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A new antibacterial strategy based on inhibiting bacterial quorum sensing (QS) 

has emerged as a promising method of attenuating bacterial pathogenicity 

and preventing bacterial resistance to antibiotics. In this study, we screened 

Echinatin (Ech) with high-efficiency anti-QS from 13 flavonoids through 

the AI-2 bioluminescence assay. Additionally, crystal violet (CV) staining 

combined with confocal laser scanning microscopy (CLSM) was used to 

evaluate the effect of anti-biofilm against Escherichia coli (E. coli). Further, the 

antibacterial synergistic effect of Ech and marketed antibiotics were measured 

by broth dilution and Alamar Blue Assay. It was found that Ech interfered with 

the phenotype of QS, including biofilm formation, exopolysaccharide (EPS) 

production, and motility, without affecting bacterial growth and metabolic 

activity. Moreover, qRT-PCR exhibited that Ech significantly reduced the 

expression of QS-regulated genes (luxS, pfs, lsrB, lsrK, lsrR, flhC, flhD, fliC, csgD, 

and stx2). More important, Ech with currently marketed colistin antibiotics 

(including colistin B and colistin E) showed significantly synergistically 

increased antibacterial activity in overcoming antibiotic resistance of E. coli. In 

summary, these results suggested the potent anti-QS and novel antibacterial 

synergist candidate of Ech for treating E. coli infections.
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Introduction

As one of the pathogenically versatile bacterial organisms, E. coli can cause various 
infections, including diarrhea, urinary tract infections, sepsis, and hemolytic-uremic 
syndrome (Riley, 2020). Pathogenic E. coli causes great economic losses to animal and 
poultry industries, as well as a serious threat to human health. For example, millions of 
dollars are lost each year due to Avian pathogenic E. coli (APEC) infections (Lutful Kabir, 
2010). In the United States, E. coli O157:H7 is estimated to cause 95,000 illnesses a year 
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(Scallan et al., 2011; Beshearse et al., 2021), and Shiga-producing 
E. coli (STEC) causes 5,960 infections annually (Hale et  al., 
2012). Antimicrobial resistance has become a worldwide 
concern and an increasing threat to human and animal health 
(Hawkey, 2008). Currently, most antibacterial compounds target 
the basic physiological processes of bacteria, which increases the 
likelihood of bacteria developing resistance to multiple drugs 
(Munguia and Nizet, 2017). Thus, new therapeutic strategies are 
urgently needed for treating multidrug-resistant 
pathogen infections.

At present, alternative approaches to antimicrobial therapy 
have focused on inhibiting the virulence factors of bacterial 
pathogens (Dickey et al., 2017; Buroni and Chiarelli, 2020; Loubet 
et  al., 2020; Piewngam et  al., 2020; Silva et  al., 2020). QS is a 
cellular mechanism mediated by autoinducers, which allows 
bacteria to organize behavior depending on their density (Ng and 
Bassler, 2009). Interference with QS systems does not exert 
selection pressure on bacteria compared with antibiotics thus 
reducing the emergence and spread of resistant mutants (Sully 
et al., 2014; Quave et al., 2015; Ning et al., 2021). QS is a process 
that involves bacteria communicating with signaling molecules 
called autoinducers (AIs). There are several types of AI molecules, 
including diffusible signaling factors (DSFs), autoinducer-2 
(AI-2), indole, and Acyl-homoserine lactones (AHLs, AI-1), etc. 
(Guo et al., 2013; Whiteley et al., 2017, 2018). QS systems function 
based on cell density, which increases the concentration of AI as 
cell density increases. Upon reaching a certain level of 
concentration of AI, signaling is activated that modulates the 
expression of genes related to bacterial physiology, biofilm 
formation, motility, and virulence (Papenfort and Bassler, 2016). 
Antibacterial strategies based on inhibiting bacterial QS have 
emerged as a new promising method of preventing bacterial 
resistance to antibiotics, as well as inhibiting the expression of 
virulence factors (Manner and Fallarero, 2018; Wang et al., 2019; 
Minich et al., 2022).

AI-2 has been considered to be  a “universal” signaling 
molecule involved in bacterial communication at the inter-and 
intra-species level, which is widely found in Gram-negative and 
Gram-positive bacteria. For most bacteria, the regulatory function 
of the AI-2 QS system is mainly reflected in four aspects, including 
bacterial virulence, biofilm, motility, and other functions (Bassler, 
2002; Sturme et  al., 2002; Reading and Sperandio, 2006; 
Choudhary and Schmidt-Dannert, 2010). For example, AI-2 
could influence the production of virulence factors and the 
formation of biofilm in E. coli, Salmonella, and S. suis (Kendall 
et al., 2007; Ju et al., 2018; Sun et al., 2020; Li et al., 2021). The 
inhibition of AI-2 can effectively reduce bacterial virulence, 
biofilm formation, and bacterial resistance, which can be used to 
replace antibiotics. In this context, it’s reported that plant-derived 
compounds with diverse structures have been widely investigated 
as AI-2 QS inhibitors (Karnjana et al., 2020; Li et al., 2021; Meng 
et  al., 2022). Ech, a flavonoid isolated from glycyrrhiza, had 
antioxidant, antitumor, anti-virus, and other biological activities 
(Ji et al., 2016; Zhu et al., 2018; Kwak et al., 2019; Hu et al., 2021; 

Ran et  al., 2021). Despite many pharmacologic investigations, 
there have been no reports on the anti-QS activity of Ech.

AI-2 bioluminescence assay (Vibrio harveyi (V. harveyi) 
BB170 bioluminescence assay) is the most commonly used 
method to detect AI-2 signal molecules. The bioluminescence 
reporter strain V. harveyi BB170 (luxN:: Tn5) is a mutant strain, 
whose fluorescence is only regulated by AI-2 signal molecule 
(Bassler et  al., 1994, 1997; Surette et  al., 1999). Therefore, the 
inhibitory effect of the inhibitors on E. coli AI-2 production can 
be judged by the intensity of V. harveyi bioluminescence. Here, 
based on V. harveyi BB170 bioluminescence assay, 13 natural 
product compounds that inhibit AI-2 production were screened 
and evaluated. Notably, we found that one of the compounds, Ech, 
effectively blocks E. coli QS. Furthermore, the study examined the 
antibiofilm and antivirulence properties of Ech against E. coli and 
evaluated the synergistic effects of combining Ech with antibiotics.

Materials and methods

Natural product compounds

Echinatin, Aloeemodin, Loureirin B, Cardamonin, 
Cynaroside, Artemetin, Neosperidin dihydrochalcone, 
Hesperetin, and Vitexin used in the study were obtained from 
Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai, China). 
Phloretin was purchased from Macklin Inc. (Shanghai, China). 
Scutellarin and Acacetin were obtained from MCE (Shanghai, 
China). Gentisin was obtained from ChemFaces (Wuhan, China). 
Dimethylsulfoxide (DMSO, Sigma) was used to dissolve all 
compounds to the concentration of 40 mM.

Bacterial strains and cells

Escherichia coli O157:H7 (ATCC 43895) was purchased from 
Beina Chuanglian Biotechnology Research Institute (Beijing, 
China). Clinical strains E. coli O101、E. coli C83654、E. coli 
O149、E. coli XJ24、E. coli KD-13-1 were isolated and 
maintained in our laboratory. Luria-Bertani (LB, HuanKai 
Microbial, Guangdong, China) and Luria-Bertani agar (LA, 
HuanKai Microbial, Guangdong, China) medium were used to 
cultivate all E. coli strains. V. harveyi BB170 and V. harveyi BB152 
were kindly provided by Researcher Han Xiangan (Shanghai 
Veterinary Research Institute, Chinese Academy of Agricultural 
Sciences). AB medium supplemented with 1 mM L-arginine, 1% 
glycerol, and 10 mM Phosphate buffer (pH = 7.2) for culturing 
V. harveyi.

Caco-2 cell lines were obtained from ATCC and cultured 
under standard conditions containing MEM medium (Gibco, 
Grand Island, NY, United States) supplemented with 20% FBS 
(Gibco, Grand Island, NY, USA), 1% non-essential amino acids 
(Gibco, Grand Island, NY, USA), 10 mM HEPES (Solarbio, 
Beijing, China), 1 mM L-glutamine (Gibco, Grand Island, NY, 
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USA), and 1 mM sodium pyruvate (Gibco, Grand Island, NY, 
United States).

Anti-QS inhibitor screening

AI-2 bioluminescence assay was used to screen QS inhibitors 
as described previously (Bassler et al., 1994; Taga and Xavier, 
2011) with minor modifications. Briefly, E. coli O157:H7 was 
cultured for 16 h with 50 μM of natural product compounds and 
centrifuged at 12000 × g for 5 min. Cell-free supernatant was 
collected in a 0.22 μm filter. The bioluminescence reporter strain 
V. harveyi BB170 grew in AB medium to 1.0 ~ 1.1 of OD600nm at 
30°C under shaking and then diluted at 1:2500 with fresh AB 
medium. Twenty micro liter of cell-free supernatant mixed with 
180 μl of V. harveyi BB170 culture in black 96-well plates (Jingan, 
Shanghai, China) and incubated for 3.5 h at 30°C in the dark. A 
multipurpose microplate reader (Enspire; PerkinElmer, USA) 
was used to measure bioluminescence. Cell-free supernatants of 
V. harveyi BB152 overnight cultures were used as control. 
Further study was conducted on the compound with the highest 
AI-2 inhibition. We also determined the IC50 for AI-2 inhibition 
with the selected compound with the same procedure 
described above.

Cytotoxicity

Ech’s toxicity was evaluated in Caco-2 cells using the CCK-8 
assay. Caco-2 cells (105 cells/mL) were plated in a 96-well plate 
with 5% CO2 for 24 h at 37°C. The culture medium was then 
replaced by different concentrations of Ech (6.25, 12.5, 25, 50, 100, 
200, 400 μM) for 24 h. After incubation, the plate was incubated at 
37°C for an additional hour with 10 μl of CCK-8 (MCE, China). 
The absorbance was measured at 450 nm using Multiskan Go 
Reader (Thermo Fisher Scientific, United States).

Growth and metabolic activity

As described previously, the growth ability of E. coli was 
studied by the broth dilution method (CLSI, 2018; Swetha et al., 
2019). In brief, E. coli O157:H7 bacterial suspension (OD600 = 0.01) 
with various concentration of Ech (6.25, 12.5, 25, 50, 100, 200 μM) 
was seeded into 96-well plate and incubated for 24 h at 37°C. The 
Multiskan Go Reader (Thermo Fisher Scientific, United States) 
was used to measure the absorbance at 600 nm.

Metabolic activity was measured with an Alamar Blue assay 
(Swetha et  al., 2019). E. coli O157:H7 bacterial suspension 
(OD600 = 0.01) with various concentrations of Ech (6.25, 12.5, 25, 
50, 100, 200 μM) was seeded into 12-well plate and incubated for 
24 h at 37°C. Cells from each well were harvested at 10000 × g for 
5 min and then washed twice using PBS (pH = 7.2). Metabolic 
activity was measured using Alamar Blue assay according to the 

manufacturer’s prescribed protocol (Invitrogen™, Thermo Fisher 
Scientific, USA). PBS containing only AB dye was considered a 
blank. The metabolic activity was calculated based on the 
absorbance at 570 nm and 600 nm using the following formula 
(Swetha et al., 2019):
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Eoxi (OD570) – extinction coefficient in oxidized form of AB 
at 570 nm = 80,586;

Ered (OD570) – extinction coefficient in reduced form of AB 
at 570 nm = 155,677;

Eoxi (OD600) – extinction coefficient in oxidized form of AB 
at 600 nm = 117,216;

Ered (OD600) – extinction coefficient in reduced form of AB 
at 570 nm = 14,652;

B-blank; T-samples.

Biofilm assay

CV staining
The formation of biofilms was assessed using CV staining 

based on previous study (O’Toole, 2011) with slight modification. 
In brief, E. coli O157:H7 bacterial suspension (OD600 = 0.01) was 
cultured in LB medium at the various concentrations of Ech (6.25, 
12.5, 25, 50, 100, 200 μM) in a 96-well plate (Corning Costar® 
3,599, Corning, NY, United States) for 24 h at 37°C. The plate was 
washed three times with PBS (pH = 7.2) and then fixed for 1 h at 
60°C. Methanol was used to fix the cells and 0.1% CV was used to 
stain them for 30 min. Next, the CV was rinsed with distilled water 
and dried under heat. Finally, the CV attached to wells was 
dissolved in 95% ethanol and then measured the absorbance at 
570 nm using Multiskan Go Reader (Thermo Fisher Scientific, 
United States).

Confocal laser scanning microscopy
Biofilm formation of E. coli was determined using CLSM 

according to previous study (Zhang et  al., 2020) with slight 
modification. In brief, E. coli O157:H7 bacterial suspension 
(OD600 = 0.01) supplemented with different concentrations of Ech 
(12.5, 25, 50 μM) was seeded into a 6-well plate with coverslips and 
incubated for 24 h at 37°C. The suspensions were removed, and 
the wells were washed with PBS (pH = 7.2). The biofilm was 
stained using BacLight Live/Dead viability kit (L7012, 
Invitrogen™, Thermo Fisher Scientific, United States) according 
to the procedure and observed by CLSM (Zeiss LSM800, Zeiss, 
Tokyo, Japan).
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EPS production

According to the previous method, Ruthenium Red staining 
assessed EPS production (Adnan et al., 2020). Cell suspensions 
(106 CFU/ml) of E. coli O157:H7 and different concentrations 
of Ech were cultured in a 96-well plate for 24 h at 37°C. The 
plate was washed with PBS (pH = 7.2), stained with 0.01% 
ruthenium red (Yuanye, Shanghai, China), and then incubated 
at 37°C for 1 h. 0.01% ruthenium red was used to fill the wells 
without biofilm was used as blank. 0.01% ruthenium red was 
used to fill the wells with biofilm and without Ech was used as 
a positive control. The absorbance was performed at 450 nm 
using Multiskan Go Reader after the liquid carrying the residual 
stain was transferred to new 96-well plates (Thermo Fisher 
Scientific, USA). EPS inhibition was calculated as follows 
formula (Adnan et al., 2020):

 
EPS inhibition %( ) = −

−
×

AS AP
AB AP

100

Whereas:
AB = absorbance of the blank.
AS = absorbance of the sample.
AP = absorbance of the positive control.

Motility assay

According to the previous description, the motility of E.coli 
was performed (Vikram et al., 2013). Briefly, overnight E. coli 
O157:H7 was diluted to OD600 = 0.01, and then a semisolid agar 
media (0.3% LB agar) containing 12.5, 25, and 50 μM of Gin 
was used for the motility assay. One micro liter of the diluted 
bacterial solution was inserted into the middle of the plate. 
DMSO alone was used as the control. Halo zone diameters 
were measured after incubation for 16–18 h at 37°C to 
assess motility.

qRT-PCR

qRT-PCR was used to measure Ech’s effect on QS-regulated, 
biofilm formation, motility, and virulence factor-related genes of 
E. coli. Escherichia coli O157:H7 was incubated in the 12-wells 
plate with and without Ech at 37°C for 24 h. Bacterial RNA 
Kit(Omega, USA) was used to extract total RNA. RNA 
concentration was determined by NanoDrop OneC 
spectrophotometer (Thermo Scientific, USA). PrimeScript™ RT 
reagent Kit with gDNA Eraser (TAKARA Corporation, Japan) was 
used to reverse transcribe RNA into cDNA. qRT -PCR was 
analyzed using TB Green® Premix Ex TaqTM II (Tli RNaseH 
Plus) (TAKARA Corporation, Japan). Based on the 2−∆∆Ct method, 
the relative changes in gene expression levels were analyzed. The 

gapA gene was used as an internal control (Hu et al., 2013). This 
study used the primers listed in Supplementary Table 1.

Antibacterial activity

Antibacterial activity was evaluated based on the previous 
method (Swetha et  al., 2019; Liu et  al., 2021) with some 
modifications. Briefly, E. coli O157:H7 and five clinical strains 
(E. coli O101, E. coli C83654, E. coli O149, E. coli XJ24, E. coli 
KD-13-1) bacterial suspensions (OD600 = 0.01) were mixed with 
antibiotics (1/2 MIC, 1/4 MIC, 1/8 MIC) with or without Ech 
(50 μM) at 37°C for 16–18 h. Antibacterial effects were assessed by 
metabolic activity with Alamar Blue assay. Tests were conducted 
in triplicate.

Statistical analysis

The experiment was repeated three times with three replicates 
for each treatment, and data represent the mean ± SD. The 
significance of differences was evaluated with multiple t-tests for 
two groups or non-parametric one-way ANOVA for multiple 
groups using GraphPad Prism (GraphPad Prism 8; GraphPad). 
Where *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

Results

Screening of QS inhibitors against 
Escherichia coli

To identify new QS inhibitors, 13 flavonoid compounds from 
nature compounds were screened by the V. harveyi BB170 
bioluminescence assay (Supplementary Table  2). The results 
showed that the QS inhibition rates of two compounds Ech and 
aloeemodin were greater than 70% at 50 μM. The QS inhibition 
rates of six compounds loureirin B, phloretin, cardamonin, 
neosperidin dihydrochalcone, cynaroside, and acacetin were 
between 60 and 70%, and five compounds scutellarin, artemetin, 
hesperetin, vitexin, and gentiin were less than 50%. In particular, 
Ech was the better anti-QS activity with an IC50 of 21.67 μM 
(Figure 1). Therefore, it was focused on during our study.

Cytotoxicity of Ech On Caco-2

Ech’s cytotoxicity was assessed in the study to develop it as a 
safer alternative to antibiotics. The viability of Caco-2 cells was 
evaluated using CCK-8 assay after treatment with Ech at various 
concentrations (6.25, 12.5, 25, 50, 100, 200 μM). Compared with 
the control, Ech is non-toxic to Caco-2 cells at concentrations 
below 100 μM (Figure 2).
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Effects of Ech on growth and metabolic 
activity of Escherichia coli

The effects of Ech on growth and metabolic activity were 
revealed by the microbroth dilution and Alamar Blue (AB) 
assay (Figure 3). Results showed that control and Ech treated 
cells showed no significant differences in the fluorescent 
intensity of AB dye. In addition, E. coli growth was not 
significantly different between the Ech treated sample and the 
control culture. These results showed the non-antibacterial 
effect of Ech.

Effects of Ech on biofilm formation of 
Escherichia coli

Next, we assessed the effects of QS inhibitor on the formation 
of biofilm against E. coli by CV staining and CLSM. CV staining 
showed that Ech significantly inhibited the biofilm formation of 
E. coli in a dose-dependent manner (Figure 4A). More specifically, 
inhibition reached 40% at 6.25 μM of inhibitor concentration, 
while 71.54% inhibition was achieved at 200 μM. In addition, the 
antibiofilm of Ech was further verified by CLSM. As shown in 
Figure 4B, green fluorescence (living cells) and red fluorescence 
(death cells) showed significant decreases with increasing 
concentration, which proved that Ech could effectively inhibit the 
adhesion of E. coli and reduce biofilm formation.

Effects of Ech on EPS production of 
Escherichia coli

In a biofilm matrix, EPS is among the most critical 
components (Branda et al., 2005). As was shown in Figure 5, Ech 
inhibited EPS production dose-dependently. The EPS inhibition 
reached 50% at the concentration of 100 μM. It was consistent with 
the results of CV staining. This result further confirms the 
inhibition of Ech on the formation of biofilm.

Effects of Ech on the motility of 
Escherichia coli

Quorum-sensing controls the motility of E.coli. Figure  6A 
showed that QS inhibitor Ech reduced the motility in a dose-
dependent. Further, we  assessed the halo zone quantitatively 
(Figure 6B). Results showed that Ech significantly inhibited the 
motility of E. coli in comparison with the control group (p < 0.0001).

FIGURE 1

AI-2 inhibition of E. coli was treated with various concentrations 
of Ech (6.25, 12.5, 25, 50, 100, 200 μM) by AI-2 Bioluminescence 
assay and IC50 = 21.76 μM. All experiments were carried out in 
triplicate, and data represent the mean ± SD.

FIGURE 2

The Cytotoxicity of Ech in Caco-2 cells. The cells were treated 
with Ech at different concentrations (0, 6.25, 12.5, 25, 50, 100, 
and 200 μM) for 24 h. Data represent means ± SD of three 
experiments conducted in triplicate.

FIGURE 3

Growth and metabolic activity of E. coli in the presence of Ech. 
The line graph shows the growth of E. coli with Ech measured 
using a microbroth dilution assay. The bar graph shows the 
metabolic activity of E. coli based on the AB assay. Data represent 
means± SD of three experiments conducted in triplicate.
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FIGURE 5

EPS inhibition (%) showed at the various concentrations of Ech 
(6.25, 12.5, 25, 50, 100, and 200 μM) for 24 h. Data represent 
means ± SD of three experiments conducted in triplicate.

Effect of Ech on the expression of 
QS-regulated genes of Escherichia coli

To further evaluate the potential molecular basis responsible 
for QS inhibition by Ech, we measured the expression of QS, 
motility, and biofilm genes by qRT  - PCR. Ech reduced the 
expression of QS-regulated genes like luxS, pfs, lsrB, lsrK, and 

lsrR (43, 48, 52, 90, and 61% respectively), motility-regulated 
genes flhC, flhD, and fliC (61, 35, and 53%, respectively), 
biofilm-regulated genes csgD (52%), and virulence factor-
regulated gene stx2 (69%; Figure 7). The result demonstrated 
that Ech inhibited QS, biofilm formation, motility, and virulence 
factor production.

Synergistic effects of Ech with antibiotics 
against Escherichia coli

It was reported that antibiotic resistance was closed related to 
QS. So, we evaluated the synergistic antimicrobial effect of QS 
inhibitor Ech with conventional antibiotics against E. coli O157:H7 
and five clinical isolates of strains (E. coli C83654, E. coli XJ24, 
E. coli O101, E. coli O149, E. coli KD-13-1). First, we evaluated the 
synergistic antibacterial effect of Ech and six different antibiotics 
against E. coli O157:H7. According to Figure 8, QS inhibitor Ech 
only has synergistic antibacterial activity with colistin antibiotics 
(1/2 MIC, 1/4 MIC, 1/8 MIC). In addition, the synergistic 
antibacterial effect of Ech with polymyxin B and polymyxin E on 
five clinical isolates of E. coli was further verified (Figures 9, 10). 
These results suggested that QS inhibitor Ech in conjunction with 
conventional antibiotics could be an efficient therapeutic strategy 
for inhibiting pathogens like E. coli.

Discussion

Microbial infections continue to pose a serious problem 
because of antibiotic resistance, making alternative therapies 

A B

FIGURE 4

Effects of Ech on E. coli biofilm formation. (A) Biofilm formation inhibition at various concentrations of Ech (6.25, 12.5, 25, 50, 100, and 200 μM) for 
24 h by CV staining. (B) Three-dimensional (3D) image of E. coli biofilm with Ech (12.5, 25, and 50 μM) for 24 h by CLSM. Error bars are mean ± SD.
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imperative. QS not only regulates different pathogenic processes 
like virulence production (Defoirdt, 2018), biofilm formation 
(Rickard et  al., 2006; Irie and Parsek, 2008), and antibiotic 
sensitivity (Stenvang et al., 2016; Liu et al., 2021) but also does not 
result in the development of resistance (Sully et al., 2014; Quave 
et al., 2015; Ning et al., 2021). It has emerged as the potential target 
for fighting antibiotic resistance (Suga and Smith, 2003; Geske 
et al., 2005; Rasmussen and Givskov, 2006). In the present study, 
we  identified that Ech, a novel QS inhibitor selected from 13 
different flavonoids, did not inhibit E. coli growth and metabolic 
activity but affected QS-regulated processes like biofilm formation, 

EPS production, motility, and virulence factor production. 
Furthermore, we  demonstrated the synergistic effect of Ech 
combination with colistin B and colistin E against E. coli O157:H7 
and five clinical isolates of strains. In short, we concluded that Ech 
presents excellent anti-QS and synergistic antibacterial effects 
against E. coli.

At present, the detection methods of signal molecule AI-2 
mainly include V. harveyi BB170 bioluminescence assay, LuxP-
based fluorescence resonance energy transfer (LuxP-FRET) 
reporting system assay, QS engineering protein detection assay, 
Gas Chromatography-Mass Spectrometer (GC–MS) assay, high-
performance liquid chromatography with tandem mass 
spectrometric (HPLC-MS/MS) assay, and high-performance 
liquid chromatography with fluorescence detection (HPLC-FLD) 
assay (Yan et  al., 2016). Among them, V harveyi BB170 
bioluminescence assay is the most commonly used method at 
present. In this study, we  screened Ech with high-efficiency 
anti-QS from 13 different flavonoids through the AI-2 
bioluminescence assay. In addition, we proved that Ech had no 
cell toxicity in Caco-2 in the effective dose and adverse effects on 
bacterial growth and metabolic activity. Further, Ech also 
significantly decreased the expression of QS-regulated genes, 
including luxS, pfs, lsrB, lsrK, and lsrR. Several studies have 
shown that AI-2 regulates the formation of biofilm, the 
production of virulence factors, motility, and resistance of 
bacteria. So, pathogen virulence could be reduced by inhibiting 
AI-2 production (Ma et al., 2017; Sedlmayer et al., 2021; Jiang 
et al., 2022). LuxS and pfs are responsible for the synthesis of AI-2 
with S-adenosylhomocysteine (SAH) as substrate (Figure  11; 
Zhao et al., 2018; Wu et al., 2019). Similarly, it has been reported 
that luxS and pfs deletion mutants of E. coli inhibit AI-2 
production, biofilm formation, and motility (Yang et al., 2014; 

A B

FIGURE 6

Motility inhibition of E. coli with Ech. (A) Images of motility following incubation with E. coli at the various concentration of Ech (0, 12.5, 25, and 
50 μM). (B) Quantitative estimation of motility based on the halo zone’s diameter. **** = p < 0.0001.

FIGURE 7

Effects of Ech on expression QS-regulated genes of E. coli. The 
qRT-PCR results showed significantly different nine genes (csgD, 
flhC, flhD, fliC, luxS, pfs, lsrB, lsrK, lsrR, and stx2) compared with 
the control. Data represent means ± SD of three experiments 
conducted in triplicate.
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FIGURE 8

Synergistic effects of Ech (50 μM) with six different antibiotics in E. coli O157:H7 on bacterial viability. Data represent means ± SD of three 
experiments conducted in triplicate. * = p < 0.05; ** = p < 0.01; *** = p < 0.001;**** = p < 0.0001.

Wang et al., 2016; Zuberi et al., 2017). Therefore, the luxS and pfs 
have been considered important therapeutic drug targets, and 
many inhibitors against luxS and pfs have been investigated 
(Shivaprasad et al., 2021; Sharifi and Nayeri Fasaei, 2022). The lsr 
system is liable for AI-2 detection, uptake, and signal transduction 
in E. coli (Pereira et  al., 2013). LsrR is an inhibitor of the lsr 
system. There is very little extracellular AI-2 during the early 
stages of bacterial growth. LsrR is active and inhibits the 
transcription of the lsr system. LsrK phosphorylates uptake of 
AI-2 as it accumulates in the extracellular space. The binding of 
phospho-AI-2 to lsrR results in the initiation of transport by the 
lsr system. LsrB is an AI-2 receptor responsible for the 
internalization of AI-2 in E. coli (Figure 11). Similarly, lsrR, lsrK, 
and lsrB deletion mutant has been reported to interfere with 
signal transduction and inhibit biofilm, motility, and 
pathogenicity (Li et al., 2007; Jani et al., 2017; Laganenka and 
Sourjik, 2018; Zuo et al., 2019). So, the lsrR, lsrK, and lsrB have 

been considered important therapeutic drug targets. Many 
inhibitors against lsrR, lsrK, and lsrB have been investigated 
(Peng et al., 2018; Gatta et al., 2019; Stotani et al., 2019; Gatta 
et al., 2020). Our results suggested that Ech could interfere with 
the AI-2 synthesis, secretion, or transport through their effects 
on luxS, pfs, lsrK, or lsrB.

The biofilm is an aggregate of microorganisms where 
microorganisms are adhered to the substrate (e.g., stainless, glass, 
meats, and vegetables) and encapsulated within a self-produced 
matrix of EPS, proteins, and extracellular DNA (eDNA) (Hobley 
et al., 2015; Flemming et al., 2016; Karygianni et al., 2020). EPS 
can separate colonies and form a pathway for transporting 
metabolites and nutrients. In addition, EPS can maintain the 
biofilm’s structure and contribute to bacteria colonization on the 
non-biological surface (Fan et  al., 2022). Curli fimbriae and 
cellulose, whose products are regulated by csgD, are common EPS 
components found in bacterial biofilms (Dieltjens et al., 2020). 

https://doi.org/10.3389/fmicb.2022.1003692
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Bai et al. 10.3389/fmicb.2022.1003692

Frontiers in Microbiology 09 frontiersin.org

CsgD stimulates the formation of E. coli biofilms by 
simultaneously activating the expression of the curli- encoding 
genes csg operon and inhibiting negative affect factors such as 
yagS and pepD (Brombacher et  al., 2003). Otherwise, csgD 
directly inhibits flagellum formation of fliE and fliEFGH operon, 
thereby regulating biofilm formation and cell motility by 
inhibiting flagellum formation and rotation. This study showed 
that Ech inhibited EPS production in a dose-dependent manner 
by Ruthenium Red stain. Further, Ech also significantly decreased 
csgD expression (Figure 7). The results demonstrated that Ech 
reduced EPS production by inhibiting QS.

We performed motility experiments in a semi-solid agar 
medium to determine whether Ech affects bacterial motility. The 
results showed that Ech inhibited bacterial motility in a dose-
dependent manner. Additionally, flagellum-regulated genes such 
as flhC, flhD, and fliC were also significantly down-regulated by 
Ech. FlhDC is an activator of the flagellum regulatory cascade, 
which regulates flagellum synthesis and motility (Guttenplan and 
Kearns, 2013). FliC, as a flagellum filament structural protein, is 
involved in the pathogenesis of infection, the production of biofilm, 

and motility (Chaban et al., 2015). The results demonstrated that 
Ech reduced flagellum motility by inhibiting QS.

Substances that constitute bacterial virulence are called 
virulence factors including invasiveness and virulence. Among the 
six major pathotypes of E. coli, Shiga toxin-producing E. coli is the 
most prevalent (Moreau et al., 2021). Shiga toxin is one of the 
major virulence factors of Shiga toxin-producing E. coli O157: H7. 
It can induce the formation of A/E lesions, and cause HUS if it 
enters the circulatory system (Kordbacheh et  al., 2019). In 
humans, the stx2 gene codes for the Stx2 which is associated with 
more severe diseases caused by Shiga toxins, which play an 
essential role in the pathogenesis of E. coli O157:H7 (Sheng et al., 
2016). In the present student, we found that the virulence factor 
regulatory gene stx2 was downregulated by 69%. The results 
demonstrated that Ech reduced virulence factor production by 
inhibiting QS.

Multiple antibiotic resistance mechanisms have evolved due 
to the extensive use of antibiotics during clinical treatment. The 
primary resistance mechanisms are to passivate antibiotics by 
eliminating antibiotics by efflux pump system, chemical 

A B C

D E

FIGURE 9

Synergistic effects of Ech (50 μM) with Colistin B in five different E. coli on bacterial viability. E. coli (A) C83654, (B) XJ24, (C) O149, (D) O101, 
(E) KD-13-1. Data represent means ± SD of three experiments conducted in triplicate. * = p < 0.05; ** = p < 0.01; *** = p < 0.001; **** = p < 0.0001.
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FIGURE 10

Synergistic effects of Ech (50 μM) with Colistin E in five different E. coli on bacterial viability. E. coli (A) C83654, (B) XJ24, (C) O149, (D) O101,  
(E) KD-13-1. Data represent means ± SD of three experiments conducted in triplicate. ** = p < 0.01; *** = p < 0.001; **** = p < 0.0001.

FIGURE 11

Biosynthesis, and transport of AI-2 in E. coli.
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modifications, and target gene modification (Zhao et al., 2020). 
Meanwhile, the biofilms formed by many pathogens result in 
strong resistance (Rajput et  al., 2018). QS system can reduce 
antibiotic resistance by regulating biofilm formation (Zhao et al., 
2020). In this study, we found that combined QS inhibitor Ech 
and colistin antibiotics could play a synergistic antibacterial 
effect. The results suggested that combining antibiotics with 
anti-QS compounds appears to be  an effective therapeutic 
strategy for treating pathogen infections.
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