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Abstract: Hodgkin lymphomas (HLs) are lymphoid neoplasms that are morphologically defined
as being composed of dysplastic cells, namely, Hodgkin and Reed–Sternberg cells, in a reactive
inflammatory background. The biological nature of HLs has long been unclear; however, our
understanding of HL-related genetics and tumor microenvironment interactions is rapidly expanding.
For example, cell surface overexpression of programmed cell death 1 ligand 1 (CD274/PD-L1) is now
considered a defining feature of an HL subset, and targeting such immune checkpoint molecules is a
promising therapeutic option. Still, HLs comprise multiple disease subtypes, and some HL features
may overlap with its morphological mimics, posing challenging diagnostic and therapeutic problems.
In this review, we summarize the recent advances in understanding the biology of HLs, and discuss
approaches to differentiating HL and its mimics.

Keywords: Hodgkin lymphoma; genetics; tumor microenvironment

1. Introduction

Hodgkin lymphoma (HL), initially called “Hodgkin’s disease”, was first reported in
1832 [1]. HLs primarily affect lymph nodes, and are characterized by a mixture of large
dysplastic tumor cells and small non-neoplastic inflammatory cells. The biological nature
of HLs has long been a mystery, as the neoplastic cells lack both B-cell markers and T-cell
markers in most cases. Based on their constellations of morphologic and biologic proper-
ties, nodular lymphocyte-predominant HL (NLPHL) and classic HL (CHL) are currently
recognized as distinct disease entities, although they share a paucity of neoplastic cells and
a rich inflammatory background of non-neoplastic cells, mainly T cells. NLPHL expresses
B-cell markers and retains a B-cell phenotype [2], which led to its recognition as a B-cell
neoplasm overlapping with T-cell/histiocyte-rich large B-cell lymphoma (THRLBCL). In
the International Consensus Classification of Mature Lymphoid Neoplasms (ICC classifi-
cation), NLPHL was renamed as nodular lymphocyte-predominant B-cell lymphoma [3].
CHLs exhibit reduced expression of B-cell markers, although they are reportedly derived
from crippled germinal center (GC) B cells. Infection with Epstein–Barr virus (EBV) plays
a significant role in the lymphomagenesis of a subset of CHL. Accumulating evidence
indicates that this disease phenotype is characterized by the interaction of immune cells
in the microenvironment with neoplastic cells expressing immune checkpoint proteins,
represented by CD274/PD-L1. In the present review, we summarize recent advances that
have improved our understanding of HL pathogenesis, and describe several morphological
mimics of HLs that can be diagnostic pitfalls.

2. Classical Hodgkin Lymphoma

Hodgkin lymphomas (HLs) are historically defined based on morphological character-
istics. Around 90% of all HLs are CHL [4], which is characterized by tumor cells—namely,
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mononuclear Hodgkin cells and multinucleated Reed–Stenberg (HRS) cells—with the
background of a variable mixture of reactive immune cells, including small lymphocytes,
eosinophils, neutrophils, histiocytes, and plasma cells. The HRS cells of CHL usually
show B-cell antigen loss, even though GC B cells are considered to be the cellular origin
of CHL in most cases. In the revised 4th edition of WHO classification and also in the
ICC classification, CHL is subdivided into four histological subtypes—nodular sclerosis
CHL (NSCHL), lymphocyte-rich CHL (LRCHL), mixed cellularity CHL (MCCHL), and
lymphocyte-depleted CHL (LDCHL)—each of which has a distinct epidemiology, biology,
and prognosis.

2.1. Epidemiology

The overall average age-adjusted incidence of CHL is 2–3 per 100,000 individuals in
western populations, and lower in Asian populations [5,6]. NSCHL, the most common
subtype of CHL, shows its peak incidence in adolescents and young adults (AYAs) [7].
MCCHL, the second-most common subtype in Western populations, has its peak incidence
rates in the pediatric age group and among elderly adults [8]. The risk of CHL development
is associated with socioeconomic status, especially among AYAs [4,9]. High socioeconomic
status and lack of exposure to microorganisms during childhood have been suggested
to increase the risk of NSCHL development [10,11]. Conversely, MCCHL in the AYA
age group—which corresponds with a high prevalence of EBV infection—is predominant
in developing countries, and its morbidity decreases with economic development [12].
Regardless of histological subtype, CHL shows male predominance [4,7]. Excluding male
predominance, no etiological factors have been identified as associated with LRCHL and
LDCHL, due to their rarity [7].

2.2. Clinical Features

Most patients with CHL present with asymptomatic lymphadenopathy or a mass
on chest radiograph [13]. The most frequently involved site is a cervical lymph node
(75% of cases), followed by the mediastinal, axillary, and para-aortic regions. The disease
progression typically follows the physiological direction of lymphatic flow [14]. Involve-
ment of non-axial lymph nodes, such as mesenteric and epitrochlear lymph nodes, is
rare. Mediastinal involvement is a typical presentation of NSCHL, detected in 80% of
these patients. Primary extranodal involvement may be found in immunocompromised
hosts. Bone marrow involvement is more frequent in LDCHL than in other subtypes [15].
MCCHL commonly exhibits abdominal and/or splenic involvement. Among the four
subtypes, LDCHL shows the poorest prognosis, followed in order by MCCHL, NSCHL,
and LRCHL [16].

2.3. Histological Feature

RS cells are the diagnostic hallmarks of CHL. Classical RS cells feature large cell
morphology (up to 100 µm) with abundant cytoplasm, and are binucleated or bilobed,
often appearing as a “mirror image”. Each nucleus contains huge viral inclusion-like
eosinophilic nucleoli, sometimes having an “owl’s eye” appearance. The mononuclear
variants are called Hodgkin cells. HRS cells frequently exhibit degenerative morphology
with condensed nuclear chromatin, and are referred to as mummified cells. However,
these cells are not specific to CHL, and can also be observed in other EBV-associated B-cell
lymphoproliferative disorders [17].

2.3.1. NSCHL

NSCHL is characterized by a nodular growth pattern, with each nodule surrounded
by collagen bands. Although the presence of fibrosis is a defining feature of NSCHL, the
degree of fibrosis is extremely variable—ranging from sclerotic thickening of the lymph
node capsule without collagen bands, to total lymph node involvement by sclerotic bands
showing almost complete obliterative fibrosis [18] (Figure 1A,B). In the revised 4th edi-
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tion of the WHO classification system, at least one nodule completely surrounded by
collagen bands is required for the diagnosis. The typical tumor cell of NSCHL is called
a “lacunar cell”. Lacunar cells have abundant clear to slightly eosinophilic cytoplasm,
which is condensed in the perinuclear region, with a lacuna-like space formed around the
cytoplasm [17] (Figure 1C,D). Paradoxically, their nucleoli are often indistinct. NSCHL
exhibits a background of highly inflammatory cells, including small lymphocytes, and
other non-neoplastic cells.
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Figure 1. Histological and immunohistochemical features of nodular sclerosis classical Hodgkin
lymphoma (NSCHL). (A) Cellular nodules are separated by collagen bundles. (B) Sclerotic thickening
of the lymph node capsule is shown. (C) Neoplastic cells that are binucleated with a “mirror-image”
appearance, called “Reed–Stenberg cells”. (D) Neoplastic cells with a lacuna-like space around the
cytoplasm, called “lacunar cells”. (E–H) Neoplastic cells expressing CD30 and PD-L1 (assessed using
clone SP142), lacking CD20 expression, and with very weak PAX5 expression.
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In rare cases, termed “syncytial variant”, neoplastic cells with increased cellular
pleomorphism form aggregates, accompanied by a prominent inflammatory reaction and
areas of necrosis [19]. In other cases, termed “fibrohistiocytic variant”, fibroblasts and
histiocytes with massive sclerosis are abundant, and neoplastic cells may be difficult to
identify. These variants are suggested to be associated with poorer prognosis [20]. NSCHL
can be histologically graded into two categories, NS1 and NS2, based on the presence
of lymphocyte depletion and the number of HRS cells, as historically proposed by the
British National Lymphoma Investigation (BNLI) [21,22]. The syncytial and fibrohistiocytic
variants are categorized as NS2. However, this BNL grading system is not mandatory in
the current WHO classification due to past reports that it lacks consistency.

2.3.2. MCCHL

In MCCHL, lymph node architecture is usually obliterated—being affected by a
mixed population of HRS cells, lymphocytes, plasma cells, eosinophils, and histiocytes
(Figure 2A,B). Although interstitial fibrosis may be present, the lymph node capsule is usu-
ally not thickened and exhibits no broad band of fibrosis [4]. MCCHL frequently includes
EBV-positive tumor cells, which may be accompanied by epithelioid granulomas [23]
(Figure 2C).
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Figure 2. Histological features of mixed cellularity classical Hodgkin lymphoma (MCCHL).
(A) Granuloma formation by histiocyte aggregation is observed in the background. (B) Neoplastic
cells are scattered against a background rich in histiocytes and lymphocytes. (C) Neoplastic cells with
highlighted Epstein–Barr virus RNA through in situ hybridization (EBER-ISH).
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2.3.3. LDCHL

LDCHL features relatively predominant HRS cells, and scarce background lympho-
cytes [24]. LDCHL and MCCHL share histological features [25], with both having a high
prevalence of EBV-harboring HRS cells, possibly associated with aggressive clinical be-
havior, and appearing to represent a biologically continuous spectrum [15]. Previously, in
Lukes–Butler classification, LDCHL was divided into two histological patterns: diffuse
fibrosis and reticular type [26]. The former pattern is characterized by dense fibrosis with
prominent fibroblastic proliferation, and the latter by numerous large pleomorphic HRS
cells observed with a background of small lymphocytes, histiocytes, and occasional plasma
cells [27].

2.3.4. LRCHL

LRCHL morphologically mimics NLPHL, making it hard to make this differential
diagnosis based on histopathology alone. In contrast with NLPHL, the neoplastic cells of
LRCHL exhibit a classical HRS immunophenotype and do not express B-cell antigens, such
as CD20 [28]. Similar to NLPHL, most LRCHL exhibit nodular growth containing small
reactive lymphocytes and scattered HRS cells. These nodules usually lack neutrophils,
eosinophils, and GC B cells corresponding to centrocytes and centroblasts. Rarely, the
neoplastic cells show diffuse growth or growth within the interfollicular area [29]. Patients
with the diffuse growth variant have a high incidence of relapse, and the distinction from
THRLBCL may be problematic [29].

2.4. Immunophenotype

In almost all CHL cases, the HRS cells express CD30, which is a member of the TNF–
nerve growth factor (NGF) receptor superfamily of cytokine receptors, and has been used
as a conventional diagnostic marker [30] (Figure 1E). However, many other lymphoid
neoplasms also show CD30 expression [31–33]. Another diagnostic marker is CD15, which
is expressed on HRS cells in the majority of CHL cases (75–85%). Notably, the lack of CD15
expression may be associated with poorer prognosis [4,34]. PD-L1 is a novel diagnostic
marker of CHL, which is expressed in 73–96% of CHL cases [35–39] (Figure 1F). PD-L1
immunostaining can also help identify neoplastic cells in small biopsy samples [39]. Its
expression on HRS cells indicates the key role of immune evasion in the tumorigenesis.
More importantly, blocking the PD-1/PD-L1 axis is an efficient therapeutic approach for
CHL [40,41], and PD-L1 expression level is associated with a good response to PD-1/PD-L1
inhibitors [42]. The prevalence of PD-L1 expression varies depending on the histologic
subtype. Almost all NSCHL cases show PD-L1 expression on neoplastic cells, whereas
other histological subtypes, especially LRCHL, express PD-L1 much less frequently [43,44].

HRS cells typically lack a B-cell phenotype, other than PAX5 expression, and usually
are negative or show very weak staining for CD20, CD79a, OCT-2, and BOB.1 [45,46].
Nuclear PAX5 staining is usually weaker in HRS cells than in reactive B cells, which
is a typical finding of CHL [46,47] (Figure 1G,H). However, improved antigen-retrieval
techniques have led to increased frequency of detection of B-cell marker expression. In
the current literature, CD20 expression has been observed in 20–50% of CHL [48–50]. In
almost all cases, IRF4/MUM1 is expressed in RS cells, presumably due to NF-κB pathway
activation; however, it has little significance in terms of diagnosis, since other lymphoid
neoplasms mimicking CHLs also frequently express MUM1 [51]. BCL6 is expressed in
around 20% of CHL cases [52].

2.5. Cellular Origin of Hodgkin Lymphoma

For many years, the cellular origin of CHL has been controversial because the HRS
cells of CHL have a morphology and immunophenotype that does not match any type of
immune cells. Genetic analysis has revealed that in almost all CHL cases, the HRS cells
have a clonally rearranged immunoglobulin (IG) gene [53]. Furthermore, a significant
proportion of HRS cells have somatic hypermutation at the IG gene locus [53,54]. In



Diagnostics 2022, 12, 1507 6 of 23

around 30% of cases, IG gene rearrangements render the product nonfunctional through
the introduction of stop codons, deletions generated within the GC [54]. In the other cases,
HRS cells frequently lack Ig gene transcription ability due to functional defects in the Ig
gene regulatory elements [53]. These genetic analysis findings indicate that HRS cells
originate from GC cells, which normally cannot survive without B-cell receptor (BCR)
signaling [55]. Notably, a minority of CHL cases have clonal TCR gene rearrangement
and/or express T-cell markers [56]. Further research is needed to determine whether these
minority cases represent T-cell-derived Hodgkin lymphoma, T-cell lymphomas mimicking
CHL, or “B-cell” lymphomas with aberrant phenotypic/genetic changes.

2.6. Genetic Alterations

The most frequent genetic alteration found in CHL is a copy number gain of 9p24.1
at the locus including PD-L1/L2 and JAK2, which is found in up to 97% of CHL cases [37].
A copy number gain of PD-L1/L2 increases its transcripts in HRS cells [57]. Additionally,
a copy number gain of JAK2 leads to constitutive activation of JAK/STAT signaling, and
thereby also induces PD-L1 expression on HRS cells [58]. A minority of CHL cases (4/200,
5%) exhibit unbalanced translocations involving 9p24.1, which might upregulate PD-L1
expression by stabilizing PD-L1 mRNA [59]. An inactivating mutation of the Beta 2
microglobulin gene (B2M) is another prevalent gene mutation in CHL (up to 40%), which
also contributes to escape from immune surveillance by CD8+ T cells, by limiting the cell
surface expression of major histocompatibility complex class I (MHC class I) [60,61]. These
immune-evasion-associated genetic alterations are more frequently observed in EBV+ CHL
than in EBV−CHL, and presumably inhibit the T-cell response to the virus-derived antigen
of EBV+CHL tumor cells [61].

In addition to JAK2 copy number gain, the JAK-STAT pathway is also activated by inac-
tivating mutations of SOCS1 and PTPN1, which are both negative regulators of JAK/STAT
signaling [61]. Activating mutation of STAT6 is observed in~30% of CHL cases [62]. In
total, almost all CHL cases harbor genetic alterations that affect the JAK/STAT pathway.

CHL also frequently exhibits constitutive NF-κB signaling due to genetic alterations.
A copy number gain of REL, a component of the NF-κB signaling pathway, is observed in
over 50% of CHL cases, making this one of the most frequent copy number alterations in
CHL [63]. Additionally, over 50% of CHL cases exhibit genetic deletion and/or inactivating
mutations involving TNFAIP3, a negative regulator of the NF-κB pathway [64]. Trunca-
tions of other NF-κB regulator genes, including NFKBIA and NFKBIE, are less frequently
reported [61].

Disruptive mutations of GNA13 (encoding G protein subunit alpha-13) and ITPKB
(encoding inositol-trisphosphate 3-kinase) are observed in around 30% of CHL [65], and
reportedly induce Akt activation. Since Akt activation plays a central role in tonic BCR
signaling, and rescues BCR knock-out in B-cell lymphoma cell lines [66], these genetic
alterations may replace the function of BCR signaling among neoplastic cells in CHLs
lacking BCR expression [67].

A recent study revealed that ARID1A, a member of the subunit of the chromatin remod-
eling SWItch/sucrose non-fermentable (SWI/SNF) complex, is truncated in 26% of CHL
cases. It was suggested that ARID1A mutations may be a driver event of lymphomagenesis,
and contribute to genomic instability of CHL [61].

Table 1 lists the representative genetic alterations of CHLs.



Diagnostics 2022, 12, 1507 7 of 23

Table 1. Representative genetic alterations of classic Hodgkin lymphomas and nodular lymphocyte-
predominant Hodgkin lymphoma [37,61,62,64,68–75].

Function Type of Genetic Alteration
Frequency (%)

Reference
CHLs NLPHL

Immune evasion
PD-L1/PD-L1 Gain/amplification 30–97 [37,44,61]

B2M SNV, indel 39 [61]
CIITA Translocation, SNV 8 [61]

JAK/STAT activation
JAK2 Gain/amplification 33 [75]

SOCS1 SNV 40–70 50 [68]
STAT6 SNV, gain 30 [61,62]

PTPN1 SNV, indel 22 [61]
XPO1 SNV, gain 18–26 [62]

Constitutive NF-κB activation
TNFAIP3 SNV, indel 57–74 [61,64]

REL Gain/amplification 50 50 [63]
NFKBIA SNV, indel 17 [61]
NFKBIE SNV, indel 26 [61]

NIK Gain/amplification 25 [67,70]
BCL3 Gain/translocation 15 [71]

PI3K/AKT pathway activation
GNA13 SNV 24–26 [61,62]
ITPKB SNV 16 [61,62]

MAPK/ERK pathway activation
DUSP2 SNV 54 [72]

AP-1 regulation
JUNB SNV 39 [72]

BCL6 disregulation
BCL6 Translocation 48 [73,74]

Chromatin remodeling
ARID1A SNV, indel 26 [61]

Unknown function
SGK1 SNV 70 [72]

SNV: single nucleotide variant; CHL: classic Hodgkin lymphoma; NLPHL: nodular lymphocyte-predominant
Hodgkin lymphoma.

2.7. EBV Infection

It has been postulated that EBV plays an important role in the pathogenesis of CHLs.
However, the prevalence of EBV positivity varies greatly depending on the histologic
subtype. For example, EBV infection is detected in up to 75% and 65% of cases of MCCHL
and LDCHL, respectively [76]. In contrast, NSCHL shows relatively low rates of EBV
positivity (10–25%), and around half of LRCHL cases have EBV infection [77]. Intriguingly,
NSCHL has a higher frequency of EBV positivity in elderly individuals (40%) compared to
in young patients (10%), suggesting that NSCHL has different pathogenic mechanisms in
elderly versus young patients [78]. EBV infection may substitute for the role of genetically
altered intracellular pathways, as EBV+CHL cases show much lower numbers of somatic
mutations compared with EBV−CHL [61,62]. For example, EBV+CHL cases express EBV-
encoded latent membrane protein 1 (LMP1), which interacts with tumor necrosis factor
receptor-associated factors and activates NF-κB signaling [79]. Consequently, EBV+CHL is
less reliant on genetic aberrations that induce constitutively active NF-κB signaling [64].
Additionally, another EBV-coded latent membrane protein, LMP2a, mimics BCR signaling,
and presumably rescues BCR-deficient B cells in the course of CHL development [80].
In normal B cells, EBV infection can induce the virus-replicative cycle and cell death.
However, in HRS cells, virus-derived genes show a restricted pattern of expression, known
as latency II, and entry to virus-replicative cycle is inhibited in HRS cells [81]. Latency II is
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characterized by the presence of Epstein–Barr virus nuclear antigen-1 (EBNA1) and LMP1
and LMP2 [82].

2.8. Microenvironment

CHLs are characterized by the presence of an inflammatory background surrounding
scattered neoplastic cells, and the relationship between the background immune cells and
neoplastic cells is considered a key determinant of CHL disease characteristics. CHLs
exploit immune evasion strategies to ensure their survival, indicating that specific features
of the CHL microenvironment are associated with immune evasion mechanisms. CHLs
contain heterogeneous inflammatory cell components, and recent advances in single-cell
profiling methods have enabled the definition of each inflammatory cell subpopulation as
a functional unit.

Among the inflammatory cells in the background of CHL, CD4+ T cells are most
enriched and their function has been well studied. CD4+ T cells in CHL exhibit Th1
polarization and increased terminal differentiation, and frequently express PD-1, indicating
T-cell exhaustion [83]. They also express other exhaustion-associated proteins, such as TOX
and TOX2 [84]. T-cell exhaustion can be induced by the PD-L1 molecule on tumor cells and
by persistent tumor-specific antigen stimuli [85,86]. These T cells directly surround HRS
cells, which is termed “rosetting”. The rosetting T cells provide a survival signal to HRS cells
via surface expression of CD40L [83], and may also inhibit effector CD8+ T cells from direct
contact with CHL cells [87]. Although the rosetting CD4+ T cells form an immunological
synapse between CHL cells, and are likely activated by tumor-specific antigen, they do not
expand due to immune regulatory mechanisms, such as immune checkpoint molecules and
production of immunosuppressive cytokines [88]. The enrichment of type 1 regulatory (Tr1)
T cells is another unique feature of CHL. Tr1 is a subset of LAG3-expressing regulatory
T cells, which are induced in the periphery, not in the thymus [89]. CHL cell-derived
cytokines reportedly induce Tr1 [89]. CD8+ T cells are outnumbered by CD4+ T cells in the
tumor microenvironment (TME) of CHL, have follicular helper T-cell (Tfh)-like features,
and are suggested to possess decreased cytotoxic function [90]. CD8+ T cells also express
exhaustion-associated proteins, although this expression is weaker than in CD4+ T cells [89].
CD8+ T cells are functionally regulated by immunosuppressive molecules (such as TGF-β
and Glectin-1 produced by HRS cells), overexpression of PD-L1 and PD-L2, and lack of
MHC complex on HRS cells [91].

Tissue-associated macrophages also exert immune-regulatory functions in the TME.
Tumor-associated macrophages (TAMs) express PD-L1 on the cell surface, which is an
important source of PD-1/PD-L1 signaling in the TME [92]. Macrophages comprise two
cell types: “M1-like” cells, which express CD68 and have anti-tumor effects, and “M2-
like” cells, which express CD163 and have immunosuppressive functions [93]. TAMs
in CHLs show skewed polarization toward the “M2-like” type, and this polarization
is suggested to be induced by cytokines derived from CHL [94]. Non-malignant B cells
comprise approximately half of the inflammatory cells in the TME; however, their biological
contribution remains obscure.

3. Nodular Lymphocyte-Predominant Hodgkin Lymphoma (NLPHL)
3.1. Epidemiology and Clinical Features

NLPHL comprises approximately 5–10% of CHL [95], has a peak incidence in the
fourth decade of life, and exhibits a male predominance of 3:1. NLPHL most frequently
presents as early-stage disease, without B symptoms [96]. It generally involves peripheral
lymph nodes, such as the cervical, axillary, and inguinal lymph nodes, and rarely exhibits
mediastinal involvement [97]. Bone marrow involvement has been reported in <10% of
patients with NLPHL [98], and its presence is a significant inferior prognostic indicator [98].
In contrast to CHL, NLPHL tends to spare axial lymph nodes and preferentially involves
peripheral lymph nodes. NLPHL has an excellent prognosis, with 10-year overall survival
reaching around 90%, and radiotherapy without chemotherapy can be a therapeutic op-
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tion in stage IA patients [99]. Sometimes NLPHL progresses into THRLBCL, and these
two disease entities can even co-exist at a single site, suggesting that they are closely
related [100,101].

3.2. Histology and Immunophenotype

The neoplastic cells of NLPHL are termed lymphocyte-predominant (LP) cells, and are
characterized by large polylobated nuclei with scant cytoplasm, referred to as “popcorn”
cells. Some NLPHL cases involve LP cells with multinucleated nuclei and prominent
nucleoli, which are indistinguishable from the HRS cells of CHLs [102]. The histological
growth pattern of NLPHL can be divided into six subtypes, termed patterns A–F [103].
The most prevalent and prototypic pattern is pattern A—a “classical” B-cell-rich nodular
pattern (Figure 3A,B), characterized by scattered LP cells ringed by CD57-positive T cells,
against a nodular background comprising reactive small B cells. In pattern B, nodular
architectures are interconnected, forming serpiginous shapes. In pattern C, LP cells extend
outside of the nodules, against a background of reactive T cells. In pattern D, LP cells are
scattered in the reactive nodules but, unlike in pattern A, these nodules are composed of
small T cells. Pattern E is a diffuse (THRLBCL-like) pattern characterized by scattered LP
cells, against a diffuse background of reactive T cells without CD57-positive T cells or a
follicular dendritic cell (FDC) meshwork. Pattern F is a diffuse, moth-eaten, B-cell-rich
pattern, which is reminiscent of the classic nodular pattern but lacks the formation of
distinct nodules. Other than pattern E, all histological patterns have common nodular
features with FDC meshwork [103]. FDC meshworks are filled with numerous small B cells
(often with a small B-cell mantle), which can be used to differentiate from THRLBCL [104].

About half of NLPHL cases are composed of a single pure histological pattern, and the
other half are composed of two or more histological patterns. Immunophenotypically, LP
cells express pan-B-cell markers, including CD20, CD79a, PAX5, OCT2, and BOB.1 [105]. LP
cells are typically positive for BCL6, a master regulator of GC formation, and negative for
another GC marker, CD10 [106] (Figure 3C). In contrast to HRS cells, LP cells do not express
CD30 or CD15, with rare exceptions [103,107,108]. Additionally, EBV infection is rarely
observed in NLPHL. The latency of EBV in EBV+ NLPHL has not been determined, and
LMP1 expression was frequently observed in EBV+ NLPHL [109]. The PD-L1 expression
rate of LP cells significantly varies across studies, and may be affected by the specific
anti-PD-L1 antibody clone used [36,43,110] (Figure 3D). In our preliminary data obtained
using clone SP142, neoplastic PD-L1 positivity has not yet been detected among NLPHL
cases. In patterns D and E, enrichment of CD163-positive “M-2 like” macrophages has been
observed, and is suggested to be associated with disease progression [111].
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Figure 3. Histological and immunohistochemical features of nodular lymphocyte-predominant
HL (NLPHL). (A) Vague nodular architecture is observed. (B) Scattered neoplastic cells feature
polylobated (popcorn-like) nuclei, and are called lymphocyte-predominant (LP) cells. (C) LP cells
show strong PAX5 expression. (D) LP cells lack PD-L1 expression (assessed using clone SP142).
(E) LP cells are ringed by PD-1-positive “rosetting” T lymphocytes.

3.3. Cellular Origin and Molecular Biology

Genetic analysis of isolated LP cells has revealed clonal IG gene rearrangement, and
ongoing somatic hypermutation [112], indicating that LP cells are derived from GC B cells.
Gene expression profiling of isolated LP cells also shows close similarities between LP cells
and GC B cells [113]. Unlike CHLs, LP cells often exhibit functional IG gene rearrangement,
and have retained their B-cell program [113]. About half of NLPHL cases have BCL6 translo-
cation, which is not observed in CHLs [74]. Next-generation sequencing reveals that LP
cells harbor silencing mutations in SOCS1 in around 50% of cases, which leads to JAK-STAT
pathway activation. SKG1, DUSP2, and JUNB, which are regarded as tumor-suppressor
genes, are also reported to be mutated in around 50% of cases [72] (Table 1). Notably, these
genetic alterations are also observed in THRLBCL [114]. Additionally, the gene expression
signature of THRLBCL cells closely resembles that of LP cells, suggesting that these two
disease entities may share a common pathogenesis [113]. An array comparative genomic
hybridization study, employing laser-capture microdissection, further revealed that these
diseases have common genetic events, such as 2p16.1 amplification, and loss of 2p11.2 and
9p11.2 [115]. PD-L1 amplification, which is frequently observed in CHLs, has not been
found in NLPHL [115,116]. Aoki et al. recently reported that PD-L1 expression and genetic
aberration were more frequent in LRCHL than in other CHLs, and suggested that TGF-β
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production of HRS cells, and the corresponding enrichment of PD-1+CXCL13+ T cells, may
shape the immune microenvironment of LRCHL [44]. Given the histological resemblance
between NLPHL and LRCHL, such a mechanism may also contribute to the lymphomage-
nesis of NLPHL. Around 30% of NLPHL express IgD and these cases represent a distinct
clinical subtype showing strong male predominance, younger age, cervical lymph node
involvement, and superior prognosis [117,118]. Recently, Lorenz et al. demonstrated that
IgD+ LP cells exhibit specific BCR binding to Moraxella catarrhalis antigen, suggesting that
this infection may promote lymphomagenesis of IgD+ NLPHL [119].

4. Differential Diagnosis of Hodgkin Lymphomas

HL diagnosis in routine pathological examination is often difficult, due to the his-
tological diversity and overlapping features of HLs and HL mimics. Notably, common
pathogenetic mechanisms are shared by HL and its mimics, as represented by NSCHL and
mediastinal gray zone lymphoma. Recent studies have revealed that PD-L1 upregulation
on neoplastic cells plays a central role in CHLs, especially NSCHL, and in other lymphoid
neoplasms. EBV infection also plays a central role in the pathogenesis of CHLs, including
MCCHL. Both PD-L1 immunohistochemistry (IHC) and EBV detection can be applied in
routine pathological examinations, and are strongly associated with disease phenotype.
Therefore, the diagnostic approach to HL and its mimics can be organized according to
PD-L1 expression and EBV infection (Figure 4).
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Figure 4. Images of the disease entities of classic Hodgkin lymphoma subtypes and its mim-
ics. EBV = Epstein-Barr virus; AITL = angioimmunoblastic T-cell lymphoma; NSCHL = nodu-
lar sclerosis classic Hodgkin lymphoma; LRCHL = lymphocyte-rich classic Hodgkin lymphoma;
MCCHL = mixed cellularity classic Hodgkin lymphoma; NLPHL = nodular lymphocyte-predominant
Hodgkin lymphoma; DLBCL = diffuse large B-cell lymphoma; EBVMCU = EBV-positive mucocuta-
neous ulcer; MTX = methotrexate; LPD = lymphoproliferative disorder; PMBL = primary mediastinal
large B-cell lymphoma; GZL = B-cell lymphoma unclassifiable, with features intermediate between
DLBCL and CHL/Gray zone lymphoma; TCRBCL = T-cell/histiocyte-rich large B-cell lymphoma;
a-DLBCL = anaplastic variant of DLBCL; SLBCL = sinusoidal large B-cell lymphoma; FDCS = follicu-
lar dendritic cell sarcoma.
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4.1. Differential Diagnosis of CHLs
4.1.1. Primary Mediastinal Large B-Cell Lymphoma and B-Cell Lymphoma Unclassifiable,
with Features Intermediate between DLBCL and CHL (Gray Zone Lymphoma)

Primary mediastinal large B-cell lymphoma (PMBL) and NSCHL share a number of
common features, including preferential mediastinal involvement, female predominance,
common occurrence in young adults, and large tumor cells with sclerosis. Sequential de-
velopment of CHL and PMBL in the same patient has been reported, suggesting common
pathogenesis of CHL and PMBL [120]. Gene expression profiling and genetic profiles
further support a close relation between these two diseases [121]. Nevertheless, the ther-
apeutic approach differs between these diseases, and thus CHL must be distinguished
from PMBL for clinical management [122]. Unlike CHLs, the prototypical PMBL shows a
monomorphous infiltrate of large cells with a sparse inflammatory background, and diffuse
positive staining of pan-B-cell markers [123].

The differential diagnosis of CHL versus B-cell lymphoma unclassifiable, with features
intermediate between DLBCL and CHL (mediastinal gray zone lymphoma: MGZL), is
even more complicated. MGZL was originally proposed to be a disease representing the
missing link between CHL and MLBCL [120]. Some MGZL cases exhibit a characteristic
CHL immunophenotype with histologic appearance suggestive of MLBCL, while others
show histology reminiscent of CHL with an immunophenotype suggestive of DLBCL,
although the latter type lacks typical architectural features of CHL, including a nodular
growth pattern and well-formed fibrous bands [124]. MGZL diagnosis is challenging
for a pathologist, but the distinction of MGZL and CHL or PMBL is critical for clinical
management. MGZL has a poorer prognosis than CHL, PMBL, and DLBCL, and it has
been suggested that a DLBCL-based therapeutic regimen may be effective for MGZL.

Our group has demonstrated that PD-L1 expression was more frequently observed
in CHL than PMBL (100% vs. 18%), when using clone SP142 [125]. Seven NSCHL cases
were positive for PD-L1, while only two out of 11 PMBL were positive for PD-L1. Notably,
these PD-L1-positive PMBL cases were accompanied by a relatively rich inflammatory
background, with a moderate number of small lymphocytes, and/or sclerotic changes,
with difficulties to differentiate from MGZL [125]. Using the same antibody clone, a study
by the Lymphoma Study Association (LYSA) also showed that neoplastic PD-L1 expression
was more frequently observed in CHL than in MGZL (80% vs. 54%) [126]. Interestingly, our
group recently reported composite lymphomas, comprising CHL with PD-L1 expression,
and PMBL lacking PD-L1 [125]. The available data indicate that PD-L1 on neoplastic cells
is involved in shaping the specific morphology and immune microenvironment of CHL.
These cases also indicate that the differential diagnosis between CHL and MGZL or PMBL
may sometimes be indistinguishable, especially from small biopsy samples.

Non-mediastinal (systemic) GZL poses a more challenging diagnostic problem, and is
characterized by onset in elderly patients, and more advanced disease than MGZL, without
a bulky mass [126]. Recent studies reveal similar gene expression patterns between MGZL
and CHL, as well as between non-mediastinal GZL and DLBCL [127,128]. Notably, non-
mediastinal GZLs are characterized by a relatively low frequency of PD-L1 aberrations (up
to 50%) [129], and by enrichment of TP53 and BCL2 mutations, and translocations of BCL2
and/or BCL6, which are frequently detected in high-grade B-cell lymphomas transformed
from low-grade B-cell lymphomas [130,131]. These findings suggest that non-mediastinal
GZL includes transformed diseases from undiagnosed indolent malignancies, which have
distinct pathogenesis from CHL, MGZL, and PMBL.

4.1.2. DLBCL and Other B-Cell LPD with “HRS-like” Cells

The most problematic differential diagnosis of MCCHL, which is characterized by
frequent EBV infection, is EBV-positive diffuse large B-cell lymphoma, not otherwise speci-
fied (EBV+DLBCL, NOS). This disease was formerly designated as EBV-positive DLBCL
of the elderly in the WHO 2008 classification system. Later reports of EBV-positive large
B-cell lymphoma in young patients [132] led to removal of the age denominator in the
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terminology of the 2017 WHO classification. However, the disease characteristics seem
to differ between young and elderly patients. Young patients exhibit nodal lesions, and
most show a THRLBCL-like histology, an excellent prognosis, and PD-L1 expression on
neoplastic cells [132]. On the other hand, EBV-positive DLBCL in the elderly exhibits
frequent extranodal manifestations, poor prognosis, and a low frequency of PD-L1 ex-
pression on neoplastic cells [133–137]. The neoplastic cells of EBV-positive DLBCL have a
preserved B-cell program, and often exhibit an activated B-cell phenotype with expression
of IRF4/MUM1 and CD30 [102,138].

EBV-positive mucocutaneous ulcer (EBVMCU) is a newly recognized EBV-associated
B-cell lymphoproliferative disorder (LPD), which presents as sharply circumscribed iso-
lated lesions that are confined to the oral mucosa, skin, and gastrointestinal tract, and
which usually does not involve lymph nodes [139]. The lesions are often accompanied by
EBV-infected B cells with HRS-like morphology. EBVMCU occurs in individuals with im-
munodeficient status (older age, immunosuppressant drug treatment, treated lymphoma,
HIV infection, and primary immunodeficiencies), and is considered a specific type of
immunodeficiency-associated LPD [140]. Unlike HRS cells in CHLs, the HRS-like cells in
EBVMCU do not exhibit cell surface expression of PD-L1, with rare exceptions [140,141].

In patients with autoimmune disease treated by immunosuppressive agents, EBV-
driven B-cell proliferation may occur with varying histologies (including DLBCL, poly-
morphic B-LPD, and CHL), and is called iatrogenic immunodeficiency-associated LPD.
CHL-type iatrogenic immunodeficiency-associated LPD is histologically indistinguishable
from CHLs in immunocompetent patients. Kohno et al. reported that PD-L1 expression on
neoplastic cells was exclusively found in CHL-type methotrexate-associated LPD involving
lymph nodes, while PD-L1 expression was not observed in other type of LPD [142].

These results suggest that immunosenescence/immunodeficiencies likely play a com-
plementary role in the immune evasive mechanism of neoplastic cells in lymphomagenesis,
given the low frequency of PD-L1 expression on the neoplastic cells in immunosenes-
cent/immunodeficient patients. Indeed, the combination of neoplastic PD-L1 expres-
sion with immunosenescence/immunodeficiencies in a host appears to predict shorter
progression-free survival, which is exemplified by PD-L1-expressing MTX-associated CHL-
type LPD [136,142].

Aside from the abovementioned EBV-associated LPD or lymphoma, EBV-negative B-
cell lymphoma may also contain HRS-like anaplastic cells. The anaplastic variant of DLBCL
(A-DLBCL) is characterized by large, pleomorphic, and bizarre cells that often resemble
Hodgkin/Reed–Sternberg (HRS) cells and hallmark cells of anaplastic large cell lymphoma.
A-DLBCL overlaps with sinusoidal large B-cell lymphoma (SLBCL), in which CD30+

neoplastic cells show intrasinusoidal growth [143]. Junpeng et al. recently reported that
SLBCL frequently harbors PD-L1 amplifications and TP53 aberrations, showing similarities
to the genetic aberrations of non-mediastinal GZL, while gene mutations enriched in
DLBCL are also found in A-DLBCL and SLBCL [144,145]. The underlying mechanisms
of the histological similarities and PD-L1 expression of these disease are not yet well
understood, and further studies are required.

4.1.3. Anaplastic Large Cell Lymphoma, ALK-Positive and -Negative

Anaplastic large cell lymphoma (ALCL) is a mature T-cell neoplasm consisting of
neoplastic cells with abundant cytoplasm and pleomorphic nuclei, and the diagnostic
feature of horseshoe-shaped nuclei (“hallmark cell”). Around 80% of ALCL have chro-
mosomal translocation t (2;5) involving ALK and NPM, and, less frequently, DUSP22 and
TP63 translocations are also observed. ALCL is characterized by strong CD30 expression,
and often lacks surface CD3 expression, while expressing one or more T-cell antigens,
including CD2, CD4, and CD5. Neoplastic PD-L1 expression is consistently detected in
ALK+ ALCL, while it is observed on the tumor cells of around 60% of ALK-negative ALCL
cases. Their expression of PD-L1 is presumably induced by STAT3 activation [146]. ALCL
frequently express epithelial membrane antigen (EMA) and CD43 (MT1) [147,148]. ALCL
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also frequently (around 80%) expresses cytotoxic molecules, such as TIA-1, Granzyme
B, and/or perforin [149,150], posing a differential diagnostic problem vis à vis cytotoxic
molecule-positive CHL, as reported by Asano et al. [56]. Cytotoxic molecule-positive CHL
does not express B-cell antigens (including PAX5) but frequently expresses fascin, which
may help in making an accurate diagnosis. The cell of origin of cytotoxic molecule-positive
CHL remains unclear, as it lacks both T-cell-receptor gene rearrangement and IG gene
rearrangement [56].

4.1.4. T-Cell Lymphomas with “HRS-like” Cells

HRS-like cells are occasionally detected in several types of T-cell lymphoma, including
angioimmunoblastic T-cell lymphoma (AITL) and nodal peripheral T-cell lymphoma of
follicular helper T-cell type (PTCL-TFH), adult T-cell leukemia/lymphoma (ATLL), and
chronic active EBV infection of the T-cell/natural killer (NK) cell type, systemic form
(CAEBV-T/NK-S) [17]. In AITL, EBV-infected B cells are frequently observed in the back-
ground, and are thought to drive T-cell proliferation in the course of lymphomagenesis [151].
When neoplastic cells show minimal cellular atypia, T-cell lymphoma is difficult to diag-
nose and may be misdiagnosed as CHL. Sakakibara et al. recently reported that PD-L1
was rarely expressed in HRS-like cells in PTCL-TFH, which can help in making accurate
diagnosis [43]. In ATLL, a Hodgkin-like variant accompanied by HRS-like cells has been
reported, and these HRS-like cells are regarded as EBV-infected polyclonal B cells and
non-neoplastic [152]. However, Karube et al. recently reported the identification of human
T-cell leukemia virus type 1 (HTLV-1) RNA in HRS-like cells, and that HRS-like cells were
true neoplastic cells in a significant number of cases [101]. Although the clinical significance
of HRS-like cells in ATLL has not been determined, the HRS variant of ATLL should be
kept in mind, especially in HTLV-1 endemic areas.

4.1.5. Dendritic Cell Neoplasms

Follicular dendritic cell sarcoma (FDCS) is a neoplastic proliferation of spindled-to-
ovoid cells. Based on immunohistochemical findings, they are regarded as non-hematopoietic
mesenchymal tumors, although they frequently involve lymph nodes [4]. It was recently
discovered that a significant proportion of FDC sarcomas express PD-L1 on the neoplastic
cells [153]. Some FDC sarcomas also exhibit clonal B-cell receptor rearrangement, genetic
mutations inducing NF-κB activation, and/or JAK-STAT activation [154]. More intriguingly,
some CHL cases reportedly express FDC markers [155]. These findings indicate biological
relationships between CHL and FDCS.

Interdigitating dendritic cell sarcoma (IDCS) is an extremely rare neoplasm that fea-
tures pleomorphic large cells with indented nuclei and abundant cytoplasm [156]. Based
on the ultrastructural findings, their postulated normal counterpart is interdigitating cells
in lymph nodes. We recently reported a case of IDCS expressing PD-L1, which posed a
challenging diagnostic problem vis à vis CHL [157]. Since neoplastic B cells are reportedly
capable of differentiating into mesenchymal cells, it is possible that these PD-L1-expressing
dendritic cell neoplasms are derived from malignant B cells that have experienced transd-
ifferentiation, and that share pathogenetic mechanisms with CHLs. Notably, it has been
reported that PD-L1-expressing FDCS exhibits a good response to immune checkpoint
therapy, suggesting that dendritic cell neoplasms should be managed according to PD-L1
status for optimal clinical benefit [158]. Further studies are needed to clarify these issues.

4.2. Differential Diagnosis of NLPHL

Morphologically, NLPHL is highly similar to THRLBCL. In contrast to NLPHL, TCR-
BCL has an aggressive clinical course, and requires chemotherapy even in early stages.
However, the distinction of a diffuse type of NLPHL from THRLBCL is difficult or may
not be possible. In NLPHL showing a nodular pattern, the presence of FDC meshwork
and CD57-positive or PD-1-positive T-cell rosettes can help in differentiation from THRL-
BCL [104,159] (Figure 3E). In the case of pure diffuse type lacking a nodular component, the
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lesion would be regarded as THRLBCL [103]. In rare cases, NLPHL contain background
atypical T cells, and can histologically mimic a peripheral T-cell lymphoma. Such pre-
sentations are typically observed in young patients, such that the combination of young
age, absence of pan-T-cell marker loss, and T-cell clonality might help with diagnosis as
NLPHL [160].

5. Future Perspectives

Recent studies have revealed that HLs originate from GC B cells, and that immune
evasive mechanisms play a central role in lymphomagenesis. PD-L1 overexpression on
HRS cells is currently asserted to be a defining feature of HLs that preferentially affect
immunological sites (LN, thymus, and spleen). In contrast to CHLs, PD-L1+ extranodal
DLBCLs do exist. These entities involve extranodal sites, and include intravascular large
B-cell lymphoma (IVL) and DLBCL involving immune sanctuary sites, such as the central
nervous system, testes, and adrenal glands [136,161,162]. It has been suggested that
these neoplasms acquire PD-L1 genetic aberrations in the GC process [163,164]. However,
paradoxically, tumor cells with PD-L1 expression preferentially propagate in immune-
sanctuary sites where tumor cells have little chance to encounter tumor-specific T-cells. The
underlying mechanisms discriminating these lymphoid neoplasms and HLs have not yet
been discovered. Notably, both CHL and non-Hodgkin lymphoma exhibit heterogeneous
intratumoral or non-neoplastic expression of PD-L1. In such cases, there may be site-specific
interaction between PD-L1-positive neoplastic cells and the environment, such as binding
of PD-L1 and CD80 on endothelium [165].

Previous studies show that the presence of HRS cells is seemingly associated with
PD-L1 expression, especially in EBV−CHLs. In the syncytial variant, PD-L1 expression is
primarily found in HRS cells, but also rarely in small cohesive tumor cells [166]. It is cur-
rently unclear whether this heterogeneity is derived from genetic heterogeneity or transient
expression induced by intracellular signaling, such as JAK/STAT activation. Moreover,
while it is postulated that HRS cells represent genomic instability, the mechanisms of HRS
cell formation and their association with PD-L1 expression remain largely unknown [167].

6. Conclusions

Genetic analysis of HLs has been difficult due to the rarity of HRS cells in the tumor
tissue, and the lack of in vitro or in vivo models simulating the microenvironment of HLs.
Newly developed technologies, such as single-cell sequencing, have enabled us to compre-
hensively analyze neoplastic cells and their microenvironment, leading to rapid expansion
of our knowledge of HL biology. In this modern era of immune-oncology, CHLs may be
hypothetically assumed to be lymphoid organ (LN, thymus, and spleen)-localized, immune
escape-associated, lymphoid cell-driven neoplasms (mostly of B-cell origin). Nevertheless,
there may be issues that remain to be addressed about the pathogenesis and classification
of HLs. In particular, future studies are needed to guide further improvement of patient
stratification strategies.
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