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High-affinity extrasynaptic gamma-aminobutyric acid A (GABAA) receptors are tonically
activated by low and consistent levels of ambient GABA, mediating chronic inhibition
against neuronal excitability (tonic inhibition) and the modulation of neural development.
Synaptic (phasic) inhibition is spatially and temporally precise compared with tonic inhibi-
tion, which provides blunt yet strong integral inhibitory force by shunting electrical signaling.
Although effects of acute modification of tonic inhibition are known, its pathophysiological
significance remains unclear because homeostatic regulation of neuronal excitability can
compensate for long-term deficit of extrasynaptic GABAA receptor activation. Neverthe-
less, tonic inhibition is of great interest for its pathophysiological involvement in central
nervous system (CNS) diseases and thus as a therapeutic target. Together with the
development of experimental models for various pathological states, recent evidence
demonstrates such pathological involvements of tonic inhibition in neuronal dysfunction.
This review focuses on the recent progress of tonic activation of GABAA conductance on
the development and pathology of the CNS. Findings indicate that neuronal function in
various brain regions are exacerbated with a gain or loss of function of tonic inhibition
by GABA spillover. Disturbance of tonic GABAA conductance mediated by non-synaptic
ambient GABA may result in brain mal-development.Therefore, various pathological states
(epilepsy, motor dysfunctions, psychiatric disorders, and neurodevelopmental disorders)
may be partly attributable to abnormal tonic GABAA conductances. Thus, the tone of tonic
conductance and level of ambient GABA may be precisely tuned to maintain the regular
function and development of the CNS. Therefore, receptor expression and factors for
regulating the ambient GABA concentration are highlighted to gain a deeper understanding
of pathology and therapeutic strategy for CNS diseases.
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INTRODUCTION
Neurotransmission comprises both excitatory and inhibitory
signals. Therefore, understanding the mechanisms underlying
the imbalance of these signals that are found in pathologies
of the central nervous systems (CNSs) are vital in pursuing
specific therapeutic strategies. In inhibitory neurotransmitter sys-
tems, gamma-aminobutyric acid (GABA) A receptor (GABAA)-
mediated synaptic transmission is particularly important because
its fast, ligand-gated inhibitory conductance allows fine homeo-
static tuning of excitation-inhibition balance (see review Farrant
and Nusser, 2005; Olsen and Sieghart, 2008).

Accumulating evidence has revealed that the function and dis-
tribution of the GABAA receptor are remarkably diverse because
of their subunit assembly. Some GABAA receptor isoforms have
been shown to be expressed outside synapses, and tonically acti-
vated by low concentrations of GABA (i.e., tonic inhibition)
existing in the extrasynaptic space (Mody and Pearce, 2004;
Farrant and Nusser, 2005). Although the proportion of GABAA

receptor subtypes mediating tonic inhibition is estimated to be
of minor abundance as compared with that mediating synaptic

inhibition (Mohler et al., 2002), this effect nevertheless provides
strong inhibitory force by shunting the electrical signal transmis-
sion. With increased knowledge about its functional significance,
an alteration in tonic inhibition has received great attention as
a mechanism underlying the pathophysiology of various CNS
disorders. Its distinct properties and pharmacology may thus
provide new therapeutic strategies for overcoming limitations
of conventional GABAA receptor modulators. Thus far, dereg-
ulation of tonic inhibition has been shown to be a mechanism
responsible for underlying a variety of CNS pathologies, including
epilepsy, neurodevelopmental disorders, cognitive dysfunctions,
and psychiatric disorders (see review, Brickley and Mody, 2012;
Hines et al., 2012).

In addition to tonic inhibition induced by GABA generated
by synaptic spillover, another form of tonic conductance occurs
before synaptic formation. This tonic conductance is depolar-
izing because the intracellular chloride (Cl−) concentration is
high in immature neurons due to the balance of Cl− trans-
porters (Owens et al., 1996; Yamada et al., 2004; for review, see
Ben-Ari, 2002). The release of GABA in the milieu occurs
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via non-vesicular mechanisms (Demarque et al., 2002; Manent
et al., 2005; for review, see Owens and Kriegstein, 2002). This
tonic GABAA receptor-mediated conductance is considered to be
involved in a variety of developmental events, such as neuro-
genesis (LoTurco et al., 1995; Haydar et al., 2000; Andäng et al.,
2008), migration (Behar et al., 1996, 1998, 2000, 2001; López-
Bendito et al., 2003; Cuzon et al., 2006; Heck et al., 2007; Bortone
and Polleux, 2009; Denter et al., 2010; Inada et al., 2011; Inoue
et al., 2012) and synaptogenesis (Nakanishi et al., 2007; Wang and
Kriegstein, 2008). Based on these findings, perturbation of tonic
depolarization could also result in brain mal-development.

In this review, we provide an overview on the advancement in
knowledge about the role of dysregulation of tonic inhibition in
the pathophysiology of various CNS diseases (with the exception
of epilepsy, which will be reviewed independently in this issue),
and its involvement in their therapeutic strategies. Furthermore,
we review the latest findings of tonic depolarization underlying
brain mal-development (with the exception of the hippocampus,
which will be reviewed independently in this issue).

RECEPTOR COMPOSITION AND DISTRIBUTION OF TONIC
INHIBITION
Gamma-aminobutyric acid A receptors are assembled from a fam-
ily of 19 homologous subunit gene products (six α subunits,
three β subunits, three γ subunits, three ρ subunits, and one
each of the ε, δ, θ, and π subunits) and form mostly hetero-
oligomeric pentamers (for review, see Olsen and Sieghart, 2008).
Most GABAA receptor subtypes are formed from two copies of
a single α, two copies of a single β, and one copy of another
subunit (γ, δ, or ε). Each subunit combination has a distinct
distribution pattern in terms of subcellular domains. The δ sub-
unit, generally partnered with the α4 (forebrain predominant)
and α6 (cerebellum predominant) subunits, are shown to be
exclusively localized in extrasynaptic membranes in various neu-
ronal cells, including cerebellar granule cells (CGCs), dentate
gyrus granule cells, neocortical layer 2/3 pyramidal cells (Nusser
et al., 1998; Nusser and Mody, 2002; Wei et al., 2003), interneu-
rons in the neocortex and hippocampus (Semyanov et al., 2003;
Krook-Magnuson et al., 2008), thalamic relay neurons (Cope
et al., 2005), medium spiny neurons of the striatum (Ade et al.,
2008), and dorsal horn spinal neurons (Bonin et al., 2011). The δ

subunit-containing GABAA (δ-GABAA) receptor shows high affin-
ity and slow desensitization to GABA (Saxena and MacDonald,
1996), which allows tonic activation in response to low con-
centration of ambient GABA in extrasynaptic space (though see
Bright et al., 2011).

The α5 subunit-containing GABAA receptors, which presum-
ably do not include the δ subunit, are also expressed in extrasy-
naptic membranes. The α5 subunit is predominantly detected
in hippocampal pyramidal neurons (Sperk et al., 1997), show-
ing higher GABA sensitivity compared with α1 GABAA receptors,
which allows tonic inhibition in hippocampal pyramidal neu-
rons (Caraiscos et al., 2004; Glykys and Mody, 2006). The α1 and
α5 subunit-mediated tonic inhibition is also shown in cortical
principal neurons in layer 2/3 and layer 5, respectively (Yamada
et al., 2007). In line with the predominant distribution of extrasy-
naptic α5 subunit-containing GABAA receptors (Brunig et al.,

2002; Crestani et al., 2002; Caraiscos et al., 2004), perisynap-
tic α5 subunits also mediate the GABA spillover component of
slow phasic inhibitory currents (Prenosil et al., 2006). The con-
tribution of such a slow inhibitory synapse transmission to the
signal computation may be a future issue to explore with further
studies.

The other assemblies (e.g., α1γ2 subunit-containing receptor),
which mainly mediate synaptic inhibition, also exist in the extrasy-
naptic membrane (Kasugai et al., 2010) and can contribute to tonic
inhibition because their specific agonist, zolpidem, amplifies the
tonic currents (Semyanov et al., 2003; Yamada et al., 2007). High
affinity αβ subunit-containing GABAA receptors have also been
shown to mediate tonic inhibition in rat hippocampal pyrami-
dal neurons (Mortensen and Smart, 2006). Nevertheless, it is now
clear that the GABAA receptor subtypes having the δ or α5 subunit
are the dominant forms which are responsible for mediating tonic
inhibition in the mammalian brain, including humans (Scimemi
et al., 2006).

REGULATION OF TONIC INHIBITION
After the finding of tonic inhibition in the mature brain (Kaneda
et al., 1995), its functional significance for regulating network
excitability was subsequently revealed. In CGCs, blocking tonic
inhibition decreases membrane shunting (Brickley et al., 1996)
and increases information flow from granule cells to Purk-
inje cells (Hamann et al., 2002). In thalamic relay neurons or
hippocampal interneurons, baseline membrane potentials and
network oscillation are modulated (Cope et al., 2005; Song et al.,
2011). Deregulation of tonic inhibition caused by a lack of
synaptic plasticity-associated proteins has been shown in sev-
eral mice models of neurological disorders (Curia et al., 2009;
Olmos-Serrano et al., 2010; Egawa et al., 2012). However, the
pathophysiological significance of long-term modification of
extrasynaptic GABAA receptor activation can be masked by
compensatory mechanisms (Brickley et al., 2001; Wisden et al.,
2002). Some adaptive regulation responses could be attributed
to the modification of GABAA receptor trafficking and/or clus-
tering on the membrane surface (Saliba et al., 2012; see review
Hines et al., 2012).

Progress in the development of pharmacological agents that
predominantly modulate extrasynaptic GABAA receptors (sum-
marized in Table 1) has contributed to the uncovering of the
pathological significance of dysregulated tonic inhibition. Con-
sequently, large efforts have been made to use these agents
for clinical use. The negative allosteric modulator of the α5
GABAA receptor, α5IA, has recently been shown to improve
ethanol-induced impaired performance in healthy subjects (Nutt
et al., 2007). However, its use in a clinical trial was stopped
due to renal toxicity (Atack, 2010). Another negative allosteric
modulator of the α5 subunit, RO4938581, is presently under
a phase 1 clinical trial for Down syndrome (the study is
sponsored by Roche, and its outcomes have been made pub-
licly available). The selective orthosteric agonist of the δ-
GABAA receptor, 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol
(THIP, or also known as gaboxadol) was used as an hyp-
notic drug, reaching a phase 3 trial before its cessation because
of side-effects, such as hallucination and disorientation (the
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Table 1 | Selective modulators for extrasynaptic GABAA receptor.

δ-Subunit selective

THIP (4,5,6,7-tetrahydroisoxazolo

(5,4-c)pyridin-3-ol; gaboxadol)

Selective orthosteric agonist of δ-GABAA receptor, a

restricted analog of muscimol

Krogsgaard-Larsen et al. (2004)

AA29504 Positive allosteric modulator of δ-GABAA receptor, analog

of Kv7 channel opener, retigabine

Hoestgaard-Jensen et al. (2010), Vardya et al. (2012)

DS2 Positive allosteric modulator of δ-GABAA receptor, poor

blood–brain barrier permeability

Wafford et al. (2009), Jensen et al. (2013)

THDOC Positive allosteric modulator of δ-GABAA receptor, an

endogenous neurosteroid

Bianchi and MacDonald (2003)

α5-Subunit selective

RO4938581 Negative allosteric modulator of α5-GABAA receptor, now

entering to phase1 trial for Down syndrome

Ballard et al. (2009)

α5IA Negative allosteric modulator of α5-GABAA receptor,

development has stopped due to renal toxicity

Atack (2010)

MRK-016 Negative allosteric modulator of α5-GABAA receptor,

more potent than α5IA

Atack et al. (2009)

L-655,708 Negative allosteric modulator of α5-GABAA receptor Atack et al. (2006)

SH-053-20F-R-CH3 Positive allosteric modulator of α5-GABAA receptor Gill et al. (2011)

study is sponsored by Merck, and its outcomes have been
made publicly available). However, THIP has been recently
shown to be effective against behavioral and motor dysfunc-
tion in mouse models of autism spectrum disorders (Olmos-
Serrano et al., 2011; Egawa et al., 2012). Therefore, further
cumulative evidence may hopefully renew an interest in using
THIP for these diseases, which have no effective therapeutic
strategies.

Because extrasynaptic GABAA receptors are activated by ambi-
ent GABA in the extrasynaptic space, regulation of ambient GABA
concentrations must therefore be an important factor for deter-
mining the degree of tonic inhibition. The concentration of
ambient GABA has been estimated to be very low, less than 300 nM
in both in vivo (Kennedy et al., 2002) and in vitro (Wu et al.,
2003; Santhakumar et al., 2006) conditions. A considerable part
of ambient GABA may be derived from spillover from the synap-
tic cleft (Glykys and Mody, 2007). Thus, presynaptic functions,
such as GABA synthesis and GABA release, should also regulate
tonic GABA conductance. To date, reverse mode operation of
GABA transporters (Wu et al., 2003; Heja et al., 2012) and GABA
release via bestrophin1 anion channel (Lee et al., 2010) have been
proposed as mechanisms underlying the non-vesicular release of
GABA, both of which are currently under debate (Diaz et al., 2011;
Kersante et al., 2013).

Regardless of the source of ambient GABA, GABA transporters
play a pivotal role in regulating tonic inhibition. In the rat hip-
pocampus, presynaptically located GABA transporter 1 (GAT1)
and astrocytic GAT3 (corresponding to GAT4 in mice) syner-
gistically modulate the ambient concentration of GABA via its
uptake from the extrasynaptic space (Egawa et al., 2013; Ker-
sante et al., 2013; Song et al., 2013). In vivo analysis has shown
that neuronal GAT1 plays a predominant role under resting

conditions and that the uptake of GABA by astrocytic GAT3
occurs during membrane depolarization (Kersante et al., 2013).
In general, GAT1 and GAT3 is expressed in presynaptic neu-
rons and astrocytes, respectively. However, this expression pattern
is not consistent throughout the brain regions. For example,
thalamic GAT1 and GAT3 are exclusively expressed in astro-
cytes, but not in presynaptic neurons (De Biasi et al., 1998),
and thus the regulatory mechanisms for ambient GABA in the
brain can differ depending on the region. Recently, compro-
mised function of glial GATs (associated with increased tonic
inhibition), has been shown to underlie the pathophysiology of
absence epilepsy (Cope et al., 2009) and prevent recovery after
stroke (Clarkson et al., 2010). Insufficient (Chiu et al., 2005) or
excessive (Egawa et al., 2012) amounts of GAT1 can cause cere-
bellar dysfunction, at least in part, to deregulation of tonic
inhibition.

A Schematic drawing of the regulation of tonic inhibition with
some implications for CNS disorders possibly associated with dys-
function of tonic inhibition (details will be shown below) is shown
as Figure 1.

SENSORY FUNCTIONS
Tonic GABA conductances exist within ascending sensory path-
ways on each level, including spiny neurons of the dorsal horn in
the spinal cord (Bonin et al., 2011), thalamic relay neurons (Cope
et al., 2005; Richardson et al., 2011), granule cells of the olfac-
tory bulb (Labarrera et al., 2013), the brain stem auditory pathway
(Campos et al., 2001), and the primary sensory cortex (Yamada
et al., 2007; Krook-Magnuson et al., 2008; Imbrosci et al., 2012).
Tonic inhibition is thought to be important for sensory processing
because it reduces the impact of low frequency excitation, thereby
increasing its signal-to-noise ratio.
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FIGURE 1 | Regulation of tonic inhibition and CNS disorders. Aberrant
tonic inhibition is suspected to be a mechanism underlying the neuronal
dysfunctions in the listed disorders based on at least one of the following:
(1) a direct measurement of tonic inhibition in model animals, (2) the use of
extrasynaptic gamma-aminobutyric acid A (GABAA) receptor selective
modulators in model animals, and (3) evaluation of α5 subunit expression in

living human subjects (via positron emission tomography). Colored arrows
indicate the proposed protein/subunit responsible for aberrant tonic
inhibition (blue, down-regulation; red, up-regulation; black, GABA signaling
during synaptic transmission). Dashed arrows indicate pathways still under
debate. vGAT, vesicular GABA transporter; Best-1, bestrophin-1; glu,
glutamate.

4,5,6,7-Tetrahydroisoxazolo(5,4-c)pyridin-3-ol (THIP) acts as
an anti-nociceptive in rodent models of acute pain (Enna and
McCarson, 2006; Munro et al., 2008; Bonin et al., 2011). The anti-
nociceptive effect is absent from δ- or α4-GABAA receptor null
mutant mice (Chandra et al., 2006; Bonin et al., 2011), indicating
that tonic inhibition plays major roles in the regulation of acute
nociception. The effects of THIP have been attributed to actions
at supraspinal targets, such as thalamic relay neurons (Zorn and
Enna, 1985; Rode et al., 2005; Chandra et al., 2006). Tonic GABA
currents mediated by the δ subunit also exist in the spinal cord dor-
sal horn (Bonin et al., 2011). Studies on δ subunit knock-out (KO)
mice indicate that tonic inhibition likely regulates the late phase
of nociceptor activity, thus corresponding to central sensitization
(Bonin et al., 2011). This response may result from amplification
of tonic inhibition caused by activity-dependent GABA spillover
or induction of neurosteroids during early phase of nociception.
Nociceptor activity in early phase was shown to be comparable
between wild type (WT) and δ-GABAA receptor KO mice (Bonin
et al., 2011). Therefore, a tonic inhibition in spinal cord neurons
may also contribute to regulating central sensitization and acute
nociception.

In the auditory thalamus, the medial geniculate body is essential
for processing acoustic information. A recent study has demon-
strated that age-related loss of inhibition in this area is more
dominant in tonic rather than phasic inhibition (Richardson

et al., 2013). Decreased expression of α4δ-GABAA receptors and
down-regulation of glutamic acid decarboxylase (GAD) 67 have
been found to be possible mechanisms underlying this difference
(Richardson et al., 2013). Because the efficacy of auditory coding
is directly correlated with the strength of GABAergic inhibition
(Gleich et al., 2003; de Villers-Sidani et al., 2010), enhancement of
tonic inhibition was proposed to be a potential strategy against
age-related decline of auditory cognition. A reduction of tonic
inhibition has been reported in the auditory cortex of hearing-
lesioned rat (Yang et al., 2011). In this model, GAD67 was reduced
in the affected region, resulting in down-regulation of both phasic
and tonic inhibition. In addition, hearing-lesioned animals dis-
played tinnitus with a pitch in the hearing loss range, which was
eliminated by the GABA transaminase inhibitor, vigabatrin, or by
reducing the uptake of GABA by the GAT1 inhibitor, NO711.

COGNITIVE DYSFUNCTION AND FUNCTIONAL RECOVERY
AFTER STROKE
Because cognition involves a group of mental processes such as
memory, attention, understanding language, and learning, numer-
ous brain regions are thus responsible for cognitive dysfunctions.
The hippocampus plays a critical role in learning and memory,
and recent evidence suggests that the α5-GABAA receptor is abun-
dantly expressed in this brain region, and thus may be a therapeutic
target for cognitive dysfunction (Sperk et al., 1997).
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Down syndrome is caused by the trisomy for chromosome 21,
and is the most frequent neurodevelopmental disorder of chro-
mosomal origin. Almost all affected individuals exhibit cognitive
impairment, with specific deficits in learning and memory medi-
ated by hippocampal dysfunctions (Carlesimo et al., 1997). This
phenotype is well replicated in the Ts65Dn mouse model of Down
syndrome. The finding that low-dose picrotoxin restored hip-
pocampal long-term potentiation in this model (Kleschevnikov
et al., 2004) subsequently led to the hypothesis of “excessive inhi-
bition,” and was strongly recognized to play a pathological role
in this syndrome. In support of this hypothesis, Ts65Dn mice
were found to exhibit increased immunoreactivity of GAD65/67
and vesicular GABA transporter (vGAT; Belichenko et al., 2009;
Perez-Cremades et al., 2010; Martinez-Cue et al., 2013). Numer-
ous studies indicate that α5-GABAA receptor-mediated inhibition
(mainly in the tonic form) reduces learning and memory. Mice
deficient in the α5 subunit show better performance of cogni-
tive functions compared with wild-type (Collinson et al., 2002;
Crestani et al., 2002; Yee et al., 2004). Similarly, rodents system-
ically administrated with various α5 subunit-selective negative
allosteric modulators displayed a facilitation in learning and
memory tasks, associated with increased long-term potentia-
tion (Navarro et al., 2002; Atack et al., 2006, 2009; Dawson et al.,
2006; Ballard et al., 2009). Therefore, specific antagonism of
the α5 subunit may be a potential therapeutic strategy against
cognitive impairment in Down syndrome. Indeed, recent stud-
ies have revealed that cognitive function is ameliorated with
the α5 subunit-selective negative allosteric modulators, α5IA, or
RO4938581, in Ts65Dn mice without any side effects (Braudeau
et al., 2011; Martinez-Cue et al., 2013). RO4938581 is currently
in clinical trials for adults with Down syndrome (the study is
sponsored by Roche, and its outcomes have been made publicly
available). The α5-selective negative allosteric modulators have
also been shown as effective enhancers for learning and memory
in other cognitive deficits induced by acute inflammation (Wang
et al., 2012) or general anesthesia (Saab et al., 2010; Zurek et al.,
2012) in mice, and by alcoholism in humans (Nutt et al., 2007;
Atack, 2010).

In the aged brain, hippocampal tonic inhibition can regu-
late cognitive functions. Recent animal studies and human brain
imaging of elderly individuals have indicated a strong posi-
tive correlation between hippocampal hyperactivity and cognitive
impairment (Wilson et al., 2005; Ewers et al., 2011). In support
of the “excessive excitation” hypothesis, the positive (and not
negative) allosteric modulator for the α5 subunit improves mem-
ory tasks in aged rats with cognitive deficits (Wilson et al., 2005;
Koh et al., 2013). This hypothesis may be applied to autism spec-
trum disorders because antiepileptic drugs sometimes improve
cognitive functions in these affected individuals (Di Martino
and Tuchman, 2001). α5 subunit selective allosteric modulators
currently in clinical trials have shown promise as a potential
therapeutic strategy for cognitive deficits in various CNS diseases.

Several reports have demonstrated that the inhibitory balance
between phasic and tonic inhibition shifts to tonic after corti-
cal lesion (Clarkson et al., 2010; Imbrosci et al., 2012). This shift
may provide protection against cell death in the acute stage, and
also prevent homeostatic plasticity during the recovery period. In

a cortical stroke model, excessive tonic inhibition has been pro-
posed as a novel pharmacological target for promoting recovery
after stroke (Clarkson et al., 2010). Therefore, negative allosteric
modulators for the α5 subunit may be effective against learning
and memory deficits as well as for dysfunctions after brain injury.

PSYCHIATRIC DISORDERS
Schizophrenia is generally recognized to develop from the dis-
ruption of various kinds of neurotransmission. Dysfunction
in GABAergic transmission has drawn significant attention as
a mechanism underlying cognitive deficits in schizophrenia
(Guidotti et al., 2005; Lewis et al., 2005). Postmortem analyses
and brain imaging of living schizophrenic subjects have revealed
a deficiency in the synthesis of GABA resulting from reduced
transcription of GAD67 (Akbarian et al., 1995b; Volk et al., 2000;
Hashimoto et al., 2003; Yoon et al., 2010). Results of studies investi-
gating the expression of GABAA receptor subunits in postmortem
tissue have been inconsistent. The expression of α1, α2, and
α5 subunits have been reported to be increased (Impagnatiello
et al., 1998; Ishikawa et al., 2004; Lewis et al., 2004), decreased
(Hashimoto et al., 2003), or unchanged (Akbarian et al., 1995a).
Despite the limited number of reports investigating the expres-
sion of the δ subunit, several reports have shown decreased
expression of this subunit in the prefrontal cortex (Hashimoto
et al., 2003; Maldonado-Aviles et al., 2009). A considerable lim-
itation of the postmortem tissue analyses in these studies is the
chronic consumption of antipsychotics and/or benzodiazepines
in the subjects. Furthermore, symptoms of schizophrenia dynam-
ically change with the clinical stage. A recent study involving
positron emission tomography (PET) using the highly selective α5
subunit ligand, [11C]Ro15-4513, revealed an inverse correlation
between binding potential and severity of the negative symp-
toms in medication-free subjects (Asai et al., 2008). Therefore,
this result suggests that decreased expression of the α5 subunit
may be involved in the pathophysiology of schizophrenia during
the negative stage. Supporting this hypothesis, use of the posi-
tive allosteric modulator for the α5 subunit has been shown to
improve the hyperactivity and cognitive dysfunctions in rat models
of schizophrenia (Damgaard et al., 2011; Gill et al., 2011). How-
ever, Redrobe et al. (2012) have shown that a negative allosteric
modulator of the α5 subunit also attenuates cognitive deficits,
using a different mouse model of schizophrenia. Interestingly,
the authors also showed that hyperactivity was ameliorated by
both positive and negative modulators for the α5 subunit in these
mice. Excitatory and inhibitory biphasic changes induced by tonic
conductance have been recently shown in single neurons with
depolarizing reversal potential for GABA currents (Song et al.,
2011). Therefore, an increase or decrease of tonic inhibition may
result in net inhibitory effects in relevant neuronal circuits in this
model. Further studies are required to validate the usefulness of
α5 subunit selective allosteric modulators for the treatment of
schizophrenia.

Neurosteroids, metabolites of progesterone, other sex hor-
mones, and several stress-induced steroids are potent modulators
of GABAA receptors (Lambert et al., 2003). In particular, the
extrasynaptic δ-GABAA receptor shows higher sensitivity for neu-
rosteroids compared with synaptic GABAA receptors (Davies et al.,
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1997; Stell et al., 2003; see review Brickley and Mody, 2012). There-
fore, dysregulation of tonic inhibition may play a pivotal role in
psychiatric disorders, such as anxiety and mood disorders, which
are often associated with sex hormone alterations or stress. For
example, expression of the δ subunit has been shown to decrease
during pregnancy due to adaptive mechanisms against large ele-
vation of progesterone metabolites (Maguire and Mody, 2008).
The rapid decrease of neurosteroids after birth can thus induce
the down-regulation of tonic inhibition, resulting in postpartum
depression (Maguire and Mody, 2008).

In a rat model of premenstrual dystrophic disorders, with-
drawal of progesterone leads to anxiety and increased seizure
susceptibility, associated with up-regulation of the α4 subunit
(Smith et al., 1998). In contrast, increased levels of neurosteroids
during physiological ovarian cycles leads to reduction of anxiety
and seizure susceptibility caused by up-regulation of the δ subunit
(Maguire et al., 2005). This difference may thus suggest that neu-
rosteroids can alter the effects of tonic GABA conductance by dose
and/or exposure time-dependent mechanisms, thereby regulating
the expression of receptor subunits. In accordance with this spec-
ulation, evaluating anxiety at puberty revealed that neurosteroids
negatively modulated tonic inhibition by decreasing outward cur-
rents, via α4δ-GABAA receptors (Shen et al., 2007). This regulation
was shown to contribute to psychiatric disorders during puberty,
such as mood swings, anxiety, and anorexia (Aoki et al., 2012).

Excessive stress leads to physiological and behavioral responses
resulting in numerous psychiatric disorders. The hypothalamic-
pituitary-adrenal (HPA) axis plays an important role for mediating
physiological responses by promoting stress-induced steroid syn-
thesis (see review Kudielka and Kirschbaum, 2005). A recent
study has demonstrated that stress-derived neurosteroid acts on
δ-GABAA receptors of corticotrophin releasing hormone (CRH)
neurons, biphasically modulating their excitability depending
on the presence or absence of stress (Hewitt et al., 2009). The
study showed that stress decreased the activity of the outward-
directed K+, Cl− co-transporter, potassium-chloride transporter
2 (KCC2), in CRH neurons, switching tonic GABA conductance
from inhibitory to excitatory and resulting in increased activity
of the HPA axis and elevated levels of corticosterone (Hewitt
et al., 2009). Because blockage of corticosterone synthesis prevents
stress-induced anxiety, this positive feedback loop may be one of
the mechanisms underlying stress-induced psychiatric disorders
(Sarkar et al., 2011). Overall, emerging evidence has uncovered
a bidirectional modification of tonic inhibition by neurosteroids,
and thus may explain why increases in neurosteroids can lead to
various types of psychiatric disorders, including depression and
anxiety.

AUTISM SPECTRUM DISORDERS AND RELATED
SYNDROMES
“Autism spectrum” encompasses a wide range of disorders, which
can be divided into two groups with respect to their etiology: (1)
recognizably distinct syndromes caused by mutations in specific
genes or chromosomal loci, and (2) more common, genetically
heterogeneous subjects, referred to as idiopathic autism (Coghlan
et al., 2012). The number of subjects in the first group is much
lower than idiopathic autisms (Coghlan et al., 2012), however their

pathophysiology can be rigorously analyzed by using a genetic
mouse model.

Fragile X syndrome (FXS) is a neurodevelopmental disor-
der caused by malfunction of the fragile X mental retardation
1 (FMR1) gene on the X chromosome, which encodes the
FMR protein (FMRP; Verkerk et al., 1991). Common symptoms
include intellectual disability, a distinctive physical phenotype,
and autism-like behavior often associated with epilepsy. FMRP
is known to regulate the mRNA transcription of various synap-
tic plasticity-associated proteins in concert with activation of
metabotropic glutamate receptors (mGluR; Bassell and Warren,
2008). mRNA of some GABAA receptor subunits, particularly the
δ subunit, are targeted substrates of FMRP (Miyashiro et al., 2003;
Dictenberg et al., 2008). Dendritic localization of δ subunit mRNA
has been shown to be regulated by mGluR activation under the
presence of FMRP (Dictenberg et al., 2008), suggesting that tonic
inhibition plays an important role for the homeostatic regulation
of excitation-inhibition during development. Indeed, electrophys-
iological analysis in FMR1 KO mice revealed that tonic, but not
phasic, inhibition in subicular pyramidal neurons is significantly
decreased, with decreased expression of δ and α5 subunits in this
region (Curia et al., 2009). Decreased expression of the δ subunit
protein has also been shown in the cortex and hippocampus of this
mouse model (El Idrissi et al., 2005). Olmos-Serrano et al. (2010)
demonstrated that FMR1 KO mice exhibit remarkably reduced
tonic and phasic inhibitory currents in the amygdala principal
neurons, with reduced GAD65 and GAD67 expression. This group
also showed that THIP rescued neuronal hyperexcitability, in vitro,
and ameliorated hyperexcitability, in vivo (Olmos-Serrano et al.,
2010, 2011; Figures 2A–C), indicating that tonic inhibition is a
potent therapeutic target for FXS. In contrast, increased GAD65
and GAD67 expression was also observed in the cortex and hip-
pocampus of FMR1 KO mice (El Idrissi et al., 2005; Adusei et al.,
2010), thus indicating regional differentiation of deregulation
mechanisms of inhibition.

Similar presynaptic dysfunction in GABAergic neurotransmis-
sion has been proposed as a mechanism underlying the autism
spectrum-related disorder, Rett syndrome. Mice lacking the causal
gene, methyl CpG binding protein 2, from GABAergic neurons
recapitulate phenotypes as those seen in Rett syndrome, with
decreased GABA levels, reduced expression of GAD65/67, and
miniature inhibitory postsynaptic current amplitudes in cortical
pyramidal neurons (Chao et al., 2010). Therefore, reduction of
tonic inhibition may also contribute to the pathophysiology of
Rett syndrome.

Findings from our recent study have shown decreased tonic
inhibition as a mechanism underlying cerebellar ataxia in the
autism spectrum-related disorder, Angelman syndrome (Egawa
et al., 2012). This syndrome is one of the ubiquitin-proteasome
pathway-associated diseases with the causal gene, ubiquitin-
protein ligase E3A (UBE3A), encoding the Ube3a protein (Kishino
et al., 1997). We found that Ube3a binds to GAT1 and directly
controls its degradation in the cerebellum (Egawa et al., 2012).
Furthermore, a surplus of GAT1 was found to decrease tonic cur-
rents of CGCs in Ube3a KO mice. Because THIP can improve
cerebellar dysfunctions in this mouse model under in vitro and in
vivo conditions (Figures 2D–F), the reduction of tonic inhibition
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FIGURE 2 | Decreased tonic inhibition in mouse models of the

neurodevelopmental disorders, fragile X syndrome (FXS) and

Angelman syndrome. (A–C) Analyses in fragile X mental retardation 1
(Fmr1) knock out (KO) mice (FXS model). (A) Voltage clamp traces from
principal neurons of amygdala in wild type (WT) and Fmr1 KO mice,
showing impaired phasic and tonic inhibition in KO mice. (B) Fmr1 KO mice
have higher action potential (AP) firing rates for a given depolarizing current
step and a lower threshold for AP generation (middle panel), which is
reverted to WT levels with THIP (lower panel). (C) In the open field test,

THIP prevents hyper locomotor activity in Fmr1 KO mice. *p < 0.05, WT
control vs. Fmr KO control; #p < 0.05, Fmr1 KO control vs. Fmr KO THIP.
(D,E) Analyses in ubiquitin-protein ligase E3A (Ube3a) KO mice (Angelman
syndrome model). (D) Decreased cerebellar tonic inhibition in Ube3a KO
mice [black bars: 20 μM bicuculline (BIC)]. (E) Ataxic gait rescued by
administration of THIP (right panel) in Ube3a KO mice. (F) THIP (lower
panels) improves clasping reflex (via the tail-suspension test) in Ube3a KO
mice. (A–C) Adapted from Olmos-Serrano et al. (2010, 2011); (D–F) adapted
from Egawa et al. (2012).

Frontiers in Neural Circuits www.frontiersin.org October 2013 | Volume 7 | Article 170 | 7

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


“fncir-07-00170” — 2013/10/22 — 21:59 — page 8 — #8

Egawa and Fukuda Pathophysiology of tonic GABAA conductances

could thus underlie cerebellar ataxia in Angelman syndrome.
Expression of GAT1 and Ube3a is increased during development
(Takayama and Inoue, 2005; Sato and Stryker, 2010). There-
fore, our findings suggest that Ube3a-dependent degradation of
GAT1 plays an important role for neuronal plasticity of inhibitory
systems by regulating tonic inhibition. Disruption of CaMK II-
mediated regulation of membrane trafficking of extrasynaptic
GABAA receptors may also result in decreased tonic inhibition,
because deactivation of CaMK II is known to play a role in the
pathophysiology of this syndrome (Weeber et al., 2003). Ube3a is
widely expressed in the CNS (Jiang et al., 1998), thus decreased
tonic inhibition may also be responsible for other symptoms, such
as autistic behavior, mental retardation, and seizures. Notably,
Angelman syndrome is predominantly caused by the large dele-
tion of the relevant chromosome, 15q11-13, containing genes that
encode the GABAA receptor α5, β3, and γ3 subunits. Therefore,
these individuals show a greater severity in phenotypes compared
with individuals without the deletion (Lossie et al., 2001; Egawa
et al., 2008). The relative expression of β3 and α5 was shown
to be reduced in postmortem brain tissue from patients lack-
ing these genes (Roden et al., 2010). Therefore, tonic inhibition
may be lower in typical Angelman syndrome individuals with the
large deletion of 15q11-13, which could result in the phenotypic
difference in patients with or without the deletion.

Accumulating evidence has indicated that the chromosome
15q11-13 abnormalities are highly correlated with the prevalence
of idiopathic autisms. Genetic multi-linkage analysis has identi-
fied GABAA receptor α5 and β3 subunit genes on 15q11-13 that
contribute to autism susceptibility (McCauley et al., 2004). Fur-
thermore, this region is one of the most common loci where copy
number variants have been observed in idiopathic autisms. The
prevalence of 15q11–13 duplications in idiopathic autisms has
been estimated to be at 3% (Coghlan et al., 2012). Although an
increased copy number of 15q11–q13 has been predicted to ele-
vate the gene expression of GABAA receptor subunits, recent in
vitro studies using human neuronal cell lines have shown contra-
dictory results, found to be due to impaired homologous pairing
(Meguro-Horike et al., 2011). Therefore, expression of GABAA

receptor α5 and β3 subunits is likely to be reduced in individuals
with duplicated 15q11-13. Furthermore, attenuated expression of
α5 and β3 subunits may be a common pathophysiological feature
in idiopathic autisms without the 15q11-13 mutation. In sup-
port of this hypothesis, postmortem brain tissue analyses have
reported that the expression of α5 and β3 subunits are signifi-
cantly decreased (in four out of eight cases) in idiopathic autism
spectrum disorders (Hogart et al., 2007). Further support was
shown in a PET study in which binding of [11C]Ro15-4513 was
significantly lower throughout the brain, particularly in the amyg-
dala, in adult idiopathic autism patients who did not take any
neuro-modulative medications (Momosaki et al., 2010). However,
compensatory regulation that may reduce the expression of the α5
receptor in idiopathic autism subjects cannot be excluded. Nev-
ertheless, findings from mouse models of specific gene-associated
autism spectrum disorders and brain imaging of human subjects,
suggest that reduced tonic inhibition may be one of the com-
mon mechanisms underlying neuronal dysfunctions in autism
spectrum disorders.

NON-SYNAPTICALLY RELEASED GABA INDUCES TONIC
DEPOLARIZATION DURING CORTICOGENESIS
Gamma-aminobutyric acid induces depolarization and hyper-
polarization in the immature and adult brain, respectively. The
GABAA receptor is a Cl− channel (also permeable for HCO3

−),
and thus the developmental switch of GABA-mediated depo-
larization to hyperpolarization is induced by changes in the
transmembranous Cl− gradient, from its efflux to influx, respec-
tively. This change is regulated by cation-Cl− cotransporters
[Na–K–Cl cotransporter 1 (NKCC1), Cl− uptake; and KCC2, Cl−
extrusion]. Furthermore, in immature neurons the release mech-
anism of GABA is non-vesicular and non-synaptic, and therefore
GABA-mediated activity is generally tonic. These tonic depolar-
izing (and excitatory on occasion) GABA actions are necessary
for neurogenesis, differentiation, migration, and synaptogenesis
(Figure 3).

During development, GABAA receptor subunits exhibit a com-
pletely different expression pattern (Laurie et al., 1992; Fritschy
et al., 1994) compared with that in the adult. At the prenatal
stage and during early postnatal days, cortical neurons predomi-
nantly express α2, α3, α4, α5, β2, β3, γ1, and γ2 subunits (Laurie
et al., 1992). Gene transcripts of α2, α3, and α5 subunits have
been detected in the developing CNS (Laurie et al., 1992). At rat
embryonic day 17 and 20, α4, β1, and γ1 subunit transcripts
have been found to be abundant in the inner half of the germi-
nal matrix corresponding to the ventricular zone (VZ), [although
undetectable in the intermediate zone (IZ)], thus implying that
proliferating cells may express these subunits (Ma and Barker,
1995).

GABAA receptor-mediated signaling affects neurogenesis dur-
ing development. A pioneering study by LoTurco et al. (1995)
provided evidence that GABA can affect the proliferation of pro-
genitor cells. They showed that depolarizing GABA actions led to
a decrease in both DNA synthesis and the number of bromod-
eoxyuridine (BrdU)-labeled cells in the rat embryonic neocortex.
However, later studies have revealed that GABA also has vary-
ing effects on neurogenesis in different cell-types and/or brain
regions. Using organotypic slices of mouse embryonic neocor-
tex, Haydar et al. (2000) revealed that differential regulation of
cell production by depolarizing GABA activity occurs in corti-
cal progenitor cells located in different regions [i.e., promotion
and inhibition of cell division in the VZ and subventricular zone
(SVZ), respectively]. These opposing effects may be attributed
to the difference in the subunits of GABAA receptors or in
the regional concentration of ambient GABA (Morishima et al.,
2010).

In the neocortex, different classes of neurons, pyramidal corti-
cal neurons, and GABAergic interneurons, originate from different
sources and have distinct migration routes. Glutamatergic pyra-
midal neurons radially migrate from the dorsal telencephalic
VZ where they are generated via radial glial scaffolding toward
the cortical plate. In contrast, GABAergic interneurons aris-
ing from the medial ganglionic eminence (MGE) tangentially
migrate into the cerebral wall (for review, see Marín and Ruben-
stein, 2001). GABAA receptor signaling is well known to have
distinct effects on radially or tangentially migrating neurons.
Behar et al. (1996) demonstrated that the GABAergic modulation
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FIGURE 3 | Multi-modal actions of tonic modulation of the GABAA

receptor during corticogenesis. In the ventricular zone (VZ) and
subventricular zone (SVZ), ambient GABA affects neurogenesis. Post-mitotic
neurons migrating to the cortical plate are tonically depolarized by
non-synaptic and non-vesicular ambient GABA, released from tangentially
migrating GABA neurons prior to forming synapses, and changing migratory
pace. GABA also acts in an autocrine manner to accelerate tangential

migration. Vesicular release of GABA, which remains depolarizing, may
contribute to synapse formation. Following the establishment of GABAergic
synapses (and prior to hyperpolarization), GABA acts as an excitatory
neurotransmitter due to high intracellular Cl− concentration levels,
predominantly resulting from Na–K–Cl cotransporter 1 (NCC1) followed by
K–Cl cotransporter 2 (KCC2). Green circle: ambient GABA. Adapted from
Fukuda and Wang (2013).

of neuronal migration was strongly concentration-dependent,
in which femtomolar concentrations of GABA stimulated the
migration along a chemical gradient (i.e., chemotaxis) while
micromolar concentrations increased random migratory move-
ment (i.e., chemokinesis). Furthermore, both processes were
shown to be mediated by an increase in intracellular calcium, sug-
gesting that GABA mediates chemotactic as well as chemokinetic
migratory responses in embryonic neocortical neurons. The effect
of GABA on migration is dependent on its location and recep-
tor. Activation of neuroblastic GABAB or ρ-subunit-containing
GABAA receptors promotes GABA migration from the SVZ and
IZ, and the activation of GABAA receptors in cortical plate cells
induces a stop signal (Behar et al., 2000; Heck et al., 2007; Den-
ter et al., 2010). GABA also regulates the tangential migration of
immature GABAergic cortical interneurons. After generation in
the MGE, GABAergic interneurons migrate to the cortex via the
corticostriatal junction (CSJ), avoiding the striatum (Cuzon et al.,
2006). Although ambient GABA levels in the CSJ are similar to
those in the MGE, the response of tonic GABAA receptor to ambi-
ent GABA is likely to be enhanced in the CSJ region, suggesting
that a dynamic expression of GABAA receptor isoforms on MGE-
derived cells promotes the cortical entry of tangentially migrating
MGE-derived cells (Cuzon and Yeh, 2011). When GABAergic

interneurons terminate their migration in the cortex their response
to ambient GABA changes to a stop signal via up-regulation of
KCC2 (Bortone and Polleux, 2009).

Tonic activation of GABAA receptors precedes phasic activa-
tion in early development (for review, see Owens and Kriegstein,
2002), hence its possible requirement for synaptogenesis during
this period (Demarque et al., 2002; Liu et al., 2006). Sponta-
neous depolarizations of GABA would be the first excitatory drive
required for activity-dependent synaptogenesis (Nakanishi et al.,
2007; Wang and Kriegstein, 2008; for review, see Ben-Ari et al.,
2007).

PERTURBATION OF TONIC DEPOLARIZATION MAY CAUSE
BRAIN MAL-DEVELOPMENT
As mentioned previously in this review, tonic depolarizing
responses to ambient GABA is locally controlled by uptake and/or
release mechanisms allowing GABAA receptor-mediated actions
to control a variety of developmental events in a time- and region-
specific fashion. Thus, a defect in GABAA receptor-mediated
multimodal functions during development can cause neuronal
circuit dysfunctions hence neurological disorders. Therefore, use
of GABAA receptor activating drugs to enhance inhibition in
the immature brain may result in unexpected deleterious effects.
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A growing number of studies in immature animal models have
demonstrated degenerative effects of several anesthetics on neu-
ronal structure and brain functions, such as social behaviors,
fear conditioning, and spatial reference memory tasks (Jevtovic-
Todorovic et al., 2003; Loepke et al., 2009; Satomoto et al., 2009).
Several animal studies have demonstrated that sevoflurane (Sato-
moto et al., 2009) and isoflurane (Sall et al., 2009; Stratmann et al.,
2009), which bind to GABAA receptors, exhibit deleterious effects
on neuronal survival and neurogenesis when exposed at early
periods of life.

Neocortical malformations, such as polymicrogyria show the
presence of cortical cells in heterotopic positions; often caused by
a disruption in neuronal migration (Walsh, 1999; Francis et al.,
2006). Therefore, perturbation of the numerous functions of
GABA during development may underlie the etiology of cortical
malformations. Focal freeze lesion in the cerebral cortex of new-
born (P0) rats was shown to produce microgyrus, a focal cortical
malformation with a small sulcus and a 3- or 4-layered microgyric
cortex. This defect resembles human 4-layered polymicrogyria
(Dvorák and Feit, 1977), a clinical condition that results from
abnormal neuronal migration. Wang et al. (2013) have reported
that temporally increased ambient GABA causes tonic activation
of neuronal GABAA receptors (possibly due to depolarization
because NKCC1 is up-regulated and KCC2 is down-regulated),
resulting in the modulation of intracellular Ca2+ oscillations.
These oscillations could differentially affect the migratory status of
GABAergic cells (“go”) and cortical plate cells (“stop”). Therefore,
immature cortical plate neurons and GABAergic neurons migrate
in distinct patterns to form the microgyrus and thus, abnormally
induced tonic functions of GABA could be involved in migration
disorders that ultimately result in cortical malformations.

CONCLUSION
This review has focused on the recent progress in understand-
ing the impact of dysregulated tonic inhibition in CNS diseases.

Accumulating evidence highlights the pathophysiological signif-
icance of dysregulated tonic inhibition in a number of neu-
rodevelopmental disorders, psychiatric disorders, and cognitive
dysfunctions (see Figure 1). In addition to pharmacological
progress, animal model studies are presently opening the door
for practical medicine. However, an overview of these studies also
presents problems for clinical application. For example, the same
phenotype may result from a decrease or increase of tonic inhibi-
tion. Therefore, the net shift from excitation to inhibition may
not always occur with a modulation of tonic inhibition. This
paradox is possibly due to the complexity of network regula-
tion by tonic conductance. For example, simultaneous receptor
activation in either inhibitory or excitatory neurons, or mul-
tiple mechanisms can be responsible for changing membrane
properties, such as shunting inhibition and a shift in intracel-
lular Cl− concentration. Although temporal characteristics of
tonic inhibition are weak, maintaining network functions can
possibly regulate its strength, thus suggesting a narrow thera-
peutic range for such modulators. A detailed assessment of these
mechanisms would therefore be needed to develop a therapeutic
strategy.

This review also discussed tonic depolarization induced by
ambient GABA during early development, where the release of
GABA is possibly non-vesicular and occurring before synaptic
organization (see Figure 3). Thus far, very few studies have
addressed this series of events as a potential risk factor for CNS
diseases. Therefore, research focused on the pathological effects of
multimodal functions of GABA during neurodevelopment may
shed light on understanding the pathology of neurodevelopmen-
tal disorders in which GABA is known to play a role, for example
in schizophrenia and autism spectrum disorders.
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