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Abstract

Summary: QuartataWeb is a user-friendly server developed for polypharmacological and chemogenomics analyses.
Users can easily obtain information on experimentally verified (known) and computationally predicted (new) interac-
tions between 5494 drugs and 2807 human proteins in DrugBank, and between 315 514 chemicals and 9457 human
proteins in the STITCH database. In addition, QuartataWeb links targets to KEGG pathways and GO annotations,
completing the bridge from drugs/chemicals to function via protein targets and cellular pathways. It allows users to
query a series of chemicals, drug combinations or multiple targets, to enable multi-drug, multi-target, multi-pathway
analyses, toward facilitating the design of polypharmacological treatments for complex diseases.

Availability and implementation: QuartataWeb is freely accessible at http://quartata.csb.pitt.edu.

Contact: bahar@pitt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

It is now widely accepted that many complex diseases are associated
with multiple targets, which in turn affect multiple pathways,
requiring the adoption of quantitative systems pharmacology (QSP)
approaches for assessing the mechanisms of disease etiology, pro-
gression and treatment (Stern et al., 2016). The possibility of
exploiting the promiscuity of drugs via drug repurposing and poly-
pharmacological treatments also emerged in recent years as a means
of reducing risk and cost in drug development (Ashburn and Thor,
2004; Pantziarka et al., 2018; Sachs et al., 2017). In parallel, chemo-
genomics studies assist in improving our understanding of disease
mechanisms and developing therapeutic strategies by providing
phenotypic information on ensembles of active compounds screened
against families of targets. Such studies underscore the importance
of developing computational tools that would harness the rapidly
accumulating data to predict new chemical–target interactions
(CTIs) over a broad space of chemicals and enable their mapping to
pathways and function.

Several resources have been developed in the last decade to address
different aspects of the emerging needs but an integrated server
designed to automate the association of multiple CTIs with enriched

pathways and functions remains to be developed. For example, the
servers SEA (Keiser et al., 2007), SwissTargetPrediction (Daina et al.,
2019) and SuperPred (Nickel et al., 2014) predict new CTIs, but not
corresponding pathways. DINIES (Yamanishi et al., 2014) and DT-
Web (Alaimo et al., 2015) incorporate pathway information, but not
large-scale CTIs, their respective data being limited to Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2017)
and DrugBank (Wishart et al., 2018). Furthermore, existing interfaces
are not designed to use as input multiple drugs/targets for polypharma-
cological strategies and/or for complementing chemogenomics efforts.

We developed the QuartataWeb server to address those needs.
QuartataWeb uses known (experimentally verified) CTIs from
DrugBank and STITCH (Szklarczyk et al., 2016; Supplementary
Table S1 and Fig. S1) in a probabilistic matrix factorization algo-
rithm (Cobanoglu et al., 2013) to predict new CTIs in the extended
space of more than 300 000 chemicals and 9000 human proteins.
The engine parameters have been optimized (see Supplementary
Table S2) to ensure high CTI prediction accuracy (see
Supplementary Table S3 and Fig. S2). The outputs are linked to
KEGG pathways and Gene Ontology (GO) annotations (GOAs)
(Huntley et al., 2015) to predict the most probable pathways, func-
tions and processes affected by one or more chemicals and to
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efficiently assist in interpreting and/or guiding chemogenomics and
polypharmacological studies.

2 QuartataWeb implementation and pipeline

The QuartataWeb server pipeline is schematically depicted in
Figure 1A and Supplementary Figure S4. The server can be flexibly
queried with three types of input: (I) a list of chemicals (or targets)
for chemogenomics-like screening in silico (Fig. 1A); (II) one or
more pairs of chemicals to be administered in combination for poly-
pharmacological purposes (Supplementary Fig. S4); and (III) a single
chemical and/or a single target to be characterized (Supplementary
Fig. S4). In response to a list of chemicals entered in Type I query,
QuartataWeb releases newly predicted CTIs and chemical–chemical
similarities based on pre-computed latent factor models learned
from DrugBank or STITCH data, in addition to retrieving known
CTIs from these datasets, as schematically described in Figure 1A.
The outputted targets are then subjected to target enrichment, which
also lead to enrichment scores for associated pathways and GOAs
(P-values; see Supplementary Theory and Methods]. The same se-
quence of tasks can be carried out for a list of targets entered as in-
put. In the case of Type II input, the same tasks are carried out for
pairs of chemicals to obtain shared targets, and their enrichment,
along with enriched pathways and GOAs (Supplementary Fig. S4).
Type III input is the simplest query where users enter one chemical,
one target or a chemical–target pair to identify associated CTIs,
similar chemicals or targets, and enriched pathways and GOAs.
Furthermore, the secondary interactions (2�, beyond the immediate
neighbors) in the bipartite network of chemical/targets can be visual-
ized. In all cases, outputs are presented as tables with several specifi-
cations (e.g. drug/chemical identifiers, Gene IDs and names, PDB
IDs, confidence scores and enrichment P-values), in addition to visu-
als such as network representations, bar plots or heatmaps. The
force-directed layout in JavaScript D3 package has been customized
and designed to interactively display the CTIs and pathways
networks.

3 Applications

Chemogenomics analysis for a list of chemicals. In many cases, a set
of chemicals exhibiting comparable phenotypes are analyzed in
phenotypic screening. Suppose, we are interested in finding out the
common mechanism of action of this set of chemicals (Type I input).
Figure 1B illustrates such a case where four drugs are inputted hav-
ing same phenotype. QuartataWeb permits to identify the common
targets along with the interaction confidence scores and enrichment
scores of the targets. One may further learn about the pathways

associated with the shared targets (Fig. 1C) and corresponding
GOAs (Fig. 1D). The interface also provides tables with detailed in-
formation on the pathways and GOAs, including their P-values
(Supplementary Fig. S5), which could help assessing the dominant
pathways and processes that underlie the shared phenotype. Our re-
cent QSP analysis of 50 drugs of abuse serves as an example of the
utility of this type of integrated studies (Pei et al., 2019).

Polypharmacological evaluation of drug pairs. Similarly,
Supplementary Figure S6 illustrates the output from QuartataWeb
for identifying common targets given pairs of chemicals (Type II in-
put) that trigger comparable responses, e.g. aripiprazole/olanzapine,
clozapine/trimipramine, methotrimeprazine/epinastine and cabergo-
line/mianserin. The corresponding CTIs are listed in tables, and also
displayed in a network viewer with an interactive control panel.
Links to pathways and GOAs result pages are indicated. In this ex-
ample, 15 among 192 known and 80 predicted (confidence scores >
0.9) targets were identified as common targets. Pathways shared by
each chemical pair are also listed in the pathway enrichment table.
This type of analysis applied to drug combinations used in a
Huntington’s disease model helped elucidate the origin (shared path-
ways) of observed synergistic effects (Pei et al., 2017).

Drug repurposing or identification of side-effects (Type III).
Consider loxapine and its target, a2A adrenergic receptor (gene
name: ADRA2A) as an example. CTIs corresponding to both drug
(red sphere) and target (blue sphere) can be viewed in peacock repre-
sentation (Fig. 1E), where known and predicted CTIs being distin-
guished by the gray and red edges, respectively. Users can
interactively select nodes to view primary and 2� interactions.
Loxapine is an antipsychotic agent approved for treating schizophre-
nia, whose primary targets are dopamine and serotonin receptors.
The figure displays the 2� interactions of a serotonin receptor
(HTR3C, node colored cyan) which turns out to be a target of many
drugs associated ADRA2A, some of which are repurposable.
Finally, Type III input also permits to identify similar drugs and
shared targets as illustrated for the pair doxepin and loxapine
(Fig. 1F).

4 Conclusion

We presented QuartataWeb, an integrated server that offers mul-
tiple capabilities for QSP analyses using both known associations
and machine-learning predictions. We showed that the interface can
help identify repurposable drugs, side-effects, enriched pathways, as
well as shared functions, cellular processes and environment for dif-
ferent types of queries. QuartataWeb is expected to serve as a first
filter toward designing more effective phenotypic screens and poly-
pharmacological strategies.

Fig. 1. QuartataWeb workflow for Type I input, example outputs on CTIs, pathways and GOAs. (A) In Type I input, users enter either a list of chemicals or a list of targets of

interest. Here, the workflow for a list of chemicals is illustrated. See details in the text. (B) Identification of targets (dark violet dots, in yellow ellipse) shared by four drugs

(Input Type I) indicated by red nodes. (C) KEGG pathways (green boxes) corresponding to targets in (B). (D) Top 10 enriched GO molecular functions for targets in (B). Bar

plot shows enrichment P-values. (E) Illustration of ligand–target interactions obtained by Type III input. Second generation of nodes with degrees < 3 are hidden by applying

‘Trim 2nd generation nodes’ button. (F) Chemical–chemical similarities. The option ‘Display secondary interactions’ displays targets shared by selected drugs (yellow)
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