vessels in time- of- flight imaging. Left: Segmentation of arteries (red) and veins (blue) using  T
∗
2  estimates. Right: Time- 

of- flight angiogram after vein removal.

https://doi.org/10.7554/eLife.71186
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et al., 2002, and consider relative contrast. While this distinction may seem to be semantic, the effect 
of voxel volume on FRE for these two definitions is exactly opposite: Du et al., 1996, concluded 
that larger voxel size increases the (absolute) vessel- background contrast, whereas here we predict 
an increase in relative FRE for small arteries with decreasing voxel size. Therefore, predictions of the 
depiction of small arteries with decreasing voxel size differ depending on whether one is consid-
ering absolute contrast, that is, difference in longitudinal magnetization, or relative contrast, that is, 
contrast differences independent of total voxel size. Importantly, this prediction changes for large 
arteries where the voxel contains only vessel lumen, in which case the relative FRE remains constant 
across voxel sizes, but the absolute FRE increases with voxel size (Figure 4—figure supplement 2). 
Overall, the interpretations of relative and absolute FRE differ, and one measure may be more appro-
priate for certain applications than the other. Absolute FRE describes the difference in magnetization 
and is thus tightly linked to the underlying physical mechanism. Relative FRE, however, describes 
the image contrast and segmentability. If blood and tissue magnetization are equal, both contrast 
measures would equal zero and indicate that no contrast difference is present. However, when there 
is signal in the vessel and as the tissue magnetization approaches zero, the absolute FRE approaches 
the blood magnetization (assuming no partial- volume effects), whereas the relative FRE approaches 
infinity. While this infinite relative FRE does not directly relate to the underlying physical process of 
‘infinite’ signal enhancement through inflowing blood, it instead characterizes the segmentability of 
the image in that an image with zero intensity in the background and non- zero values in the structures 
of interest can be segmented perfectly and trivially. Accordingly, numerous empirical observations 
(Al- Kwifi et al., 2002; Bouvy et al., 2014; Haacke et al., 1990; Ladd, 2007; Mattern et al., 2018; 
Von Morze et al., 2007) including the data provided here (Figures 5–7) have shown the benefit of 
smaller voxel sizes if the aim is to visualize and segment small arteries.

In addition, we also formulated the problem in 3D space taking into account the spatial character-
istics of blood vessels in particular, which are in principle elongated, and approximately 1D structures. 
Because Venkatesan and Haacke, 1997, assumed a 1D image consisting of a row of samples, they 
predicted no impact of voxel size on absolute FRE, despite using the same theory as Du et al., 1996, 
who operated in 2D space and predicted increased FRE for larger voxel sizes. The image intensity 
of a voxel with an elongated vessel in its centre will scale differently with increasing isotropic voxel 
size than a voxel containing point- like (0D) or extended sheet- like (2D) objects. Note that classical 
considerations of partial- volume effects (Shattuck et al., 2001) cannot be readily applied to vessels, 
as these treatments usually assume 2D borders of larger structures meeting in a voxel (such as the 
boundary between two tissue volumes). Thus, not only the FRE definition in terms of absolute or 
relative contrast, but also the dimensionality and geometry of the assumed tissue content matters. In 
summary, we have presented a comprehensive theoretical framework for imaging small pial arteries 
which considers contrast and dimensionality, and from which we can conclude that small voxel sizes 
are the key ingredient for imaging the pial arterial vasculature.

Imaging limitations
To maximize the sensitivity and accuracy of imaging small pial arteries, challenges regarding vessel 
localization and imaging noise remain to be investigated. First, the effect of vessel location within 
the voxel on the FRE needs to be addressed in more detail. Note that in our theoretical treatment 
we have always assumed a vessel located centrally in the voxel. If a vessel is not centred and instead 
was split over several voxels, such that its cross- section intersected the voxel border, we would, due 
to the reduction in relative blood volume fraction (Equation (4)), expect a reduction in FRE in each 
containing voxel. However, given that in Fourier imaging used in MRI the voxel grid is arbitrarily 
placed, previous work (Du et al., 1994; Zhu et al., 2013) has argued that zero- filling could resolve 
this issue, and would essentially ‘re- centre’ the vessel within a voxel. However, it remains unclear what 
the optimal zero- filling factor would be. Classical Fourier theory predicts sensitivity gains only up to a 
zero- filling factor of 2; beyond that, zero- filling is equivalent to interpolation and correlation between 
samples is introduced (Bartholdi and Ernst, 1973). Nevertheless, slight qualitative improvements in 
image appearance have been reported for higher zero- filling factors (Du et al., 1994), presumably 
owing to a smoother representation of the vessels (Bartholdi and Ernst, 1973). In contrast, Mattern 
et al., 2018, reported no improvement in vessel contrast for their high- resolution data. Ultimately, for 
each application, for example, visual evaluation vs. automatic segmentation, the optimal zero- filling 
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factor needs to be determined, balancing image appearance (Du et al., 1994; Zhu et al., 2013) with 
loss in statistical independence of the image noise across voxels. For example, in Figure 5, when 
comparing across different voxel sizes, the visual impression might improve with zero- filling. However, 
it remains unclear whether the same zero- filling factor should be applied for each voxel size, which 
means that the overall difference in resolution remains, namely a nearly 20- fold reduction in voxel 
volume when moving from 0.8 mm isotropic to 0.3 mm isotropic voxel size. Alternatively, the same 
‘zero- filled’ voxel sizes could be used for evaluation, although then nearly 94% of the samples used to 
reconstruct the image with 0.8 mm voxel size would be zero- valued for a 0.3 mm isotropic resolution. 
Consequently, all data presented in this study were reconstructed without zero- filling.

A further challenge for obtaining accurate vessel localization is the vessel displacement (Figure 8) in 
both phase- encoding directions due to blood motion (Figure 4), which restricts the ability to register 
these images of the arterial vasculature with data from other image modalities. While modifications 
to the pulse sequence can address this problem (Parker et al., 2003), their practical implementa-
tion (e.g. peripheral nerve stimulation; Mansfield and Harvey, 1993) is limited in the case of small 
pial arteries (e.g. limits imposed by maximum gradient slew rates or peripheral nerve stimulation; 
Mansfield and Harvey, 1993), because the high- resolution acquisitions would require strong flow 
compensation gradients to be played out in a very short amount of time to ensure sufficiently short 
echo times needed to retain SNR. Classical approaches to correct apparent tissue displacement stem-
ming from B0- inhomogeneities such as reversal of the phase- encoding directions (Andersson et al., 
2003) cannot be applied here, as the vessel displacement reflects true object motion (Figure 8—
figure supplement 1). Note that correction techniques exist to remove displaced vessels from the 
image (Gulban et al., 2021), but they cannot revert the vessels to their original location. Alterna-
tively, this artefact could also potentially be utilized as a rough measure of blood velocity. Other 
encoding strategies, such as radial and spiral acquisitions, experience no vessel displacement artefact 
because phase and frequency encoding take place in the same instant, although a slight blur might 
be observed instead (Nishimura et al., 1995; Nishimura et al., 1991). However, both trajectories 
pose engineering challenges and much higher demands on hardware and reconstruction algorithms 
than the Cartesian readouts employed here (Kasper et al., 2018; Shu et al., 2016), particularly to 
achieve 3D acquisitions with 160 µm isotropic resolution. Provided that the imaging echo times are 
kept short, the overall size of this effect is small for pial arteries and estimated to be less than 2 voxel 
lengths for the imaging protocols used in this study. However, the displacement of feeding arteries 
with faster velocities can reach values of 1 mm or more (Figure 7), introducing a non- linear distortion 
of the arteries depending on the blood velocity and direction. This may be inconsequential for many 
applications such as those investigating topological features, but may prove challenging when, for 
example, the aim is to accurately combine the segmentation of the pial vasculature with a segmenta-
tion of the cerebral cortical surface.

From a practical perspective when performing the imaging experiments, the required long acqui-
sition times and small voxels make these high- resolution acquisitions particularly vulnerable to image 
artefacts from subject motion. This has been addressed utilizing a prospective motion correction 
system (Mattern et al., 2018) to enable the acquisition of TOF data with 0.14 mm isotropic voxel 
size and over 20 min acquisition time per imaging slab. This allowed for the successful correction of 
head motion of approximately 1 mm over the 60 min scan session, showing the potential of prospec-
tive motion correction at these very high resolutions. Note that for the comparison in Figure 7, one 
slab with 0.16 mm voxel size was acquired in the same session also using the prospective motion 
correction system. However, for the data shown in Figure 6 and Figure 6—figure supplement 1, no 
prospective motion correction was used, and we instead relied on the experienced participants who 
contributed to this study. We found that the acquisition of TOF data with 0.16 mm isotropic voxel 
size in under 12 min acquisition time per slab possible without discernible motion artefacts, although 
even with this nearly ideal subject behaviour approximately 1 in 4 scans still had to be discarded and 
repeated. Motion correction will generally be necessary to acquire data at higher resolution than 
that presented here. Alternatively, imaging acceleration techniques could be applied (Candes et al., 
2006; Griswold et al., 2002; Pruessmann et al., 1999), but because these techniques undersample 
the imaging data, they come at the cost of lower image SNR and significant reductions in scan times 
might not be possible. Acquiring these data at even higher field strengths would boost SNR (Edel-
stein et al., 1986; Pohmann et al., 2016) to partially compensate for SNR losses due to acceleration 
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and may enable faster imaging and/or smaller voxel sizes. This could facilitate the identification of the 
ultimate limit of the FRE effect and identify at which stage of the vascular tree does the blood delivery 
time become the limiting factor. While Figure 7 indicates the potential for voxel sizes below 0.16 mm, 
the singular nature of this comparison warrants further investigations.

In general, we have not considered SNR, but only FRE, that is, the (relative) image contrast, 
assuming that segmentation algorithms would benefit from higher contrast for smaller arteries. 
Importantly, the acquisition parameters available to maximize FRE are limited, namely repetition 
time, flip angle, and voxel size. SNR, however, can be improved via numerous avenues indepen-
dent of these parameters (Brown et al., 2014c; Du et al., 1996; Heverhagen et al., 2008; Parker 
et al., 1991; Triantafyllou et al., 2011; Venkatesan and Haacke, 1997), the simplest being longer 
acquisition times. If the aim is to optimize a segmentation outcome for a given acquisition time, 
the trade- off between contrast and SNR for the specific segmentation algorithm needs to be deter-
mined (Klepaczko et al., 2016; Lesage et al., 2009; Moccia et al., 2018; Phellan and Forkert, 
2017). Our own—albeit limited—experience has shown that segmentation algorithms (including 
manual segmentation) can accommodate a perhaps surprising amount of noise using prior knowl-
edge and neighbourhood information, making these high- resolution acquisitions possible. Impor-
tantly, note that our treatment of the FRE does not suggest that an arbitrarily small voxel size is 
needed, but instead that voxel sizes appropriate for the arterial diameter of interest are beneficial 
(in line with the classic ‘matched- filter’ rationale; North, 1963). Voxels smaller than the arterial 
diameter would not yield substantial benefits (Figure  5) and may result in SNR reductions that 
would hinder segmentation performance. Nevertheless, if SNR were also to be considered in the 
regime of pial arteries, the noise ‘magnitude bias’ due to the effects of multi- channel magnitude- 
valued data on the noise distribution (Constantinides et al., 1997; Triantafyllou et al., 2011) needs 
to be accounted for. In particular, the low SNR expected in the tissue signal, which in TOF- MRA 
should ideally be near the noise floor especially for high- resolution acquisitions, would be affected. 
Accordingly, SNR predictions then need to include the effects of various analog and digital filters, 
the number of acquired samples, the noise covariance correction factor, and—most importantly—
the non- central chi distribution of the noise statistics of the final magnitude image (Triantafyllou 
et al., 2011).

Another imaging parameter that affects the FRE but has not been further considered here is the 
slab thickness. Classically, a reduced slab thickness is associated with higher FRE due to a reduction 
in blood delivery time (Parker et  al., 1991). However, this assumes that the vessel runs relatively 
straight through the imaging volume. This will not always hold true when imaging pial arteries, which 
have numerous right- angled branches and track the folding pattern of the cortex. In addition, blood 
velocities in larger arteries are much faster, and most of the blood delivery time can be assumed to be 
spent in the small branches, which would be included in both thicker and thinner slabs. Nevertheless, 
we have used comparatively thin slabs due to the long acquisition times and higher risk of motion 
that would be associated with larger imaging volumes. Future acquisitions might be able to utilize the 
SNR increase from larger imaging volumes to increase acceleration and thus provide larger coverage 
at similar acquisition times.

In summary, numerous theoretical and practical considerations remain for optimal imaging of pial 
arteries using TOF contrast. Depending on the application, advanced displacement artefact compen-
sation strategies may be required, and zero- filling could provide better vessel depiction. Further, an 
optimal trade- off between SNR, voxel size, and acquisition time needs to be found. Currently, the 
partial- volume FRE model only considers voxel size, and—as we reduced the voxel size in the exper-
iments—we (partially) compensated the reduction in SNR through longer scan times. This, ultimately, 
also required the use of prospective motion correction to enable the very long acquisition times 
necessary for 140 µm isotropic voxel size. Often, anisotropic voxels are used to reduce acquisition 
time and increase SNR while maintaining in- plane resolution. This may indeed prove advantageous 
when the (also highly anisotropic) arteries align with the anisotropic acquisition, for example, when 
imaging the large supplying arteries oriented mostly in the head- foot direction. In the case of pial 
arteries, however, there is not preferred orientation because of the convoluted nature of the pial arte-
rial vasculature encapsulating the complex folding of the cortex (see section Anatomical architecture 
of the pial arterial vasculature). A further reduction in voxel size may be possible in dedicated research 
settings utilizing even longer acquisition times and/or larger acquisition volumes to maintain SNR. 
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However, if acquisition time is limited, voxel size and SNR need to be carefully balanced against each 
other.

Challenges for vessel segmentation algorithms
The vessel segmentations presented here were performed to illustrate the sensitivity of the image 
acquisition to small pial arteries and are based on a simple combination of thresholding and region- 
growing. Thus, there is much potential for increased detection sensitivity and accuracy by employing 
more sophisticated approaches (Bernier et al., 2018; Chen et al., 2018; Frangi et al., 1998; Hsu 
et  al., 2019; Hsu et  al., 2017; Lesage et  al., 2009; Nowinski et  al., 2011; Suri et  al., 2002). 
Figure 7—figure supplement 3 provides an example of this potential using manual segmentation 
on a small patch of the data presented in Figure 7. Given that the manual segmentation of these 
vessels is relatively simple, albeit arduous, machine learning approaches (Hilbert et al., 2020; Tetteh 
et al., 2020) also seem promising, as they commonly perform well in visual tasks (LeCun et al., 2015; 
Rueckert et al., 2016; Zaharchuk et al., 2018) and have successfully been applied to large- scale 
vasculature segmentations of mouse tissue- cleared data (Todorov et al., 2020). In general, the main 
challenges for these algorithms include the small vessel size compared to the voxel size, the broad 
range of vessel diameters, and the high noise levels.

Further, inflow in large pial veins and the dural venous sinuses can lead to high image intensities 
in these venous structures, and, consequently, false positives in the segmentation and identification 
of pial arteries. While additional RF pulses (Meixner et al., 2019; Schmitter et al., 2012) can be 
played out during image acquisition to suppress venous signal, the associated higher power deposi-
tion and increased acquisition times would reduce the imaging efficiency. Thus, we instead explored 
the removal of unwanted veins using a low- resolution two- echo TOF acquisition and  T

∗
2  estimates to 

identify non- arterial vessels in the segmentation of the high- resolution data (Bae et al., 2010; Deis-
tung et al., 2009; Du et al., 1994; Du and Jin, 2008).

The success of this vein removal approach hinges on two conditions: the quality of the segmen-
tation, that is, each segmented vessel is either an artery or a vein and no erroneous connections 
between the two classes arose during segmentation, and the assumption that venous vessels are 
present in both low- and high- resolution acquisitions. While the removal based on segmenting low- 
resolution data proved to be sufficient to demonstrate this approach (Figure 9), the segmentation of 
the high- resolution data suffered from a number of instances where veins and arteries were artefac-
tually joined, and prohibited the full application of this technique to the native high- resolution data. 
Note the posterior lateral veins on both sides of the brain present in Figure 7, which require a higher 
exclusion threshold (see section Data analysis) to prevent the removal of joined arteries and veins. 
Thus, utilizing the numerous possible improvements in the segmentation algorithm (see above), these 
segmentation errors can be prevented in the future to improve vein removal for high- resolution data.

Our approach also assumes that the unwanted veins are large enough that they are also resolved in 
the low- resolution image. If we consider the source of the FRE effect and the type of vessels identified 
in Figure 9, it might indeed be exclusively large veins that are present in TOF- MRA data, which would 
suggest that our assumption is valid. Fundamentally, the FRE depends on the inflow of unsaturated 
spins into the imaging slab. However, small veins drain capillary beds in the local tissue, that is, the 
tissue within the slab. (Note that due to the slice oversampling implemented in our acquisition, spins 
just above or below the slab will also be excited.) Thus, small pial veins only contain blood water spins 
that have experienced a large number of RF pulses due to the long transit time through the pial arte-
rial vasculature, the intracortical arterioles, the capillaries, and the intracortical venules. Accordingly, 
the blood delivery time for pial veins is much longer as it includes the blood delivery time for pial 
arteries, in addition to the blood transit time through the entire intracortical vasculature. Hence, their 
longitudinal magnetization would be similar to that of stationary tissue. To generate an FRE effect in 
veins, ‘pass- through’ venous blood from outside the imaging slab is required. This is only available in 
veins that are passing through the imaging slab, which have much larger diameters. These theoretical 
considerations are corroborated by the findings in Figure 9, where large disconnected vessels with 
varying intensity profiles were identified as non- arterial. Due to the heterogenous intensity profiles in 
large veins and the sagittal and transversal sinuses, the intensity- based segmentation applied here 
may only label a subset of the vessel lumen, creating the impression of many small veins. This is partic-
ularly the case for the straight and inferior sagittal sinus in the bottom slab of Figure 9. Nevertheless, 
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future studies potentially combing anatomical prior knowledge, advanced segmentation algorithms, 
and susceptibility measures would be capable of removing these unwanted veins in post- processing 
to enable an efficient TOF- MRA image acquisition dedicated to optimally detecting small arteries 
without the need for additional venous suppression RF pulses.

Once these challenges for vessel segmentation algorithms are addressed, a thorough quantifica-
tion of the arterial vasculature can be performed. For example, the skeletonization procedure used to 
estimate the increase of the total length of the segmented vasculature (Figure 5—figure supplement 
1) exhibits errors particularly in the unwanted sinuses and large veins. While they are consistently 
present across voxel sizes, and thus may have less impact on relative change in skeleton length, they 
need to be addressed when estimating the absolute length of the vasculature, or other higher- order 
features such as number of new branches. (Note that we have also performed the skeletonization 
procedure on the maximum intensity projections to reduce the number of artefacts and obtained 
comparable results: reducing the voxel size from 0.8 to 0.5 mm isotropic increases the skeleton length 
by 44% (3D) vs. 37% (2D), reducing the voxel size from 0.5 to 0.4 mm isotropic increases the skeleton 
length by 28% (3D) vs. 26% (2D), reducing the voxel size from 0.4 to 0.3 mm isotropic increases the 
skeleton length by 31% (3D) vs. 16% (2D), and reducing the voxel size from 0.16 to 0.14 mm isotropic 
increases the skeleton length by 14% (3D) vs. 24% (2D).)

Computational simulations of blood flow based on these segmentations (Hsu et al., 2017; Park 
et al., 2020) also require accurate estimates of vessel diameter. However, when vessel diameter 
and voxel size are similar, diameter estimates often result in large relative errors (Hoogeveen et al., 
1998; Klepaczko et al., 2016). One could imagine using the partial- volume model presented here 
(Equation (4)) to correct for these partial- volume effects (Nowinski et  al., 2011) by modelling 
voxel intensities as a mixture of vessel and background intensities. However, this approach requires 
accurate knowledge of the blood delivery time to estimate the blood signal (Equation (2)) and 
further neglects the fact that more than one tissue class typically surrounds pial vessels (see section 
Anatomical architecture of the pial arterial vasculature and Figure  1). In particular the different 
longitudinal relaxation times of grey matter and cerebrospinal fluid can generate distinct back-
ground intensities (Rooney et al., 2007; Wright et al., 2008). Additionally, the unknown position 
of the vessel within the voxel plays a significant role when determining the tissue and blood volume 
fractions, especially when voxel size and vessel diameter are similar. In summary, advanced segmen-
tation algorithms are needed to fully extract the information contained in these data, the removal 
of unwanted veins might be possible using an additional two- echo TOF acquisition, and vessel 
diameter estimates need to address potential large errors for vessels that are of similar diameter as 
the voxel size.

Future directions
The advantages of imaging the pial arterial vasculature using TOF- MRA without an exogenous 
contrast agent lie in its non- invasiveness and the potential to combine these data with various other 
structural and functional image contrasts provided by MRI. One common application is to acquire 
a velocity- encoded contrast such as phase- contrast MRA (Arts et  al., 2021; Bouvy et  al., 2016). 
Another interesting approach utilizes the inherent TOF contrast in magnetization- prepared two rapid 
acquisition gradient echo (MP2RAGE) images acquired at ultra- high field that simultaneously acquires 
vasculature and structural data, albeit at lower achievable resolution and lower FRE compared to the 
TOF- MRA data in our study (Choi et al., 2020). In summary, we expect high- resolution TOF- MRA 
to be applicable also for group studies to address numerous questions regarding the relationship of 
arterial topology and morphometry to the anatomical and functional organization of the brain, and 
the influence of arterial topology and morphometry on brain hemodynamics in humans. Notably, we 
have focused on imaging pial arteries of the human cerebrum; however, other brain structures such as 
the cerebellum, subcortex, and white matter are of course also of interest. While the same theoretical 
considerations apply, imaging the arterial vasculature in these structures will require even smaller 
voxel sizes due to their smaller arterial diameters (Duvernoy et al., 1983; Duvernoy et al., 1981; 
Nonaka et al., 2003a). In addition, imaging of the pial venous vasculature—using susceptibility- based 
contrasts such as  T2

∗
 - weighted magnitude (Gulban et al., 2021) or phase imaging (Fan et al., 2015), 

SWI (Eckstein et al., 2021; Reichenbach et al., 1997), or quantitative susceptibility mapping (QSM) 
(Bernier et al., 2018; Huck et al., 2019; Mattern et al., 2019; Ward et al., 2018)—would enable 
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a comprehensive assessment of the complete cortical vasculature and how both arteries and veins 
shape brain hemodynamics.

When applying measures of arterial topology and morphometry to address questions about the 
robustness of blood supply (Baumbach and Heistad, 1985), arterial territories (Mut et al., 2014), or 
the relationship between the cortical folding pattern and the pial vasculature (Ii et al., 2020), partic-
ular care needs to be exercised to account for the ‘voxel size’ bias. By this we mean that the depen-
dency of the vessel contrast on the voxel size shown in our study in conjunction with the reduction in 
vessel diameter along the vascular tree (Duvernoy et al., 1981; Helthuis et al., 2019) can introduce a 
systematic detection bias that varies regionally. At lower imaging resolutions, we would expect partic-
ularly high numbers of false negatives, for example, in anterior and posterior brain regions, which are 
the end points of the pial vascular tree and whose arteries generally have lower vessel diameters. This 
bias can lead to misinterpretations of the data such as an apparent reduction in vessel density, or an 
incorrect inference of slower blood flow in these regions. Further, anatomical modelling and vascular 
network synthesis methods rely on a detailed and unbiased description of the cerebral arterial vascu-
lature to serve as a reference for the developed algorithms (Bui et al., 2010; Ii et al., 2020; Keelan 
et al., 2019). Finally, computational models of the pial arterial vasculature might be particularly rele-
vant for future investigations into how the local vasculature shapes the spatio- temporal physiological 
and hemodynamic responses observed in BOLD and non- BOLD fMRI (Amemiya et al., 2020; Bright 
et al., 2020; Chen et al., 2020; Drew et al., 2020).

Estimating the sensitivity of TOF- MRA to pial vessels and verifying our finding that the voxel size 
is the determining factor for vessel depiction would arguably benefit from complementary imaging 
methods such as optical coherence tomography, which provides superior sensitivity and specificity 
for small pial vessel (Baran and Wang, 2016). These techniques are commonly used in rodents, but 
because of their limited penetration depth however, not in humans. Notably, blood velocity measure-
ments can also be obtained (Wang and An, 2009; You et al., 2014) allowing a direct estimate of 
blood delivery time to delineate the impact of voxel size and blood delivery time on FRE (Figure 4).

In summary, when imaging the pial arterial vasculature we found that—unexpectedly—the limiting 
factor is not the vascular ‘physiology’, that is, not slow blood flow in pial arteries, but rather the 
currently available image resolution. This new perspective provides further motivation to push to 
higher imaging resolutions, which will provide an even more detailed picture of the pial arterial 
network. While many challenges remain to obtain high- quality high- resolution images and vascular 
segmentations, we expect the techniques presented here to allow new insights into the topology 
and morphometry of the pial arterial vasculature. Given the stark improvements in vessel contrast 
when using smaller voxels, we believe that as imaging technology progresses, faster and higher- 
resolved acquisition techniques will become available. Utilizing the potential of higher field strengths, 
advanced receive coil arrays, new reconstruction techniques, faster imaging gradients, and sophisti-
cated motion correction will enable broad applications of this approach to both basic neuroscience 
and clinical research.

Materials and methods
Simulations
The simulations of the FRE as a function of sequence parameter (Figure 4, Equations 1–3) or voxel 
size and blood delivery time (Figure 5, Equations 4–6) were performed in Matlab R2020a (The Math-
Works, Natick, MA) and are available online: https://gitlab.com/SaskiaB/pialvesseltof.git (branch: 
paper- version). The calculation of the relative blood volume (Equation (4)) to estimate the partial- 
volume FRE (Equation (6)) is outlined in the supplementary material (Estimation of vessel- volume 
fraction). Where not stated otherwise, simulations were performed assuming a pial artery diameter 
of 200 μm, a  TR  value of 20 ms, an excitation flip angle of 18°, a blood delivery time of 400 ms, and 
longitudinal relaxation times of blood and tissue of 2100 and 1950 ms at 7 T, respectively (Huber, 
2014, Table 2.1).

Data acquisition
Four healthy adults volunteered to participate in the study (four males, ages 30–46). Prior to 
imaging, written informed consent was obtained from the three participants scanned in Boston 
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(Figures 5, 6, 8 and 9 and corresponding figure supplements) in accordance with the Partners Human 
Research Committee and the Massachusetts General Hospital Institutional Review Board (protocol 
#2016P000274); after the study completion, a consent form addendum was used to obtain informed 
consent from each participant specifically to share their anonymized data on a public data repository. 
For the single subject from Magdeburg (Figure 7 and corresponding figure supplements), the consent 
to share openly the data in anonymized form was acquired prospectively (facultative option in study 
consent form) in accordance with the ‘Ethikkommission Otto- von- Guericke- Universität Magdeburg’ 
(protocol 15/20). Experiments were conducted at 7 T on a Siemens MAGNETOM whole- body scanner 
(Siemens Healthcare, Erlangen, Germany) equipped with SC72 gradients. Imaging data presented 
in Figures 5, 6, 8 and 9 and corresponding figure supplements were acquired at the Athinoula A 
Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, using an 
in- house built head- only birdcage volume transmit coil and 31- channel receive coil array. The imaging 
data presented in Figure  7 and corresponding figure supplements were acquired at the Institute 
of Experimental Physics, Otto- von- Guericke- University, Magdeburg, using a quadrature transmit and 
32- channel receive head coil (Nova Medical, Wilmington, MA) and an optical, marker- based tracking 
system with an in- bore camera (Metria Innovation, Milwaukee, WI) for prospective motion correction.

To empirically assess the effect of resolution on FRE, the vendor- supplied TOF sequence was 
utilized to acquire MRA data at 0.3, 0.4, 0.5, and 0.8 mm isotropic resolution. For each resolution, all 
other sequence parameters were kept as identical as possible:  TE  = 4.73 ms with asymmetric echo, 

 TR  = 20 ms, flip angle = 18°, FOV = 204 mm × 178.5 mm, slab thickness = [21.6, 19.2, 22, 25.6 mm], 
slice oversampling = [22%, 25%, 18.2%, 12.5%], R>>L phase encoding direction, readout bandwidth 
= 120 Hz/px, GRAPPA (Griswold et al., 2002) = 3, number of reference lines = 32, no partial Fourier, 
3D centric reordering of the phase encoding steps (Korin et al., 1992), read and slab- select flow 
compensation (Parker et al., 2003) resulting in a total acquisition time of 6 min 42 s, 3 min 29 s, 
2 min 23 s, and 1 min 14 s, respectively. Note that the employed flow compensation only accounts for 
signal loss due to the readout and slab- select gradients, but not for potential vessel displacements 
in the phase- encoding directions. Tilt- optimized, non- saturated excitation (TONE) pulses (Atkinson 
et  al., 1994), which are commonly employed to obtain a homogenous image contrast (Atkinson 
et al., 1994; Carr and Carroll, 2012; Nägele et al., 1995), were not used; because these dedicated 
RF pulses are most effective when blood flow is perpendicular to the imaging slab and moving in the 
direction of the TONE pulse ramp, for example, in the H>>F direction. However, in the case of pial 
arteries, the complex branching pattern of the vasculature on the folded cortex means that no pref-
erential flow direction is present. Thus, the optimal direction of the TONE ramp is undetermined and 
therefore this technique is not appropriate for imaging the mesoscopic pial arteries.

The high- resolution TOF acquisitions used the same vendor- supplied TOF sequence, but with one 
slight modification to allow for larger image encoding matrices. The parameters for the TOF acquisi-
tion at 0.16 mm isotropic resolution (Figure 6 and figure supplements) were the following:  TE  = 6.56 
ms with asymmetric echo, TR  = 20 ms, flip angle = 18°, FOV = 204 mm × 173.8 mm, slab thickness = 
8.32 mm, slice oversampling = 15.4%, R>>L phase encoding direction, readout bandwidth = 100 Hz/
px, GRAPPA = 2, number of reference lines = 32, no partial Fourier, 3D centric reordering of the 
phase encoding steps, flow compensation in the read and slab- select directions, resulting in a total 
acquisition time of 11 min 42 s per slab. Immediately after each scan, the resulting images were visu-
ally inspected for motion artefacts, which manifest as a loss of image sharpness, and feedback was 
provided to the participant about their performance. If motion was detected, the scan was repeated. 
To cover a larger area, the imaging slab was moved head- foot following each scan and the acquisition 
was repeated after ensuring that the participant was still comfortable.

The high- resolution TOF acquisition at 0.14 mm isotropic resolution (Figure 7 and figure supple-
ments) utilized a prospective motion correction system to enable longer scan times and minimize the 
effect of subject motion. We followed the procedure described in Mattern et al., 2018. In brief, a 15 
mm × 15 mm marker with a Morié pattern was attached via an individually made mouthpiece to the 
subject’s teeth, skull, and thus brain (Callaghan et al., 2015). A camera, which tracked the marker at 
80 frames per second, was positioned above the subject’s head in the scanner. The rigid- body motion 
parameters estimated from the video stream were sent to the MRI scanner to update the imaging 
volume every  TR . In total, three imaging slabs were acquired in 1 hr 5 min 40 s covering 19.6 mm 
in the head- foot direction. The following pulse sequence parameters were used:  TE  = 6.99 ms with 
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asymmetric echo,  TR  = 20 ms, flip angle = 18°, FOV = 204 mm × 153 mm, slab thickness = 7.28 mm, 
slice oversampling = 15.4%, R>>L phase encoding direction, readout bandwidth = 100 Hz/px, no 
parallel imaging, no partial Fourier, 3D centric reordering of the phase encoding steps, read and slab- 
select flow compensation resulting in a total acquisition time of 21 min 53 s per slab. For comparison, 
a single slab at 0.16 mm isotropic resolution with the same pulse sequence parameters described in 
the previous paragraph was acquired.

To assess the magnitude of the vessel displacement artefact (Figure 8) and verify the feasibility of 
unwanted vein removal during post- processing (Figure 9; Deistung et al., 2009; Du and Jin, 2008), 
we acquired additional two- echo TOF data in a fourth participant with the following parameters: 
isotropic voxel size = 0.4 mm,  TE  = [7.05 ms, 14 ms] with asymmetric echo,  TR  = 20 ms, flip angle 
= 18°, FOV = 204 mm × 153 mm, slab thickness = 20.8 mm, number of slabs = 4, slice oversam-
pling = 23.1%, R>>L phase encoding direction, readout bandwidth = 200 Hz/px, monopolar readout, 
GRAPPA = 4, no partial Fourier, no 3D centric reordering of the phase encoding steps, full gradient- 
moment- based flow compensation in read and phase encoding directions resulting in a total acquisi-
tion time of 10 min 42 s.

The anonymized imaging data presented in this manuscript are stored in OSF (Center for Open 
Science, Inc, Charlottesville, VA) accessible via https://osf.io/nr6gc/. Note that additional multi- 
contrast high- resolution imaging data are available from this participant (Lüsebrink et al., 2021; Lüse-
brink et al., 2017). Within the OSF repository, high- resolution versions of the figures contained in this 
manuscript are also provided.

Data analysis
All imaging data were slab- wise bias- field corrected using the N4BiasFieldCorrection (Tustison et al., 
2010) tool in ANTs (Avants et al., 2009) with the default parameters. To compare the empirical FRE 
across the four different resolutions (Figure 5), manual masks were first created for the smallest part of 
the vessel in the image with the highest resolution and for the largest part of the vessel in the image 
with the lowest resolution. Then, rigid- body transformation parameters from the low- resolution to the 
high- resolution (and the high- resolution to the low- resolution) image were estimated using coregister 
in SPM (https://www.fil.ion.ucl.ac.uk/spm/), and their inverse was applied to the vessel mask using 
SPM’s reslice. To calculate the empirical FRE (Equation (3)), the mean of the intensity values within the 
vessel mask was used to approximate the blood magnetization, and the mean of the intensity values 
1 voxel outside of the vessel mask was used as the tissue magnetization.

For vessel segmentation, a semi- automatic segmentation pipeline was implemented in Matlab 
R2020a (The MathWorks, Natick, MA) using the UniQC toolbox (Frässle et al., 2021): First, a brain 
mask was created through thresholding which was then manually corrected in ITK- SNAP (http://www. 
itksnap.org/) (Yushkevich et al., 2006) such that pial vessels were included. For the high- resolution 
TOF data (Figures 6 and 7 and figure supplements), denoising to remove high- frequency noise was 
performed using the implementation of an adaptive non- local means denoising algorithm (Manjón, 
2010) provided in DenoiseImage within the ANTs toolbox, with the search radius for the denoising set 
to 5 voxels and noise type set to Rician. Next, the brain mask was applied to the bias corrected and 
denoised data (if applicable). Then, a vessel mask was created based on a manually defined threshold, 
and clusters with less than 10 or 5 voxels for the high- and low- resolution acquisitions, respectively, 
were removed from the vessel mask. Finally, an iterative region- growing procedure starting at each 
voxel of the initial vessel mask was applied that successively included additional voxels into the 
vessel mask if they were connected to a voxel which was already included and above a manually 
defined threshold (slightly below the previous threshold). Both thresholds were applied globally but 
manually adjusted for each slab. No correction for motion between slabs was applied. The Matlab 
code describing the segmentation algorithm as well as the analysis of the two- echo TOF acquisi-
tion outlined in the following paragraph are also included in our GitHub repository (https://gitlab. 
com/SaskiaB/pialvesseltof.git, Bollmann, 2022; copy archived at swh:1:rev:4b23440d98f8d02b0ecb-
8f839afc3b6c81c90969). To estimate the increased detection of vessels with higher resolutions, we 
computed the relative increase in the length of the segmented vessels for the data presented in 
Figure 5 (0.8, 0.5, 0.4, and 0.3 mm isotropic voxel size) and Figure 7 (0.16 and 0.14 mm isotropic 
voxel size) by computing the skeleton using the bwskel Matlab function and then calculating the skel-
eton length as the number of voxels in the skeleton multiplied by the voxel size.

https://doi.org/10.7554/eLife.71186
https://osf.io/nr6gc/
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http://www.itksnap.org/
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https://gitlab.com/SaskiaB/pialvesseltof.git
https://gitlab.com/SaskiaB/pialvesseltof.git
https://archive.softwareheritage.org/swh:1:dir:65cd27e36ee88dd1236eae5e2068bf448a49cb89;origin=https://gitlab.com/SaskiaB/pialvesseltof.git;visit=swh:1:snp:39bb1855e25f06c9ff44dfa49c4aefdc07f0f283;anchor=swh:1:rev:4b23440d98f8d02b0ecb8f839afc3b6c81c90969
https://archive.softwareheritage.org/swh:1:dir:65cd27e36ee88dd1236eae5e2068bf448a49cb89;origin=https://gitlab.com/SaskiaB/pialvesseltof.git;visit=swh:1:snp:39bb1855e25f06c9ff44dfa49c4aefdc07f0f283;anchor=swh:1:rev:4b23440d98f8d02b0ecb8f839afc3b6c81c90969


 Research article      Neuroscience

Bollmann et al. eLife 2022;11:e71186. DOI: https://doi.org/10.7554/eLife.71186  24 of 35

The stronger background signal in the lower- resolution two- echo TOF acquisition necessitated 
a more advanced vessel segmentation algorithm. We therefore utilized the procedure described in 
Bernier et al., 2018, to derive the initial vessel mask, before performing the region- growing proce-
dure. To illustrate the vessel displacement, segmentation of the second echo was skeletonized using 
the bwskel Matlab function, which was then overlaid on the MIP of the first echo (Figure 8) to highlight 
the vessel centreline shift between the two echoes. The voxel- wise  T2

∗
  values for the vein removal 

were estimated from the natural logarithm of the intensity ratios of the two echoes and the echo time 
difference. Vessels were deemed to be unwanted veins if the 90% percentile of the  T2

∗
  values in each 

independent (unconnected) vessel/vessel tree was below 19 ms (Figure 9) or 27 ms (Figure 7).
To estimate the vessel density mentioned in the Anatomical architecture of the pial arterial vascu-

lature section, the drawing in Figure 239 in Duvernoy, 1999, was segmented into arteries, veins, and 
background using their RGB values to estimate their relative content.
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Appendix 1
Supplementary material
Estimation of vessel-volume fraction
To estimate the relative blood- volume fraction  V

rel
blood = VvesselInVoxel/Vvoxel , we assume a centrally 

located vessel with radius  rvessel  in a voxel with equal length  lvoxel  along each side. The vessel cross- 
sectional area, orthogonal to the main axis of the vessel and intersecting the voxel, is split into 8 
equal areas  A , as indicated in Figure 4—figure supplement 1. The relative blood volume fraction 

 V
rel
blood  can then be computed as the sum of these 8 compartments times the voxel length  lvoxel  

relative to the voxel volume:

 Vrel
blood = 8·A·lvoxel

Vvoxel  . (8)

If  lvoxel < cos π
2 · rvessel  (case I), that is, the voxel is completely contained in the vessel, the total vessel 

area in the voxel is

 
Acase I = 1

2 ·
(

lvoxel
2

)2
.
  

(9)

Conversely, if  rvessel < lvoxel/2  (case III), that is, the vessel is completely contained in the voxel, the 
total vessel area in the voxel is

 Acase III = 1
2 · r2

vessel ·
π
4 .  (10)

In the case when vessel and voxel intersect, the total area  A  is the sum of the area  A′  of the right 
triangle and area  A

′′
  of the circular sector:

 Acase II = A
′

+ A′′
  

 A′ = 1
2 · a · lvoxel

2   

 a = sin θ · rvessel  

 θ = cos−1
lvoxel

2
rvessel   

 A′′ = 1
2 · r2

vessel ·
(
π
4 − θ

)
 . (11)

Effect of FRE definition and interaction with partial-volume model
For the definition of the FRE effect in this study, we used a measure of relative FRE (Al- Kwifi et al., 
2002) in combination with a partial- volume model (Equation (6)). To illustrate the effect of these two 
definitions, as well as their interaction, we have estimated the relative and absolute FRE for an artery 
with a diameter of 200 and 2000 µm (i.e. no partial- volume effects). The absolute FRE explicitly takes 
the voxel volume into account, that is, instead of Equation (6) for the relative FRE we used

 
FREPV

(
nRF, lvoxel, dvessel

)
= Mtotal

z
(
nRF, lvoxel, dvessel

)
· l3voxel − Mtissue

zS ·
(

l3voxel

)
 . (12)

Note that the division by  M
tissue
zS · l3voxel  to obtain the relative FRE removes the contribution of the 

total voxel volume 
 

(
l3voxel

)
 
.

Figure 4—figure supplement 2 shows that, when partial- volume effects are present, the highest 
relative FRE arises in voxels with the same size as or smaller than the vessel diameter (Figure 4—
figure supplement 2A), whereas the absolute FRE increases with voxel size (Figure  4—figure 
supplement 2C). If no partial- volume effects are present, the relative FRE becomes independent 
of voxel size (Figure 4—figure supplement 2B), whereas the absolute FRE increases with voxel 
size (Figure 4—figure supplement 2D). While the partial- volume effects for the relative FRE are 
substantial, they are much more subtle when using the absolute FRE and do not alter the overall 
characteristics.
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Optimization of repetition time and excitation flip angle
As the main goal of the optimization here was to start within an already established parameter range 
for TOF imaging at ultra- high field (Kang et al., 2010; Stamm et al., 2013; Von Morze et al., 2007), 
we only needed to then further tailor these for small arteries by considering a third parameter, 
namely the blood delivery time. From a practical perspective, a  TR  of 20 ms as a reference point 
was favourable, as it offered a time- efficient readout minimizing wait times between excitations but 
allowing low encoding bandwidths to maximize SNR. Due to the interdependency of flip angle and 
repetition time, for any one blood delivery time any FRE could (in theory) be achieved. For example, 
a similar FRE curve at 18° flip angle and 5 ms  TR  can also be achieved at 28° flip angle and 20 ms 
 TR ; or the FRE curve at 18° flip angle and 30 ms  TR  is comparable to the FRE curve at 8° flip angle 
and 5 ms  TR  (Figure 3—figure supplement 1, top). In addition, the difference between optimal 
parameter settings diminishes for long blood delivery times, such that at a blood delivery time of 
500 ms (Figure 3—figure supplement 1, bottom), the optimal flip angle at a  TR  of 15, 20, or 25 ms 
would be 14°, 16°, and 18°, respectively. This is in contrast to a blood delivery time of 100 ms, where 
the optimal flip angles would be 32°, 37°, and 41°. In conclusion, in the regime of small arteries, 
long  TR  values in combination with low flip angles ensure FRE at blood delivery times of 200 ms and 
above, and within this regime there are marginal gains by further optimizing parameter values and 
the optimal values are all similar.

Vessel displacement artefact
The origin of the vessel displacement artefact described in section Velocity- and TE- dependent 
vessel displacement artefacts and shown in Figure 8 is illustrated in Figure 8—figure supplement 
1A (Brown et al., 2014b). In short, the moving blood water spins accumulate the phase increment 
at time tpe at position (xtpe, ytpe) encoding their position in the phase encoding direction y, but 
continue to flow along the blood vessel such that at the echo time (TE) they are in position (xtTE, 
ytTE). Consequently, during image reconstruction the signal from these spins is located in position 
(xtTE, ytpe) which they have never occupied. The magnitude of the vessel displacement is simply the 
distance travelled by the blood water spins in the time between the phase- encoding blip and the 
echo time, and can be described as in Equation (7) assuming a constant blood velocity. Figure 8—
figure supplement 1B illustrates that an inversion of the polarity of the phase encoding direction, 
a technique commonly used to estimate and correct for voxel displacements found in echo- planar 
imaging stemming from main magnetic field inhomogeneities (Andersson et  al., 2003; Jezzard 
and Clare, 1999), does not change the direction of the displacement. This is because the vessel 
displacement is caused by true object motion, and while an inversion of the polarities would (in this 
example) imprint the ‘correct’ larger phase increment on the blood water spins from Panel A, this 
phase increment is now also associated with the inverted position and thus the vessel displacement 
occurs in the same direction.

Potential for advanced segmentations algorithms
The potential for advanced segmentation algorithms is illustrated in Figure 7—figure supplement 
3, where a small section of the TOF data acquired at 0.14 mm isotropic resolution from Figure 7 
was manually segmented. In this example, it is clear that the automatic segmentation is missing 
several small vessel branches that could be readily segmented manually. The maximum intensity 
projection contains 50 slices, corresponding to 7 mm coverage in the head- foot direction. Improved 
performance of this manual segmentation generated on a per slice basis using the full 3D information 
shows the potential for advances in automatic segmentation algorithms to identify many more pial 
arteries in this data than which are visible in the maximum intensity projections presented here.

https://doi.org/10.7554/eLife.71186
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