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Quantum metrology with quantum-chaotic sensors
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Quantum metrology promises high-precision measurements of classical parameters with far

reaching implications for science and technology. So far, research has concentrated almost

exclusively on quantum-enhancements in integrable systems, such as precessing spins or

harmonic oscillators prepared in non-classical states. Here we show that large benefits can be

drawn from rendering integrable quantum sensors chaotic, both in terms of achievable

sensitivity as well as robustness to noise, while avoiding the challenge of preparing and

protecting large-scale entanglement. We apply the method to spin-precession magnetometry

and show in particular that the sensitivity of state-of-the-art magnetometers can be further

enhanced by subjecting the spin-precession to non-linear kicks that renders the dynamics

chaotic.

DOI: 10.1038/s41467-018-03623-z OPEN

1 Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany. Correspondence and requests for materials
should be addressed to L.J.F. (email: lukas.fiderer@uni-tuebingen.de) or to D.B. (email: daniel.braun@uni-tuebingen.de)

NATURE COMMUNICATIONS |  (2018) 9:1351 | DOI: 10.1038/s41467-018-03623-z | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

mailto:lukas.fiderer@uni-tuebingen.de
mailto:daniel.braun@uni-tuebingen.de
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Quantum-enhanced measurements (QEM) use quantum
effects in order to measure physical quantities with larger
precision than what is possible classically with compar-

able resources. QEMs are therefore expected to have large impact
in many areas, such as improvement of frequency standards1–5,
gravitational wave detection6,7, navigation8, remote sensing9, or
measurement of very small magnetic fields10. A well-known
example is the use of so-called NOON states in an interferometer,
where a state with N photons in one arm of the interferometer
and zero in the other is superposed with the opposite situation11.
It was shown that the smallest phase shift that such an inter-
ferometer could measure scales as 1/N, a large improvement over
the standard 1=

ffiffiffiffi
N

p
behavior that one obtains from ordinary laser

light. The latter scaling is known as the standard quantum limit
(SQL), and the 1/N scaling as the Heisenberg limit (HL). So far
the SQL has been beaten only in few experiments, and only for
small N (see e.g., 3,12,13), as the required non-classical states are
difficult to prepare and stabilize and are prone to decoherence.

Sensing devices used in quantum metrology so far have been
based almost exclusively on integrable systems, such as precessing
spins (e.g., nuclear spins, NV centers, etc.) or harmonic oscillators
(e.g., modes of an electro-magnetic field or mechanical oscilla-
tors), prepared in non-classical states (see ref. 14 for a recent
review). The idea of the present work is to achieve enhanced
measurement precision with readily accessible input states by
disrupting the parameter coding by a sequence of controlled
pulses that renders the dynamics chaotic. At first sight this may
appear a bad idea, as measuring something precisely requires
well-defined, reproducible behavior, whereas classical chaos is
associated with unpredictible long-term behavior. However, the
extreme sensitivity to initial conditions underlying classically
chaotic behavior is absent in the quantum world with its unitary
dynamics in Hilbert space that preserves distances between states.
In turn, quantum-chaotic dynamics can lead to exponential
sensitivity with respect to parameters of the system15.

The sensitivity to changes of a parameter of quantum-chaotic
systems has been studied in great detail with the technique of
Loschmidt echo16, which measures the overlap between a state
propagated forward with a unitary operator and propagated
backward with a slightly perturbed unitary operator. In the limit
of infinitesimally small perturbation, the Loschmidt echo turns
out to be directly related to the quantum Fisher information
(QFI) that determines the smallest uncertainty with which a
parameter can be estimated. Hence, a wealth of known results
from quantum chaos can be immediately translated to study the
ultimate sensitivity of quantum-chaotic sensors. In particular,
linear response expressions for fidelity can be directly transfered
to the exact expressions for the QFI.

Ideas of replacing entanglement creation by dynamics were
proposed previously17–21, but focussed on initial state prepara-
tion, or robustness of the readout22,23, without introducing or
exploiting chaotic dynamics during the parameter encoding. They
are hence comparable to spin-squeezing of the input state24.
Quantum chaos is also favorable for state tomography of random
initial states with weak continuous time measurement25,26, but no
attempt was made to use this for precision measurements of a
parameter. A recent review of other approaches to quantum-
enhanced metrology that avoid initial entanglement can be found
in ref. 27.

We study quantum-chaotic enhancement of sensitivity at the
example of the measurement of a classical magnetic field with a
spin-precession magnetometer. In these devices that count
amongst the most sensitive magnetometers currently available28–
32, the magnetic field is coded in a precession frequency of atomic
spins that act as the sensor. We show that the precision of the
magnetic-field measurement can be substantially enhanced by

non-linearly kicking the spin during the precession phase and
driving it into a chaotic regime. The initial state can be chosen as
an essentially classical state, in particular a state without initial
entanglement. The enhancement is robust with respect to
decoherence or dissipation. We demonstrate this by modeling the
magnetometer on two different levels: firstly as a kicked top, a
well-known system in quantum chaos to which we add
dissipation through superradiant damping; and secondly with a
detailed realistic model of a spin-exchange-relaxation-free
atom-vapor magnetometer including all relevant decoherence
mechanisms28,33, to which we add non-linear kicks.

Results
Physical model of a quantum-chaotic sensor. As a sensor we
consider a kicked top (KT), a well-studied quantum-chaotic
system34–36 described by the time-dependent Hamiltonian

HKTðtÞ ¼ αJz þ k
2J

J2y
X1

n¼�1
τδðt � nτÞ; ð1Þ

where Ji (i= x, y, z) are components of the (pseudo-)angular
momentum operator, J≡ j+ 1/2, and we set ħ= 1. Jz generates a
precession of the (pseudo-)angular momentum vector about the
z-axis with precession angle α which is the parameter we want to
estimate. “Pseudo” refers to the fact that the physical system need
not be an actual physical spin, but can be any system with 2j+ 1
basis states on which the Ji act accordingly. For a physical spin-j
in a magnetic field B in z-direction, α is directly proportional to B.
The J2y -term is the non-linearity, assumed to act instantaneously
compared to the precession, controlled by the kicking strength k
and applied periodically with a period τ that leads to chaotic
behavior. The system can be described stroboscopically with
discrete time t in units of τ (set to τ= 1 in the following),

ψðtÞj i ¼ UαðkÞ ψðt � 1Þj i ¼ Ut
αðkÞ ψð0Þj i ð2Þ

with the unitary Floquet-operator

UαðkÞ ¼ T exp �i
Z tþ1

t
dt′HKTðt′Þ

� �
¼ e�ik

J2y
2J e�iαJz ð3Þ

that propagates the state of the system from right after a kick to
right after the next kick34–36. T denotes time-ordering. The total
spin is conserved, and 1/J can be identified with an effective ħ,
such that the limit j →∞ corresponds to the classical limit, where
X= Jx/J, Y= Jy/J, Z= Jz/J become classical variables confined to
the unit sphere. (Z, ϕ) can be identified with classical phase space
variables, where ϕ is the azimuthal angle of X= (X, Y, Z)36. For
k= 0, the dynamics is integrable, as the precession conserves Z
and increases ϕ by α for each application of Uα(0). Phase space
portraits of the corresponding classical map show that for k≲ 2.5,
the dynamics remains close to integrable with large visible
Kolmogorov–Arnold–Moser tori, whereas for k≳ 3.0 the chaotic
dynamics dominates36.

States that correspond most closely to classical phase space
points located at (θ, ϕ) are SU(2)-coherent states (“spin-coherent
states”, or “coherent states” for short), defined as

j; θ; ϕj i ¼
Xj
m¼�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j

j�m

� �s
sinðθ=2Þj�mcosðθ=2Þjþmeiðj�mÞϕ jmj i

ð4Þ
in the usual notation of angular momentum states jmj i
(eigenbasis of J2 and Jz with eigenvalues j(j+ 1) and m, 2j 2 N,
m=−j, −j+ 1, …, j). They are localized at polar and azimuthal
angles θ, ϕ with smallest possible uncertainty of all spin-j states
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(associated circular area ~1/j in phase space). They remain
coherent states under the action of Uα(0), i.e., just get rotated,
ϕ7!ϕþ α. For the KT, the parameter encoding of α in the
quantum state breaks with the standard encoding scheme (initial
state preparation, parameter-dependent precession, measure-
ment) by periodically disrupting the coding evolution with
parameter-independent kicks that generate chaotic behavior
(see Fig. 1).

An experimental realization of the kicked top was proposed in
ref. 37, including superradiant dissipation. It has been realized
experimentally38 in cold cesium vapor using optical pulses (see
Supplementary Note 1 for details).

Quantum parameter estimation theory. Quantum measure-
ments are most conveniently described by a positive-operator
valued measure (POVM) {Πξ} with positive operators Πξ (POVM
elements) that fulfill ∫dξΠξ= 1. Measuring a quantum state
described by a density operator ρα yields for a given POVM and a
given parameter α encoded in the quantum state a probability
distribution pα(ξ)= tr(Πξρα) of measurement results ξ. The Fisher
information IFisher,α is then defined by

IFisher;α :¼
Z

dξ
dpαðξÞ=dαð Þ2

pαðξÞ : ð5Þ

The minimal achievable uncertainty, i.e., the variance of the
estimator Var(αest), with which a parameter α of a state ρα can be
estimated for a given POVM with M independent measurements
is given by the Cramér–Rao bound, Var(αest) ≥ 1/(MIFisher,α).
Further optimization over all possible (POVM-)measurements
leads to the quantum-Cramér–Rao bound (QCRB),

Var αestð Þ � 1
MIα

; ð6Þ

which presents an ultimate bound on the minimal achievable
uncertainty, where Iα is the quantum Fisher information (QFI),
and M the number of independent measurements39.

The QFI is related to the Bures distance ds2Bures between the
states ρα and ρα+dα, separated by an infinitesimal change of the
parameter α, ds2Buresðρ; σÞ≡ 2 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F ρ; σð Þp� �
. The fidelity F(ρ, σ)

is defined as Fðρ; σÞ ¼ ρ1=2σ1=2
�� ��2

1
, and Ak k1� tr

ffiffiffiffiffiffiffiffiffi
AAyp

denotes
the trace norm40. With this41,

Iα ¼ 4ds2Bures ρα; ραþdα

� �
=dα2: ð7Þ

For pure states ρ ¼ ψj i ψh j, σ ¼ ϕj i ϕh j, the fidelity is simply
given by Fðρ; σÞ ¼ ψjϕh ij j2. A parameter coded in a pure state via
the unitary transformation ψα

�� 	 ¼ e�iαG ψð0Þj i with hermitian
generator G gives the QFI42

Iα ¼ 4VarðGÞ � 4 G2

 	� Gh i2� �

; ð8Þ

which holds for all α, and where �h i � ψαj � jψα


 	
.

Loschmidt echo. The sensitivity to changes of a parameter
of quantum-chaotic systems has been studied in great detail
with the technique of Loschmidt echo16, which measures the
overlap Fϵ(t) between a state propagated forward with a unitary
operator Uα(t) and propagated backward with a slightly perturbed

unitary operator Uαþϵð�tÞ ¼ Uy
αþϵðtÞ, where UαðtÞ ¼

T exp � i
�h

R t
0dt′Hαðt′Þ

� �
with the time ordering operator T, the

Hamiltonian, Hαþϵ(t)=Hα(t)+ ϵV(t) and the perturbation V(t),

FϵðtÞ ¼ ψð0ÞjUαðtÞUαþϵð�tÞψð0Þh ij j2: ð9Þ

Fϵ is exactly the fidelity that enters via the Bures distance in the
definition Eq. (7) of the QFI for pure states, such that
IαðtÞ ¼ limϵ!04

1�FϵðtÞ
ϵ2 .

Benchmarks. In order to assess the influence of the kicking on
the QFI, we calculate as benchmarks the QFI for the (integrable)
top with Floquet operator Uα(0) without kicking, both for an
initial coherent state and for a Greenberger–Horne–Zeilinger
(GHZ) state ψGHZ

�� 	 ¼ j; jj i þ j;�jj ið Þ= ffiffiffi
2

p
. The latter is the

equivalent of a NOON state written in terms of (pseudo-)angular
momentum states. The QFI for the time evolution Eq. (2) of a top
with Floquet operator Uα(0) is given by Eq. (8) with G= Jz. For
an initial coherent state located at θ, ϕ it results in a QFI

IαðtÞ ¼ 2t2jsin2 θ: ð10Þ

As expected, Iα(t)= 0 for θ= 0 where the coherent state is an
eigenstate of Uα(0). The scaling ∝ t2 is typical of quantum
coherence, and Iα(t)∝ j signifies a SQL-type scaling with N= 2j,
when the spin-j is composed of N spin−1

2 particles in a state
invariant under permutations of particles. For the benchmark, we
use the optimal value θ= π/2 in Eq. (10), i.e., Itop,CS≡ 2t2j. For a
GHZ state, the QFI becomes

IαðtÞ ¼ 4t2j2 � Itop;GHZ ; ð11Þ

which clearly displays the HL-type scaling ∝ (2j)2≡N2.

Results for the kicked top without dissipation. In the fully
chaotic case, known results for the Loschmidt echo suggest a QFI
of the KT ∝ tj2 for times t with tE < t < tH, where tE ¼ 1

λ ln
ΩV
hd

� �
is

the Ehrenfest time, and tH= ħ/Δ the Heisenberg time; λ is the
Lyapunov exponent, ΩV the volume of phase-space, hd with d the
number of degrees of freedom the volume of a Planck cell, and Δ
the mean energy level spacing16,36,43. For the kicked top,
hd ’ ΩV=ð2JÞ. More precisely, we find for t ’ tE a QFI Iα∝ tj2

and for t � tH (see Methods)

IðtÞ ¼ 8sσclt
2J ; ð12Þ

where s denotes the number of invariant subspaces s of the Hil-
bert space (s= 3 for the kicked top with α= π/2, see page 359 in
ref. 15), and σcl is a transport coefficient that can be calculated
numerically. The infinitesimally small perturbation relevant for
the QFI makes that one is always in the perturbative regime44,45.
The Gaussian decay of Loschmidt echo characteristic of that
regime becomes the slower the smaller the perturbation and goes
over into a power law in the limit of infinitesimally small
perturbation16.

The numerical results for the QFI in Fig. 2 illustrate a cross-
over of power-law scalings in the fully chaotic case (k= 30) for an
initial coherent state located on the equator (θ, ϕ)= (π/2, π/2).
The analytical Loschmidt echo results are nicely reproduced: a
smooth transition in scaling from tj2 → t2j for t= tE → t≳ tH can
be observed and confirms Eqs. (15) and (16) in the Methods for

� Rz (�) Rz (�) Rz (�)

Fig. 1 Schematic representation of the parameter encoding: propagation
starts on the left with an initial state ρ and ends on the right with a
measurement (semi-circle symbol). The encoding through linear
precession Rz(α) about the z-axis by an angle α is periodically disrupted
through parameter independent, non-linear, controlled kicks (blue
triangles) that can render the system chaotic
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t > tE= ln(2J)/λ, with the numerically determined Lyapunov
exponent λ ’ 2:4733, and Eq. (12) for t≳ tH≃ J/316. We find for
relatively large j (j≳ 102) a scaling Iα∝ j1.08 in good agreement with
Eq. (12) predicting a linear j-dependence for large t≳ tH. During the
transient time t < tE, when the state is spread over the phase space,
QFI shows a rapid growth that can be attributed to the generation
of coherences that are particularly sensitive to the precession.

The comparison of the KT’s QFI Iα,KT with the benchmark Itop,
CS of the integrable top in Fig. 2c shows that a gain of more than
two orders of magnitude for j= 4000 can be found at t≲ tE.
Around tE the state has spread over the phase space and has
developed coherences while for larger times t > tE the top catches
up due to its superior time scaling (t2 vs. t). The long-time
behavior yields a constant gain <1, which means that the top
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achieves a higher QFI than the KT in this regime. The gain
becomes constant as both top and KT exhibit a t2 scaling of the
QFI.

Whereas in the fully chaotic regime the memory of the initial
state is rapidly forgotten, and the initial state can therefore be
chosen anywhere in the chaotic sea without changing much the
QFI, the situation is very different in the case of a mixed phase
space, in which stability islands are still present. Figure 3 shows
phase space distributions for k= 3 of QFI and gain Γ= Iα,KT/Itop,
CS exemplarily for large t and j (t= 215, j= 4000) in comparison
with the classical Lyapunov exponent, where ϕ, Z signify the
position of the initial coherent state.

The QFI nicely reproduces the essential structure in classical
phase space for the Lyapunov exponent λ (see Methods for the
calculation of λ). Outside the regions of classically regular motion,
the KT clearly outperforms the top by more than two orders of
magnitude. Remarkably, the QFI is highest at the boundary of
non-equatorial islands of classically regular motion. Coherent
states located on that boundary will be called edge states.

The diverse dynamics for different phase space regions calls for
dedicated analyses. Figure 4 depicts the QFI with respect to j and
t. The blue area is lower and upper bounded by the benchmarks
Itop,CS and Itop,GHZ, Eq. (11), respectively.

We find that initial states in the chaotic sea perform best for
small times while for larger times (t≳ 300 for j= 4000) edge
states perform best. Note that this is numerically confirmed up to
very high QFI values (>1014). The superiority of edge states holds
for j≳ 10 for large times (t≳ 103, see Fig. 4a). Large values of j
allow one to localize states essentially within a stability island. A
coherent state localized within a non-equatorial stability island
shows a quadratic t-scaling analog to the regular top. For a state

jψeqi localized around a point within an equatorial island of
stability the QFI drastically decays with increasing j (brown
triangles). The scaling with t for j= 4000 reveals that QFI does
not increase with t in this case, it freezes. One can understand the
phenomenon as arising from a freeze of fidelity due to a vanishing
time averaged perturbation16,46: the dynamics restricts the states
to the equatorial stability island with time average

hψeqjðUt
αÞyðkÞJzUt

αðkÞjψeqi= 0. This can be verified numerically,
and contrasted with the dynamics when initial states are localized
in the chaotic sea or on a non-equatorial island.

Results for the dissipative kicked top. For any quantum-
enhanced measurement, it is important to assess the influence of
dissipation and decoherence. We first study superradiant damp-
ing47–51 as this enables a proof-of-principle demonstration with
an analytically accessible propagator for the master equation with
spins up to j≃ 200 and correspondingly large gains. Then, in the
next subsection, we show by detailed and realistic modeling
including all the relevant decoherence mechanisms that sensi-
tivity of existing state-of-the-art alkali-vapor-based spin-
precession magnetometers in the spin-exchange-relaxation-free
(SERF) regime can be enhanced by non-linear kicks.

At sufficiently low temperatures (kBT � �hω, where ħω is the
level spacing between adjacent states jmj i) superradiance is
described by the Markovian master equation for the spin-density
matrix ρ(t) with continuous time,

d
dt

ρðtÞ ¼ γ J�; ρðtÞJþ½ � þ J�ρðtÞ; Jþ½ �ð Þ � ρðtÞ ; ð13Þ
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top (DKT, blue crosses) for spin size j= 40, damping constant γ= 0.5 × 10−3. b High plateau values of the QFI are achieved for j= 2 and k= 30 for various
values of the damping constant (γ= 0.5 × 10−2 for the purple line, γ= 1.58 × 10−3 for the orange line, and γ= 0.5 × 10−4 for the blue line), while dashed
lines represent corresponding QFI with k= 0. c, d Time tmax at which the QFI of the DT (gray dots) and DKT (blue crosses) reaches its maximum as
function of γ and j, respectively. The fits for the DT (gray line) exhibit a slope of −0.97 and −1.01, and the fits for the DKT (blue, dashed) a slope of −0.95
and −1.94 for scaling with γ and j, respectively. Parameters j= 15 in c and γ= 0.5 × 10−3 in d. The plotted range of the fits corresponds to the fitted data
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where J±≡ Jx ± iJy, with the commutator [A, B]= AB− BA, and
γ is the dissipation rate, with the formal solution ρ(t)= exp(Λt)
ρ(0)≡D(t)ρ(0). The full evolution is governed by dρ(t)/dt=
Λρ(t)− iħ[HKT(t), ρ(t)]. Dissipation and precession about the
z-axis commute, Λ(JzρJz)= Jz(Λρ)Jz. Λ can therefore act perma-
nently, leading to the propagator P of ρ from discrete time
t to t+ τ for the dissipative kicked top (DKT)36,52

ρðt þ τÞ ¼ PρðtÞ ¼ UαðkÞ DðτÞρðtÞð ÞUy
αðkÞ: ð14Þ

For the sake of simplicity, we again set the period τ= 1, and t is
taken again as discrete time in units of τ. Then, γτ≡ γ controls
the effective dissipation between two unitary propagations.
Classically, the DKT shows a strange attractor in phase space
with a fractal dimension that reduces from d= 2 at γ= 0 to d= 0
for large γ, when the attractor shrinks to a point attractor and
migrates towards the ground state j;�jj i52. Quantum mechani-
cally, one finds a Wigner function with support on a smeared out
version of the strange attractor that describes a non-equilibrium
steady state reached after many iterations. Such a non-trivial state
is only possible through the periodic addition of energy due to the
kicking. Because of the filigrane structure of the strange attractor,
one might hope for relatively large QFI, whereas without kicking
the system would decay to the ground state, where the QFI
vanishes. Creation of steady non-equilibrium states may therefore
offer a way out of the decoherence problem in quantum
metrology, see also section V.C in ref. 27 for similar ideas.

Vanishing kicking strength, i.e., the dissipative top (DT)
obtained from the DKT by setting k= 0, will serve again as
benchmark. While in the dissipation-free regime, we took the
top’s QFI and with it its SQL-scaling (∝ jt2) as reference, SQL-
scaling no longer represents a proper benchmark, because
damping typically corrupts QFI with increasing time. To illustrate
the typical behavior of QFI, we exemplarily choose certain spin
sizes j and damping constants γ here and in the following, such as
j= 40 and γ= 0.5 × 10−3 in Fig. 5a, while computational
limitations restrict us to j≲ 200.

Figure 5 shows the typical overall behavior of the QFI of
the DT and DKT as function of time: after a steep initial rise ∝ t2,
the QFI reaches a maximum whose value is the larger the
smaller the dissipation. Then the QFI decays again, dropping to
zero for the DT, and a plateau value for the DKT. The time at
which the maximum value is reached decays roughly as 1/(jγ) for
the DT, and as 1/j0.95 and 1/γ1.94 for the DKT. The plateau itself
is in general relatively small for the limited values of j that could
be investigated numerically, but it should be kept in mind that (i)
for the DT the plateau does not even exist (QFI always decays to
zero for large time, as dissipation drives the system to the ground
state j;�jj i which is an eigenstate of Jz and hence insensitive to
precession); and (ii) there are exceptionally large plateau values
even for small j, see e.g., the case of j= 2 in Fig. 5b. There, for γ=
1.58 × 10−3, the plateau value is larger by a factor 2.35 than the
DT’s QFI optimized over all initial coherent states for all times.
Note that since Λ(JzρJz)= Jz(Λρ)Jz, for the DT an initial
precession about the z-axis that is part of the state preparation
can be moved to the end of the evolution and does not influence
the QFI of the DT. Optimizing over the initial coherent state can
thus be restricted to optimizing over θ.

When considering dynamics, it is natural also to include time
as a resource. Indeed, experimental sensitivities are normally
given as uncertainties per square root of Hertz: longer (classical)
averaging reduces the uncertainty as 1=

ffiffiffiffiffiffiffi
Tav

p
with averaging time

t= Tav. For fair comparisons, one multiplies the achieved
uncertainty with

ffiffiffiffiffiffiffi
Tav

p
. Correspondingly, we now compare

rescaled QFI and Fisher information, namely IðtÞα � Iα=Tav,

IðtÞFisher;α � IFisher;α=Tav. A protocol that reaches a given level of
QFI more rapidly has then an advantage, and best precision
corresponds to the maximum rescaled QFI or Fisher information,
ÎðtÞα � maxtI

ðtÞ
α or ÎðtÞFisher;α � maxt I

ðtÞ
Fisher;α.

Figure 6 shows that in a broad range of dampings that are
sufficiently strong for the QFI to decay early, the maximum
rescaled QFI of the DKT beats that quantity of the DT by up to an
order of magnitude. Both quantities were optimized over the
location of the initial coherent states.

Figure 7 shows ÎðtÞα and the gain in that quantity compared to
the non-kicked case as function of both the damping and the
kicking strength. One sees that in the intermediate damping
regime (γ≃ 10−3) the gain increases with kicking strength, i.e.,
increasingly chaotic dynamics.

For exploiting the enhanced sensitivity shown to exist through
the large QFI, one needs also to specify the actual measurement of
the probe. In principle, the QCRB formalism allows one to
identify the optimal POVM measurement if the parameter is
known, but these may not always be realistic. In Fig. 8, we
investigate Jy as a feasible example for a measurement for a spin
size j= 200 after t= 2 time steps. We find that there exists a
broad range of kicking strengths where the reference (state-
optimized but k= 0) is outperformed in both cases, with and
without dissipation. In a realistic experiment, control parameters
such as the kicking strength are subjected to variations. A 5%
variance in k, which was reported in ref. 38, reduces the Fisher
information only marginally and does not challenge the
advantage of kicking. This can be calculated by rewriting the
probability that enters in the Fisher information in Eq. (5)
according to the law of total probability, pα(ξ)= ∫dkp(k)pα(ξ|k)
where p(k) is an assumed Gaussian distribution of k values with
5% variance and pα(ξ|k)= tr[Πξ ρα(k)] with Πξ a POVM element
and ρα(k) the state for a given k value. The advantage from
kicking remains when investigating a rescaled and time-
optimized Fisher information (not shown in Fig. 8).

Improving a SERF magnetometer. We finally show that
quantum-chaotically enhanced sensitivity can be achieved in
state-of-the-art magnetometers by investigating a rather realistic
and detailed model of an alkali-vapor-based spin-precession
magnetometer acting in the SERF regime. SERF magentometers
count amongst the most sensitive magnetometers for detecting
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small quasi-static magnetic fields28–32. We consider a cesium-
vapor magnetometer at room temperature in the SERF regime
similar to experiments with rubidium in ref. 53. Kicks on the
single cesium-atom spins can be realized as in ref. 38 by exploiting
the spin-dependent rank-2 (ac Stark) light-shift generated with
the help of an off-resonant laser pulse. Typical SERF magnet-
ometers working at higher temperatures with high buffer-gas
pressures exhibit an unresolved excited state hyperfine splitting
due to pressure broadening, which makes kicks based on rank-2

light-shifts ineffective. Dynamics are modeled in the electronic
ground state 62S1/2 of 133Cs that splits into total spins of f= 3 and
f= 4, where kicks predominantly act on the f= 3 manifold.

The model is quite different from the foregoing superradiance
model because of a different decoherence mechanism originating
from collisions of Cs atoms in the vapor cell: We include spin-
exchange and spin-destruction relaxation, as well as additional
decoherence induced by the optical implementation of the kicks.
With this implementation of kicks one is confined to a small spin
size f= 3 of single atoms, such that the large improvements in
sensitivity found for the large spins discussed above cannot be
expected. Nevertheless, we still find a clear gain in the sensitivity
and an improved robustness to decoherence due to kicking.
Details of the model described with a master equation33,54 can be
found in the Supplementary Note 2.

Spins of cesium atoms are initially pumped into a state spin-
polarized in z-direction orthogonal to the magnetic field B= Bŷ
in y-direction, whose strength B is the parameter α to be
measured. We let spins precess in the magnetic field, and, by
incorporating small kicks about the x-axis, we find an improve-
ment over the reference (without kicks) in terms of rescaled QFI
and the precision based on the measurement of the electron-spin
component Sz orthogonal to the magnetic field. The best possible
measurement precision ΔB in units of T/

ffiffiffiffiffiffi
Hz

p
per 1 cm3 vapor

volume is ΔB ¼ 1=
ffiffiffiffiffiffiffiffiffi
nIðtÞB

q
where n≃ 2 × 1010 is the number of

cesium atoms in 1 cm3. For a specific measurement, IðtÞB must be
replaced by the corresponding rescaled Fisher information

IðtÞFisher;B. We compare the models with and without kicks directly
on the basis of the Fisher information rather than modeling in
addition the specific optical implementation and the correspond-
ing noise of the measurement of Sz. Neglecting this additional
read-out-specific noise leads to slightly better precision bounds
than given in the literature, but does not distort the comparison.

The magnetic field was set to B= 4 × 10−14 T in y-direction,
such that the condition for the SERF regime is fulfilled, i.e., the
Larmor frequency is much smaller than the spin-exchange rate,
and the period is set to τ= 1 ms. Since kicks induce decoherence
in the atomic spin system, we have to choose a very small effective
kicking strength of k≃ 6.5 × 10−4 for the kicks around the x-axis
(with respect to the f= 3 ground-state manifold), generated with
an off-resonant 2 μs light pulse with intensity Ikick= 0.1 mW/cm2

linearly polarized in x-direction, to find an advantage over the
reference.
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The example of Fig. 9 shows about 31% improvement in
measurement precision ΔB for an optimal measurement (QFI,
upper right inset) and 68% improvement in a comparison of Sz
measurements (inset), which is impressive in view of the small
system size. The achievable measurement precision of the kicked
dynamics exhibits an improved robostness to decoherence:
rescaled QFI for the kicked dynamics continues to increase and
sets itself apart from the reference around the coherence time
associated with spin-destruction relaxation. The laser light for
these pulses can be provided by the laser used for the read out,
which is typically performed with an off-resonant laser. A further
improvement in precision is expected from additionally measur-
ing kick pulses for readout or by applying kicks not only to the
f= 3 but also to the f= 4 ground-state manifold of 133Cs.
Further, it might be possible to dramatically increase the relevant
spin-size by applying the kicks to the joint spin of the cesium
atoms, for instance, through a double-pass Faraday effect55.

Discussion
Rendering the dynamics of quantum sensors chaotic allows one
to harvest a quantum enhancement for quantum metrology
without having to rely on the preparation or stabilization of
highly entangled states. Our results imply that existing magnetic
field sensors31,56 based on the precession of a spin can be ren-
dered more sensitive by disrupting the time-evolution by non-
linear kicks. The enhancement persists in rather broad parameter
regimes even when including the effects of dissipation and
decoherence. Besides a thorough investigation of superradiance
damping over large ranges of parameters, we studied a cesium-
vapor-based atomic magnetomter in the SERF regime based on a
detailed and realistic model28–31,53. Although the implementation
of the non-linearity via a rank-2 light shift introduces additional
decoherence and despite the rather small atomic spin size f ≤ 4, a
considerable improvement in measurement sensitivity is found
(68% for a read-out scheme based on the measurement of the
electronic spin-component Sz). The required non-linearity that

can be modulated as function of time has been demonstrated
experimentally in ref. 38 in cold cesium vapor.

Even higher gains in sensitivity are to be expected if an effective
interaction can be created between the atoms, as this opens access
to larger values of total spin size for the kicks. This may be
achieved e.g., via a cavity as suggested for pseudo-spins in ref. 57,
or the interaction with a propagating light field as demonstrated
experimentally in refs. 55,58 with about 1012 cesium atoms. More
generally, our scheme will profit from the accumulated knowledge
of spin-squeezing, which is also based on the creation of an
effective interaction between atoms. Finally, we expect that
improved precision can be found in other quantum sensors that
can be rendered chaotic as well, as the underlying sensitivity to
change of parameters is a basic property of quantum-chaotic
systems.

Methods
QFI for kicked time-evolution of a pure state. The QFI in the chaotic
regime with large system dimension 2J and times larger than the Ehrenfest
time, t > tE, is given in linear-response theory by an auto-correlation function
CðtÞ � ~VðtÞ~Vð0Þ
 	� ~VðtÞ
 	

~Vð0Þ
 	
of the perturbation of the Hamiltonian in the

interaction picture, Hαþϵ(t)=Hα(t)+ ϵV(t), ~VðtÞ ¼ Uαð�tÞVðtÞUαðtÞ:

IαðtÞ ¼ 4 tCð0Þ þ 2
Xt�1

t′¼0

t � t′
� �

C t′
� � !

: ð15Þ

In our case, the perturbation V(t)= Jz is proportional to the parameter-encoding
precession Hamiltonian, and the first summand in Eq. (15) can be calculated for an
initial coherent state,

Cð0Þ ¼ 1
3
jðjþ 1Þ; ð16Þ

giving a tj2-scaling starting from tE. Due to the finite Hilbert-space dimension of
the kicked top, the auto-correlation function decays for large times to a finite value
C, leading to a term quadratic in t from the sum in Eq. (15) that simplifies to
Iα ¼ 4Ct2 for t � tH. If one rescales Jz → Jz/J such that it has a well defined classical
limit, random matrix theory allows one to estimate the average value of C(t) for
large times: C ¼ 2Jsσcl , and σcl is a transport coefficient that can be calculated
numerically16. This yields Eq. (12).

Lyapunov exponent. A data point located at (Z, ϕ) for the Lyapunov exponent in
Fig. 2c was obtained numerically by averaging over 100 initial conditions equally
distributed within a circular area of size 1/j (corresponding to the coherent state)
centered around (Z, ϕ).

Data availability. Numerical simulation data from this work have been submitted
to figshare.com with DOI 10.6084/m9.figshare.5901640. Relevant data are also
available from the authors upon request.
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