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Abstract: Sensor fusion is a topic central to aerospace engineering and is particularly applicable to
unmanned aerial systems (UAS). Evidential Reasoning, also known as Dempster-Shafer theory, is used
heavily in sensor fusion for detection classification. High computing requirements typically limit
use on small UAS platforms. Valuation networks, the general name given to evidential reasoning
networks by Shenoy, provides a means to reduce computing requirements through knowledge
structure. However, these networks use conditional probabilities or transition potential matrices
to describe the relationships between nodes, which typically require expert information to define
and update. This paper proposes and tests a novel method to learn these transition potential
matrices based on evidence injected at nodes. Novel refinements to the method are also introduced,
demonstrating improvements in capturing the relationships between the node belief distributions.
Finally, novel rules are introduced and tested for evidence weighting at nodes during simultaneous
evidence injections, correctly balancing the injected evidenced used to learn the transition potential
matrices. Together, these methods enable updating a Dempster-Shafer network with significantly less
user input, thereby making these networks more useful for scenarios in which sufficient information
concerning relationships between nodes is not known a priori.

Keywords: Dempster-Shafer; valuation network; joint conditional matrix; optimization; least squares;
transition potential; reasoning under uncertainty

1. Introduction

Sensor fusion is a topic central to aerospace engineering; this topic is particularly applicable to
unmanned aerial systems (UAS) and autonomous systems that rely on sensors to either provide remote
information to an operator or provide information that forms the basis of automated decision-making.
Evidential Reasoning, also known as Dempster-Shafer theory [1,2], is used heavily in sensor fusion
for classification of detections [3,4]. However, Dempster-Shafer (DS) implementations generally
have high computing requirements [4], leading to limitations in use on small UAS platforms.
Valuation networks [5,6], the general name given to evidential reasoning networks by Shenoy, provides
a means to reduce computing requirements through knowledge structure. However, these networks
typically either use the Transferable Belief Model (TBM) to reduce relationships between nodes in the
network to conditional probabilities used in a Bayesian network [3,6], or they use joint conditional
probability matrices, originally termed transition potential matrices by Shenoy [7]. TBM is based
on non-probabilistic belief function theory [8], in contrast to the probability-based belief function
theory that underpins DS Theory [8]. Transition potential matrices have significant data requirements,
which typically require expert information to define and update.
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This paper proposes and tests a novel method to learn these transition potential matrices based
on evidence injected at nodes. Novel refinements to the method are also introduced, demonstrating
improvements in capturing the relationships between the node belief distributions. Finally, novel rules
are introduced and tested for evidence weighting at nodes during simultaneous evidence injections,
correctly balancing the injected evidence used to learn the transition potential matrices. Together,
these methods enable updating a Dempster-Shafer network with significantly less user input,
thereby making these networks more useful for scenarios in which sufficient information concerning
relationships between nodes is unknown a priori.

This paper is structured as follows:

• Section 2 provides a brief overview of Dempster-Shafer theory
• Section 2.3 provides a brief overview of evidence propagation through a network
• Section 3.1 discusses the requirements of this network to combine evidence at each node
• Section 3.2 develops novel rules to update the transition potential matrices based on evidence

inputs to nodes
• Section 4 develops the novel use of episodic learning for Dempster-Shafer networks, improving the

transition update results
• Section 5 develops novel rules for evidential weighting to combine evidence in the network
• Section 6 shows tests and results for the novel update rules
• Section 7 discusses the conclusions, limitations, and future work for the novel transition potential

matrix update methods

2. Background: Dempster-Shafer Theory

Dempster-Shafer (DS) theory was originally devised by Arthur Dempster [1] and Glenn Shafer [2].
The following papers provide a mathematical background to the theory [4,9]. “Smart Projectile State
Estimation Using Evidence Theory” provides a practical understanding of evidence theory using
sensor fusion and state estimation as the backdrop [10]. Other practical explanations of DS theory
are available [11]. For the purpose of this work, focusing on extensions to DS theory as applied to
networks, this background includes a simple, practical example to set the stage for understanding
what the DS network offers. This example will be related to Bayesian reasoning for readers familiar
with that framework. Readers who are already familiar with DS theory and its complications can jump
to Section 2.3.

2.1. Dempster-Shafer Information Fusion Example

Using the defined nomenclature (see Nomenclature), this section focuses on a simple example
which will make the DS theory and application clearer. Consider a situation in which an object is one
of the following options as shown in Figure 1.

• Red ball
• Green ball
• Red cube

Together, these options comprise the Frame of Discernment, Θ, as the object under question
can only be one of these. The powerset of Θ is then shown in the “Powerset” column of Table 1.
Assume two sensors provide evidence concerning the object. Evidence one is provided by a black and
white camera that can only distinguish shape but with error. Evidence two is provided by a sensor that
only distinguishes color with error. Suppose the object in question is a red ball. The evidence provided
by sensor one may look similar to the belief masses in the “Evidence 1” of Table 1. The “Evidence 1”
column is then a Basic Probability Assignment (BPA) assigning the belief masses to each element in
the powerset. All elements with non-zero mass are Focal Points. This evidence can be interpreted as
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the sensor is 10% sure the object is a cube, 80% sure the object is a ball, and 10% unsure of what the
object is.

Figure 1. Visual representation of the simple Dempster-Shafer example. Θ represents the three
options that could be observed by the sensors. The powerset column represents all combinations,
which Dempster-Shafer analysis considers. Recall that sets with multiple options signifies the belief
that the observed object could be any one of the objects in the set. The two sensors that provide
observations—evidence—can detect all objects, but can only detect certain properties of each object.
Those detections are shown, along with the belief masses assigned to each element of the powerset—the
Basic Probability Assignment (BPA). The combined mass column shows the powerset again, along with
the results of the analysis which correspond to the greater details in Table 1. The highlighted element
of the powerset (the red ball) is the θ which is believed to correspond to the true object, based on the
Dempster-Shafer analysis.

The “Evidence 2” column represents a potential set of evidence from a sensor that only
distinguishes color. In this case, sensor two is 20% sure the object is green, 60% sure the object
is red, and 20% unsure of the color. This sensor is less precise at distinguishing colors than sensor one
is at distinguishing shapes. Dempster’s Rule [1] is used to combine the evidence, and the result is
shown in the “Combined” column of Table 1.

Table 1. Dempster-Shafer Evidence Example. The “Powerset” column represents the full set of
options to which a BPA can be assigned. The “Evidence 1” column shows the first evidence set
from the sensor that distinguishes shape. The “‘Evidence 2” column shows a second evidence from
a sensor that distinguishes color. The “Combined” column shows the rounded, combined masses
based on Dempster’s Rule, and the “Bel” and “Pl” columns show the Belief and Plausibility functions,
respectively, for each of the elements of the powerset of the combined data.

Powerset Evidence 1 Evidence 2 Combined Bel Pl

Red ball 0.0 0.0 0.490 0.490 0.734
Green ball 0.0 0.2 0.184 0.184 0.367
Red cube 0.1 0.0 0.082 0.082 0.163

(Red ball, Green ball) 0.8 0.0 0.163 0.837 0.857
(Green ball, Red cube) 0.0 0.0 0.000 0.266 0.286
(Red ball, Red cube) 0.0 0.6 0.061 0.633 0.653

(Red ball, Green ball, Red cube) 0.1 0.2 0.020 1.0 1.0

Notice that the unknown element—the complete set—is significantly reduced in the combined
dataset from each of the two evidence sets. Since the evidence sets were not highly conflicting,
unknowns and ambiguities (sets that include more than one θ but not the complete set) were reduced.
Also, note that the correct classification, the red ball, has the highest combined mass of any of the
elements of the powerset. Looking at the “Bel” and “Pl” columns of Table 1—the belief and plausibility
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functions, respectively—one can see that the belief functions are the sums of all masses that could
apply to that element, and the plausibility functions are one minus the sum of all masses that could
not apply to that element. Thus, the belief function for a red ball equals the combined mass for a red
ball while the belief function for a red ball and a green ball is equal to the sum of the belief masses for a
red ball, a green ball, and a (red ball, green ball). Likewise, the plausibility function for a red ball is one
minus the sum of the belief masses for a green ball, a red cube, and a (green ball, red cube). Looking at
the difference between the belief function and plausibility function columns leads to a few conclusions:

• This example concludes that there is a precise understanding of the belief associated with the
object being either a red ball or a red cube because the belief and plausibility function values—the
“Bel” and “Pl” values for the (red ball, red cube) row in Table 1, which represent the lower and
upper bounds on the belief—are nearly the same value.

• There is a similar precise understanding of the belief associated with the object being either a red
ball or a green ball, but the belief in that case is significantly higher than the belief that the object
is either a red ball or a red cube. This result is expected given the sensor setup for the example.

• The largest range of belief values is associated with the correct object classification—the red ball.
This classification is also the strongest belief and highest plausibility of any of the θ elements.

Finally, we take a look at this same problem from a Bayesian perspective [12]. Before doing this,
we must note one nuance concerning the DS approach. The DS approach had an original unstated
hypothesis concerning the object: that the type of object was unknown (all belief mass is assigned to the
complete set). When Dempster’s rule is used to combine a BPA of all mass assigned to the complete set
with another BPA, the result is the same as the second BPA, thus allowing that step to be removed from
the simple example. For a comparable Bayesian example, we start with all mass equally divided among
the Θ elements, using similar terminology as the DS example for ease of comparison. The first point to
note is that the closest representation of unknown in Bayesian is equal probability distribution across
all options. However, this distribution is indistinguishable between equal probabilities of all options
being correct versus no knowledge of which option is correct. The Bayesian observations are then cube
versus ball for the first evidence and red versus green for the second evidence. The ambiguities in the
DS evidence translate into likelihoods (correct and incorrect) for the Bayesian test, and we assume the
observation is correct—a red ball. The result of these computations is shown in Table 2. From this
analysis, we can make a few observations:

Table 2. Bayesian Probability Example. This example mirrors the Dempster-Shafer (DS) example in
Table 1 as closely as possible for comparison. Because the evidences are direct observations of the
priors, the likelihood is 1.0.

Θ Prior Likelihood 1 Posterior Likelihood 2 Posterior

Red ball 0.333 0.459 0.623
Green ball 0.333 0.459 0.267
Red cube 0.333 0.081 0.110

Incorrect shape 0.15
Correct shape 0.85
Incorrect color 0.3
Correct color 0.7

• The correct answer—a red ball—has the highest posterior probability (the final column in Table 2),
meaning that the object in question is most likely a red ball.

• The evidence was highly supportive of the correct answer to the extent in the DS example that the
belief and plausibility functions of the Θ elements do not overlap. The Bayesian result does not
communicate this information at all, meaning that in the Bayesian analysis, the decision-maker
cannot be as confident in the decision that the object is a red ball.
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In summary, this simple example resulted in the same outcome with Bayesian and DS analyses.
However, the additional information contained in the DS analysis presents the reliability of the results
to the decision-maker. For a decision based on the highest probability, either analysis works. However,
suppose for example that the decision-maker wants to ensure that the object in question is not a red
cube or a green ball. In the Bayesian analysis, there is no way to know the upper limit on the probability
for the object either being a red cube or a green ball. From Table 1, in the DS analysis, the upper limit of
the probability that the object is a green ball is 0.367. The upper limit on the probability that the object
is a red cube is 0.163. The lower limit that the object is a red ball is 0.490. Thus, for a decision-maker
whose responsibility is ensuring that the object is not a red cube or a green ball, the DS analysis
provides the information necessary to make that decision. The Bayesian analysis does not provide the
required information. This is one reason why DS analysis is used heavily in risk analysis and sensor
fusion, typically for classification of sensed objects.

2.2. Dempster-Shafer Combination Rules

With this basis in understanding of the application of DS analysis, the next step is to look at the
combination rules. The original DS combination rule is linear, which preserves the axioms required
for probability combinations [1], thus allowing this method to reduce to Bayesian reasoning under
certain conditions. However, this rule suffers from a couple of issues, the principle one being the
assumption that all evidence contributors have equal weight, reliability, and full knowledge of the
frame of discernment. In our simple example in Section 2.1, each sensor still had full knowledge of all
elements of the powerset (each sensor can detect every possible combination), but returned ambiguities
when it could not distinguish between specific θs. This application adheres to the assumptions of
Dempster’s Rule. In contrast, suppose that sensor one could not detect red cubes. In that case,
sensor one would always assign zero mass to any subset of the powerset that contains red cubes.
This situation violates the assumptions of Dempster’s Rule and leads to non-intuitive results due to
the classic vote-no-by-one issue in which a single no-vote by an evidence contributor results in the
option being assigned a belief of zero when the evidence is combined. For highly conflicting data,
this results in non-intuitive results such as in Table 3 [4].

Table 3. Dempster-Shafer Conflicting Example. The combination of highly conflicting data provides
non-intuitive results. In this case, although both A and C each have a large belief mass in an evidence
set, 0 mass for each of A and C in the other evidence set results in a vote-no-by-one scenario in which
one sensor “votes no” for A and the other sensor “votes no” for C. The result is that all belief mass is
given to B when combined. Note that for this simple example, only single options are focal points in
the frame of discernment.

Data Set A B C (A,B) (A,C) (B,C) (A,B,C)

Evidence 1 0.9 0.1 0.0 0.0 0.0 0.0 0.0
Evidence 2 0.0 0.1 0.9 0.0 0.0 0.0 0.0

Combination 0.0 1.0 0.0 0.0 0.0 0.0 0.0

Because the assumptions of Dempster’s Rule are often not applicable to real-life scenarios (in most
situations, all evidence observations do not have full knowledge of all elements of the powerset
and are not equally reliable), multiple authors since the 1980s have devised ways around these
assumptions including different combination rules as well as different input functions that add
unknown mass to account for the lack of knowledge of elements of the powerset. Since this paper is
not an overview of these combination rules, the focus will be placed on three combination rules that
have useful properties for the analysis being developed. Zhang’s combination method [13], Murphy’s
combination method [14], and the Evidential Reasoning rule [15] are three such methods that enable a
custom weighting to be associated with each new evidence. This property will be useful later in the
development of the network in Section 5.
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2.3. Evidence Propagation

Evidence propagation through a hypertree [7] was first introduced in the 1980s. Similar to
Bayesian propagation, the principle difference is that evidence propagation is less concerned with the
transition values being conditional probabilities. This is best shown through Figure 2, which shows
a parent node with its transition to a child node. Note that it is easy to convert transition values
into conditional probabilities [6,7]. Since DS reasoning condenses down to Bayesian reasoning under
certain assumptions [16], evidence propagation is very similar to Bayesian propagation. In fact,
the example given in the original work by Shafer and Shenoy is a Bayesian example that overwrites
nodes with new evidence and treats conditional probabilities at each transition as a known fact used
for evidence propagation [7]. In order to maintain consistency in the network with known conditional
probabilities, it is necessary to overwrite node information with marginal probabilities inferred through
the conditional transitions based on the most recent evidence update. The effect of this can also be
seen through Figure 2 since propagating even an identical input to the previous child marginals
does not result in the parent marginals being recovered. This mechanism assumes that the most
recent evidence is the best choice and, therefore, limits the capabilities for the network to incorporate
uncertain evidence at each node.

Figure 2. Propagating the Dempster-Shafer evidence masses through the transition between nodes.
For simplicity, only two options are available at each node. The direction of propagation is represented
by the arrows between evidence masses. The arrows between the nodes represent the definition of the
network. As can be seen, evidence propagation from node A to node B results in normalized masses.
Conversely, evidence propagation from node B to node A results in non-normalized masses. Moreover,
the original masses are not recovered if masses are propagated from node A to node B to node A
through the same transition.

This original work was extended through the 1990s and early 2000s under various names for the
field of study. Valuation networks is the general name given to these networks by Shenoy [5], which are
not required to be directed (i.e., each connection between nodes has a direction associated with it) or
acyclic (i.e., given any starting node, there are no paths in the network following the directions between
nodes that return to the starting node), and they encode the relationships between characterizations
of the uncertainty for local sets of knowledge. The determination of whether sets of knowledge
can be broken into separate nodes is based on conditional independence [17], for example, if sets
of knowledge are conditionally independent from each other, then they can be broken into separate
nodes with the relationship encoded on the link between the nodes. Uncertainty propagation was
extended by Smets [6,18] based on the Transferable Belief Model (TBM). While the Transferable Belief
Model is a powerful tool for capturing the relationships between knowledge sets, it is based on the
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non-probabilistic belief function theory [8], in contrast to the probability-based belief function theory
that underpins DS Theory [8]. Using the formal theory of TBM, Smets showed the relationships
between the joint probabilities used in Shenoy’s original work [7] and conditional probabilities
used in Bayesian networks [6]. Specifically, Smets showed that conditional probabilities for each
of the θs in node A that are conditionally dependent on node B could fully capture the effects of
the probability distribution of node B on the θs in node A [6]. This relationship allowed the joint
probabilities from Shafer and Shenoy [7] to be reduced to the minimum representation of conditional
probabilities, which results in reduced computer memory usage and could leverage conditional
probability calculations already developed for Bayesian networks. This work applies to valuation
networks in general—no directed acyclic assumptions required—and has since been extended [19].

More recently, primarily in the 2000s, work has returned to the joint probabilities originally
used by Shafer and Shenoy [7] for encoding the relationships between nodes in a valuation network.
Evidential networks—valuation networks which use evidential reasoning to combine observations
at nodes and joint mass tables (the general case of joint probabilities as seen in Figure 2)—have
been extended and applied to various scenarios including threat assessment [3,8,20]. Further,
discounting has been introduced to reduce the weight of inferred evidence versus directly observed
evidence [3]. These extensions and applications are consistent with the original work [7] while
offering improvements in computation speed, reliability weighting of evidence, and analysis of what
evidence can be propagated between nodes. However, these extensions are still based on the same
assumptions about joint masses—the joint masses are set and updated occasionally by someone who
has knowledge of the relationships between nodes. This concept of unchanging joint masses or
joint probabilities is an assumption that allows the joint probabilities to be represented as conditional
probabilities. This assumption clearly underlies the use of vector projections and spans to show that
the conditional probabilities are a minimal representation (i.e., minimum information required) of
the joint probabilities [6]. Consider the case in Figure 3 in which variable d is not influenced by the
variables in node A, thus allowing the conditional probability representation to be smaller than the
joint probability representation.

Figure 3. An example case in which the conditional probabilities are a minimum, and a smaller,
representation of the joint probabilities. The variable d in node B is not influenced at all by the variables
a and b in node A and is, thus, independent from the variables in node A. The conditional probabilities
would reflect that relationship by eliminating the middle row of zeros, resulting in fewer values being
stored to represent the relationship.

While this assumption is useful if the joint probabilities are not changing often, the application of
the evidential network in this paper is to unmanned systems and sensor systems, and an underlying
assumption of this analysis is that the relationships between nodes are constantly changing as
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operational data is received. Thus, the move from joint probabilities to conditional probabilities
actually causes an issue.

This model of joint probabilities also demonstrates the significant data requirements mentioned
in Section 1. Consider the joint probabilities in a two node network linking a node with two θs to a
second node with two θs, which is the minimum size for a Dempster-Shafer network. In this case,
there are three values in each node’s powerset, resulting in 3 ∗ 3 = 9 values that the expert has to
define and update in the joint probabilities. For higher numbers of θs, this data requirement grows
quickly. A five θ node linked to a five θ node results in a joint probabilities matrix with 31 ∗ 31 = 961
values to be updated.

Published papers that are based on evidential reasoning networks often assume a directed acyclic
network, such as the work by Pollard and Pannetier [3], which can model the knowledge required
for the applications described in this paper. Further, directed acyclic networks with multi-path loops
can always be reconstructed to remove the loops. Since directed acyclic networks are sufficient for the
decision analysis in this paper, directed acyclic networks are assumed for the rest of the developments
in this paper.

Other methods of handling valuation network representations have been developed [21,22].
While these representations have less in common with the evidential reasoning networks, limitations
are introduced to prevent information from being incorrectly inferred [21]. For example, if the network
is comprised of two nodes such that the parent node has two options: “writer” and “not writer”,
and the child node has two options: “journalist” and “not journalist”, evidence suggesting the entity
under question is not a journalist cannot be used to infer evidence against the entity being a writer.

2.4. Parameter Update Methods

Many well-researched methods currently exist for automatically updating parameters.
In particular, meta-heuristic algorithms such as Simulated Annealing, Generic Algorithms, and the
Cross-Entropy Method have been used for parameter optimization [23]. Further, with untethered
communications and cloud-based services often available, cyber-physical systems can be used to
significantly increase computing power and data storage available for sensor parameter optimization,
enabling optimization methods such as meta-heuristic algorithms to be performed on big data [24].
In contrast, UAS often operate with limited communications beyond the onboard system [25,26].
Further, especially for small UAS, onboard computing power is often limited and primarily used
for mission control systems [25]. Thus, solution methods analyzed for this paper, as discussed
in Section 3.2, were focused on optimization methods that can potentially run on an onboard
system with limited computation power and limited data storage with predictable execution times.
Several optimization methods were analyzed, as discussed in Appendix C, and were suggested for
future research due to less predictable execution times or less reliable implementations.

3. Transition Potentials Updates Based on Evidence

Current rules for updating the network have difficulties with highly limited a priori data because
the transition potentials are only updated based on user inputs, thus requiring sufficient knowledge
of the relationships between nodes before the network is used. New rules have been developed to
facilitate intuitive evidence propagation when transitions between nodes start with limited or unknown
information. Unknown transition information is represented as transitions mapping all marginal
masses to the complete set as shown in Figure 4. This state is referred to as “vacuous” [6]—providing
no information on the joint probabilities between the nodes.
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Figure 4. An example network that starts with no data. This analysis is beyond the scope of Bayesian
logic since Bayesian requires priors. Further, overwriting information is risky in this context since a full
overwrite of information suggests sufficient data behind each update. In other words, the first overwrite
would be similar to starting with Bayesian logic after the first update, but insufficient information for
that event to occur has already been assumed.

3.1. Evidence Combination at Nodes

One of the principle strengths of DS theory is combining evidence in a single frame of discernment.
Developing a hypertree or network enables structuring the data such that each local frame of
discernment is computationally feasible. For example, as in Figure 2, each node has 2 options,
which means each powerset comprises 3 options (see Nomenclature for powerset definition). Without
the structure, there are 4 options available, which means a powerset of 10. As the number of nodes
and hypotheses (θs) per node grow, an evidential reasoning network quickly becomes the only
computationally feasible option for limited computing power. In addition, information about causality
between hypotheses is obfuscated. Within a network, however, new evidence provided at each node
often still includes uncertainty and should be combined with previous evidence at that node [3,27].
This is especially true for evidence inferred through a transition from another node, which can be
considered to be less reliable than directly observed evidence.

The first rule defined for this network is that all evidence updates at each node uses an evidential
combination rule, of which there are multiple available [1,13–15,28,29] as shown in Figure 5. This rule
aligns with previous work [3,27]. The inherent drawback to using combination methods to update
each node is immediately realized in that the network values are no longer consistent with each other
once evidence has been propagated through a transition and combined at a node—that is, the node’s
marginal probabilities no longer equal the previous node’s marginal probabilities multiplied by the
transitional values, which can be clearly seen in Figure 5. This result suggests the possibility of learning
the transitional values through updating the transitions to be consistent with the new node values.
This update is discussed in Section 3.2.
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Figure 5. An example network update that uses Dempster-Shafer updates to combine evidence at each
node. The combined value from node A (A)1 is propagated as evidence through the transition to node
B (B)1, where it is combined with directly injected evidence (B)2, resulting in (B)3.

3.2. Transition Updates

As stated in Section 3.1, subsequent to combining evidence at a node, the network is no longer
locally consistent across transitions to the neighboring nodes. This state leads to the hypothesis that the
transition can be updated to return to a consistent state. The transition is governed by the following
three sets of Equations (1)–(3), assuming the transition matrix is T, the parent marginal column vector
is Mp with p values, and the child marginal column vector is Mc with c values.

Mc = T ∗Mp (1)

c

∑
i=1

(
colj(T)

)
i = 1 ∀ j = 1, . . . , p (2)

Ti,j ≥ 0 ∀ i = 1, . . . , c and j = 1, . . . , p. (3)

Due to Equations (3) and (2), all values are automatically limited to the range [0, 1], which is
necessary for transition potentials, per definition [7]. These equations do not fully constrain
the transition potentials, thus requiring an optimization routine to choose a feasible solution,
which minimizes a cost function. The equality constraints (Equations (1) and (2)) can be rewritten into
a vector equation of the form Ax = b, where A is a matrix and b and x are vectors. This equation can
be optimized to solve for x. There are two important points in this optimization design:

• In most cases, there will be one redundant equation. The redundant equation is not known a priori
because it is dependent on the parent and child marginals. Therefore, all equations are included
in the optimization, which does not degrade the solution.

• The inequality constraint, Equation (3), is not included in the vector equations. Depending on the
optimization routine and cost function chosen, this constraint may or may not be included.

The primary goal is to find a feasible solution which updates the network in a stable manner and
is quickly computable. With that aim in mind, the cost function was chosen to be Equation (4).
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min

(
i,j=m,n

∑
i,j=0,0

(
T∗i,j − Ti,j

)2
)

. (4)

This cost function minimizes the change from the previous transition matrix to satisfy the stable
update goal. While other cost functions can be chosen, this cost function enables least squares
optimization, which does not require iteration and satisfies the goal of fast computations. Note that
other solution methods may be able to meet the stated goals, as discussed in Appendix C. It is clear,
however, that the cost function is incompatible with the design vector. This issue is because the
design vector, x, is based on Equations (1) through (3), but Equation (4) is the difference between
the previous transition matrix and the new transition matrix. Thus, the design vector is modified to
account for this difference, with the resulting offsets calculated from the previous transition matrix
and added into the b vector. Importantly, a least squares solution without constraint modifications
does not guarantee all design variables are greater than zero, which is necessary to satisfy Equation (3).
In practice, the cost function pushes the design variables towards positive semi-definite values and
usually provides feasible solutions since the previous values are positive semi-definite. This shortcut
was deemed necessary to improve the solution speed. However, when the least squares solution
returns an infeasible solution, another method has to be chosen.

The least squares solution always meets the constraints given by Equations (1) and (2) since
those are defined for the solution method, and it was previously shown that at least one solution
always exists that meets all constraints. The task is then to adjust the solution minimally to meet the
constraints defined in Equation (3). This adjustment can be done through a series of mathematical
operations defined below that (i) maintain adherence to the constraints in Equations (1) and (2), (ii) find
a result, which meets the constraints in Equation (3), and (iii) attempts to minimize deviations from
the solution found via the least squares method. The goal is to modify all values that are negative
to be non-negative. Due to the constraints given in Equation (2), this automatically guarantees that
any values greater than the value of one will also be reduced to less than or equal to the value of one.
The procedure is as follows:

(1) Order the columns to adjust values. Do this by summing all values that are less than zero or
greater than one in the column and sort from greatest to least. This order is useful because the
maximum value this sum can attain is 1.0. This is because any value above 1.0 must have an
equivalent set of values below zero to compensate. However, values below zero can be balanced
by values in the range (0.0, 1.0]. Since this is true, when the sum is equal to 1.0, the scenario is
the most highly constrained in which all negative values must be used to balance the value that
is greater than 1.0. Note that any columns that already meet the constraint will sum to 0.0.

(2) Step through each column from step (1) above in order.
(3) For each column, order all values in the column that are less than 0.0 from maximum absolute

value to minimum absolute value. While this order is not required, it provides a consistent
solution method which makes debugging easier.

(4) For each value in order from step (3) above, redistribute excess mass per Algorithm 1.
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Algorithm 1: Mass redistribution algorithm. This algorithm redistributes mass, which does not
adhere to the final constraint in Equation (3) in a way that seeks to minimize the difference
from the minimum solution found through the least squares approach.

1 excess_mass = 0.0 - negative_mass_value
2 negative_mass_value = 0.0
3 if some_value > 1.0 in column then
4 some_value -= excess_mass
5 else
6 previous_positives =
7 for all some_value in column do
8 previous_positives[some_value] = some_value >= 0.0
9 if some_value is not negative_mass_value then

10 some_value -= excess_mass / (len(column) - 1)
11 end
12 end
13 for any some_value in column do
14 if (some_value is < 0.0) and (previous_positives[some_value] is True) then
15 # Redistribute over remaining values per the above for loop
16 end
17 end
18 # Repeat above until the mass is redistributed as close as possible to excess_mass /

(len(column) - 1) since that is
19 # the minimum squared changed from the previous value.
20 end
21 # Now that the column has been redistributed, redistribute the mass across the other columns

to balance out Equation (1). The goal is to equally distribute the mass across all columns,
with compensation based on the # parent marginals. This compensation ensures that changes
do not drastically affect other columns, causing new issues.

22 for all some_column in columns do
23 if some_column != adjusted_column then
24 column_compensated_mass = adjusted_mass * parent_marginal[adjusted_column] /

parent_marginal[new_column]; some_column[adjusted_value] +=
column_compensated_mass

25 # If some_column has not already been fixed, allow the value to go negative. Once it
has been fixed, the excess mass must

26 # be distributed across columns to ensure this value does not go negative while
minimizing changes from applying the average

27 # across all columns, which minimizes squared changes from the least squares solution.
28 end
29 end

As shown in Figure 6, this method can handle cases in which the child node of the transition being
updated only has a single parent transition—case (1) in Figure 6. For multiple parent transitions—case
(2) in Figure 6—this update method is too simplistic since each parent transition would return the
child marginals, with the combination of those marginals resulting in a different solution.
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Figure 6. Case (1) shows a single parent node with transitions to two child nodes. Each unknown
transition can be calculated using the update method described previously via either least squares
minimization or linear programming minimization. Moreover, case (1) reduces to the simplest case of
one parent and one child node if node C and the associated transitions are removed. In contrast, case (2)
cannot solely be solved via the described least squares or linear programming methods. The child
marginal values are a result of a Dempster-Shafer combination algorithm, which must be part of the
method for updating the unknown transition potentials. This case is handled in Section 3.3.

This effect means that the transition potentials that link multiple parent transitions to the same
child node must be solved together. The naïve approach is to simultaneously solve for all transition
potentials using Equations (2) and (3). Equation (1) would be modified to Equation (5).

Mc = comb
(
T1 ∗Mp1, T2 ∗Mp2, ..., Tn ∗Mpw

)
. (5)

In Equation (5), comb is the DS combination algorithm chosen from the list of options discussed
previously, and w is the number of parent transitions that must be simultaneously solved. The primary
issue with this method is that DS combination methods can have highly non-linear effects depending
on the evidence sets fed into the combination method. Further, because all transition potentials are
being solved simultaneously, the optimization routine becomes significantly more complex to run,
causing a large, non-deterministic increase in optimization time. To combat these issues with this
solution method, two simplifying assumptions are made:

• The simultaneous optimizer is used only to solve for the DS combination of marginals that results
in the child marginals. This problem is significantly smaller than optimizing the full transition
matrices with the DS combination algorithm included. Then, the solution methods for individual
branches (the previously-described least squares and linear programming minimization methods)
is used to find the correct transition potentials for each parent transition based on the specific
marginals for that branch.

• With the assumptions that the DS network is initialized with completely unknown information
and all transitions are learned as information is added to the network, then there is no a priori
information concerning the transition potentials. Thus, any solutions that meet the previously
defined constraints of transition potentials are reasonable. Given this, the following simplifying
assumption is made when updating the transition potential matrix: all marginals combined via a
DS algorithm to produce the desired child marginal are the same. Subsequently, this assumption
can be relaxed for certain combination algorithms.

Given these two assumptions, an optimizer could be used on the reduced problem to find the
marginals which combine to create the desired child marginal. An appropriate optimizer would be a
trust-region interior points method or something similar. However, this optimization still suffers from
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non-deterministic run times and difficulty sectioning the optimization routine for real-time operating
systems unless a specific optimization routine were written for this. Instead, a more reliable and faster
method was developed for certain combination algorithms as detailed in Section 3.3.

3.3. Multi-Parent Transition Updates

Several DS combination algorithms reduce to the same algorithm when combining identical
evidence sets. In particular, the original DS rule [1], Murphy’s rule [14], Zhang’s rule [13],
and Evidential Combination Reasoning (ECR) [15] are the same for identical evidence sets and equal
weights. This result is because (i) Murphy’s rule and Zhang’s rule reform the evidence masses per their
rules, then combine the reformed evidence masses via Dempster’s rule (n− 1) times, where n is the
number of evidence sets; and (ii) ECR was specifically designed to reduce to Dempster’s Rule when
using equal weights [15]. Because Dempster’s rule does not result in a normalized combined evidence
set regardless of whether the input evidence sets are all normalized, Yager’s rule [29], which is similar
to Dempster’s rule but assigns the unallocated mass to the universal set, does not fit the previous
pattern, and the result developed in this section does not apply to Yager’s rule [29]. While this result
may seem fairly constrained since it only applies to four rules, it serves well for most decision networks
since those four rules can cover the various cases to which decision networks are typically applied.
The averages in Murphy’s rule [14] apply when low beliefs of an event occurring are important.
Conversely, Zhang’s rule [13] applies when outliers need to be eliminated. The original DS rule [1] and
ECR [15] apply when only the combined evidence is known at each update; the history of evidential
inputs is not retained. Further, by combining Zhang’s rule [13] with sufficient evidence history,
the winning decision will be emphasized, which is one of the primary propositions of the Rayleigh
methods [28]. Finally, the chief property of Yager’s rule [29]—avoiding issues with Dempster’s
rule [4]—is also a property of Murphy’s rule [14], Zhang’s rule [13], and ECR [15].

To develop the algorithm, first note that in Dempster’s rule, input evidence masses can only apply
to output masses that are a subset of the input mass. For example, (a, b, c) applies to all elements of the
powerset, but (a, b) can only apply to a, b, and (a, b). Thus, for identical input evidence sets, the only
contributor to the universal set (in the example—(a, b, c)) is the universal set, to the n power, where n
is the number of times the identical evidence sets are combined. With no other dependencies, the input
mass for the universal set is immediately solvable from Equation (6).

(universal set)out = (universal set)n
in . (6)

Continuing on with this trend, an example for two identical evidence set inputs and 3 options per
input is shown in Table 4.

When converted to equation form, the equations for each of the combined evidence masses is
a polynomial of order n, where n is equal to the number of identical evidence sets entered into the
combination algorithm. Further, each combined evidence mass is only dependent on inputs of the
same evidence mass and on evidence mass inputs closer to the universal set. For example, in Table 4,
the resulting mass aout is only dependent on ain, (a, b)in, (a, c)in, and (a, b, c)in. This set of polynomial
equations can be solved individually if done in the correct order, which results in an easy algorithm to
run as well as one that can be paused mid-update for real-time operating systems.



Sensors 2020, 20, 3727 15 of 37

Table 4. Dempster-Shafer combination details for two identical input evidence sets with three options each. E1 and E2 are evidence sets one and two, respectively.
Each matrix cell mass is assigned to the specified Destination row mass unless otherwise stated in the cell.

E1

A B C (A, B) (A, C) (B, C) (A, B, C)

A A2 0 0 (A, B) A→ A (A, C) A→ A 0 (A, B, C) A→ A

B 0 B2 0 (A, B) B→ B 0 (B, C) B→ B (A, B, C) B→ B

E2 C 0 0 C2 0 (A, C)C → C (B, C)C → C (A, B, C)C → C

(A, B) (A, B) A (A, B) B 0 (A, B)2 (A, B) (A, C)→ A (A, B) (B, C)→ B (A, B, C) (A, B)→ (A, B)

(A, C) (A, C) A 0 (A, C)C (A, C) (A, B)→ A (A, C)2 (A, C) (B, C)→ C (A, B, C) (A, C)→ (A, C)

(B, C) 0 (B, C) B (B, C)C (B, C) (A, B)→ B (B, C) (A, C)→ C (B, C)2 (A, B, C) (B, C)→ (B, C)

(A, B, C) (A, B, C) A (A, B, C) B (A, B, C)C (A, B, C) (A, B) (A, B, C) (A, C) (A, B, C) (B, C) (A, B, C)2

Destination → A → B → C → (A, B) → (A, C) → (B, C) → (A, B, C)



Sensors 2020, 20, 3727 16 of 37

Expanding this example further, the general case is shown in Equations (7) through (8), where o
means out, i means in, n is the number of input evidence sets, universal set − p is the subsets of
number of elements of the universal set minus p elements, and g(... ) are the multipliers for each
polynomial term and follow the pattern defined in Algorithm 2.

(universal set)o = (universal set)n
i , (7)

∀mo ∈ (universal set− p)o mo =

mp
i + gp−1

(
∑ ∀qi ∈ (universal set− r) , r = [0, p− 1] & qi ∩mi = mi

)1
i mp−1

i

+ · · ·+ g1
(
∑ ∀qi ∈ (universal set− r) , r = [0, p− 1] & qi ∩mi = mi

)p−1
i m1

i

+
(
∑ qi ∈ (universal set− r) , r = [0, p− 1] & qi1 ∩ qi2 ∩ · · · ∩ qin = mi

)
.

(8)

Algorithm 2: Multiplier calculation algorithm. The polynomial multipliers are based on the
equations detailed above. This algorithm provides a simple method for calculating these
multipliers in code.

1 level = 2
2 multipliers = [2]
3 for level in range(2, p) do
4 multipliers_old = multipliers
5 multipliers[0] = multipliers_old[0] + 1
6 for index in range(1, len(multipliers)) do
7 multipliers[index] = multipliers_old[index] + multipliers_old[index - 1]
8 end
9 multipliers.append(multipliers_old[len(multipliers_old)] + 1)

10 end

Recalling that all focal points mi must be positive semi-definite, the equation above presents a
bound on the capabilities of this solution. Specifically, the zero-eth power term in Equation (8) must be
less than or equal to the child marginal, mo. If this is not the case, then the equation returns a negative
solution. Assuming that the child marginal is a combination of identical parent marginals—as in the
case of Murphy’s Rule or Zhang’s Rule—of at least the number of parents, then a valid solution will
always be found via this method. In practice, this limitation is not an issue. This limitation simply
means that the child node must have enough evidences combined to be at least the number of parent
nodes. In effect, the solution method cannot guarantee a valid solution until the node is sufficiently
initialized. In many cases before the initialization is complete, a valid solution is available even though
it is not guaranteed. Within the initialization, the case in which all parents but one have the total mass
in the complete set is trivial, since the remaining parent can be set equal to the child. Other situations
only arise when using Dempster’s Rule or ECR. Currently, a solution is not available to calculate the
parent marginals without using a high dimensionality optimization, which is a slow process. Instead,
the focus is placed on restricting the inputs to ensure that the child marginals have an available solution
for the parents. This restriction is accomplished by analyzing the polynomial solution discussed in
Equations (7) through (8). The restrictions in Equations (9) and (10) allow Dempster’s Rule and
ECR to retain the ability for the reverse calculation for multiple parents, assuming that the previous
assumption of the existence at least as many inputs as parents holds true. Validation of this restriction
is shown in Appendix A.

∀main except universal set, min ≤ mbin
s.t.mbin

⊂ main , (9)

m(universal set)in
≤∑ m(a,...)p−1

where p = len (universal set) and a ⊂ Θ. (10)
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By combining the equations and algorithms developed in this section with those in Section 3.2,
updates to the nodes in the DS network can be used to learn the transition potentials between all nodes
in the network. While these updates can be performed when a single node is observed and other nodes
are updated based on inference, more reliable updates are performed when more than one node is
observed simultaneously. However, these updates present a conundrum since each node update will
propagate throughout the entire network, thus providing the effect of several updates simultaneously.
The solution to this issue lies in proper weighting of the updates, which is discussed in Section 5.

4. Episodic Learning

As shown in Section 6, the learning methods detailed in Section 3 enable the DS network to
understand the relationship between nodes based on evidential inputs at each node. This method is
sufficient for some applications: when the windowed mass distribution at each node represents the
entire mass distribution of interest for understanding the network relationships. Recall that the window
can be defined as long as appropriate for the application. With reasonable weighting (see Section 5),
the window can encompass the entirety of the evidence history.

However, this view is limited. In many cases, the entire mass distribution is not visible in the
current window, and including the entirety of the evidence history does not capture the nuances of
the relationships. For example, consider a traffic light scenario as shown in Figure 7 in which the
network is evaluating the relationship between the time until the light turns green and the state of the
cross-traffic light. The relationship would be roughly expected as shown in Table 5.

Figure 7. The layout for the traffic signal scenario, which is representative of timed four-way lights
without left turn signals. The grey car is approaching a red light intersection and estimating how long
until the light turns green to determine whether to slow the car. Visibility is limited due to buildings
and other obstructions. The cross-walk signal may be visible before the intersection. The cross-traffic
light is not visible to the grey vehicle and must be estimated. Cross traffic density and speed is variable
in the simulation and is estimated by the grey vehicle.

The issue with learning these relationships is that the entire distribution is not present at a given
time. When the cross-traffic light is green, estimates of time until the same-side light changes from
red to green are likely only long and medium. Likewise, when the cross-traffic light changes to red,
estimates of time until the same-side light changes from red to green are likely only short and medium.
Using the previously developed learning methodology in Section 3, the natural response would be to
retain all evidence via Murphy’s rule using a weighting scheme. However, this method will be biased
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by the amount of time spent in each situation. For example, assuming the light is being evaluated from
a long distance away approaching the intersection, one can safely assume that the evidence gathered
usually reports the cross-traffic light as green and the time until the same-side light changes from
red to green as long. In this case, the learned relationship will be biased towards a long time until
green regardless of the current state of the cross-traffic light, because the majority of evidence is during
a period in which it takes a long time for the light to change to green (i.e., other relationships are
masked by the amount of evidence showing a long time to green, even though much of this evidence
is just repeating known information). In order to combat this issue, an episodic learning method was
developed, which required two additional mathematical rules.

Table 5. Expected relationships between the cross-traffic light and the time until green. Given
knowledge of the cross-traffic light at an intersection, this table details the expectations of the time until
the light changes from red to green for the evaluator to continue through the intersection. Note that
any ambiguous sets are removed for ease of description. Those sets can be interpolated from the
relationships shown in this table.

Green Yellow Red

Long 0.9 0.1 0.0
Medium 0.1 0.8 0.1

Short 0.0 0.1 0.9

4.1. Change-Weighted Least Squares

Recall from Section 4 that the goal is to capture in the transition the nuances of the relationship
between the mass distributions of the parent and child nodes. Note that while this discussion is
applied to a single parent and child, it can be generalized to multiple parent or child nodes using the
techniques developed in Section 3. The question then becomes how to mathematically capture the
concept of only updating the weights in the transition that apply to the current episode. Suppose the
baseline distributions for the parent and child nodes are known. With no loss of generality, we will
take those baseline distributions as the unknown distribution: p = 0∀p ∈ M ∧ p 6= universal set
and p = 1 ⇐⇒ p = universal set, where M is the marginal mass vector of the parent or child.
Then, modify Equation (4) to include weighting relative to the change from the baseline distribution,
as shown in Equation (11), where c is an arbitrary control term for determining the effect of the
weighting. Note that Equation (1) is modified with the weights defined in Equation (11) to balance
the equations.

min

i,j=m,n

∑
i,j=0,0

(T∗i,j − Ti,j

)
∗

1 +
c(

M∗pi
−Mpi

)2
∗
(

M∗cj
−Mcj

)2




2 . (11)

Observe three points concerning Equation (11):

• If the control constant c is set to 0, then the additional weight disappears, and the equations reduce
to the previous set.

• The weight is inversely proportional to the squares of both the differences in applicable parent
marginals and the applicable child marginals. If the child or parent marginal changes minimally,
then the design vector is weighted such that the applicable transition value should be modified
minimally from its current value.

• If either the parent or child marginal change is zero, then the inverse weighting is
undefined—divide by zero scenario. Thus, this weighting must be protected by a maximum
weight. In practice, any weight on the order of 1000 or above does not have much effect since
there is a limit to the flexibility of the solution given the rest of the constraints.
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4.2. Zero Marginal Value

Recall from Equations (1) to (3) that a zero marginal value in the child marginal vector means that
all non-zero values in the parent marginal vector must be multiplied by a transition value of zero for
the equations to balance. Assuming marginal probabilities are reset to a baseline between episodes in
order to capture the effects of each episode, it is reasonable to assume that marginal values will often
be zero even if those values were observed in prior episodes. In practice, this can cause prior episodic
information to be lost. To avoid this loss of information, any marginal value, which was observed in a
prior episode is prevented from returning to zero and is instead reset to a small value in the range of
[0, 1], such as 0.01. Due to the weighting described in Section 4.1, such a small value will result in a
high weight, preventing the associated transition values from changing significantly.

4.3. Episodic Learning Implementation

Given the additional mathematical rules described above, episodic learning is implemented as
shown in Algorithm 3. Determining episodes can be accomplished either through expert information
or automatically by determining when marginals are statistically different than previous episodes.

Algorithm 3: Episodic learning algorithm for a Dempster-Shafer network. This algorithm
captures episodes in order to only update the portion of the transition potential matrix to which
the episode applies.

1 reset_nodes_and_transitions_to_unknown()
2 while training is True do
3 episode_name = counter
4 counter += 1
5 while change_in_marginals() ≈ 0.0 do
6 step_training()
7 end
8 save_episode()
9 combine_marginals_with_similar_episodes()

10 calculate_transitions()
11 reset_nodes()
12 end

Evaluation of this method is detailed in Section 6.6, which compares the results of the learning
methods with a simplified scenario for evaluation against expected results.

5. Evidence Weight

Traditional DS evidence combination assumes equal weights and reliabilities between all evidence
sets and contributors [1]. Likewise, most modifications to the DS combination rule make the same
assumption. An exception is the Evidential Reasoning rule which handles both reliability and weight of
evidence sets [15]. While a single DS node handles the assumption of equal weights well, the network
requires the ability to weight evidence. Recall that from Section 2.3, “evidence” propagated between
nodes in the network is really the result of combined data at nodes; thus, individual evidence weighting
within nodes has already occurred. Weighting the combined evidence propagated through the network
is the current focus and requirement. To understand this requirement, observe the update to the
network in Figure 8. Assuming that all inputs propagate through the network, each input equally
affects all nodes, although the data is inserted as observed at a single node and inferred at others.
Further, all observations may be a result of a single update (for example, the results of a one-hour test
flight). Each input would result in an update at all nodes, introducing the equivalent of y hours of
test flight data, where y is the number of observations for the network from the one-hour test flight.
While more node observations for the one-hour test flight likely results in more accurate information,
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the data arguably should not have the same effect as multiple hour test flights with observations for
each of those hours. Note that this discrepancy was previously handled by a discounting scheme to
handle the reduced reliability of inferred evidence versus directly observed evidence [3]. This scheme
is similar to Shafer discounting [2]. While useful, no rules were developed to define the discounting
factor [3]. Further, discounting has additional effects on evidence combination [4], which must be
handled. This section develops a new rule that explicitly defines the weighting factor based on the
network input evidence, and the weighting factor can be calculated explicitly from the network for
each update. Further, weighting methods (discussed in Appendix B) are explicitly developed for each
combination rule used, avoiding known issues with Shafer discounting [15].

Figure 8. The results of weighting inputs for a Dempster-Shafer network. Given an update on nodes
A, B, and F, a no-weight update results in 3 times the amount of experience applied at each node,
as shown in part (1) of the figure. With weighting, only the applicable experience is applied at each
node, as shown in part (2) of the figure. The direction of the arrows shows the transition of the
update experience between nodes in the network. The network is using the standard representation,
where moving upwards on the diagram between nodes represents inference.

To resolve this discrepancy between the weight of evidence and the time of observation relative to
pre-existing data, a weighting scheme is proposed, as demonstrated in Figure 8, part (2). At observed
nodes, only the observation is entered with full weight. No data calculated through transitions is
entered at observed nodes. For all other nodes, the weight of data calculated through transitions is one
divided by the number of branches with data entering that node. The resulting weight for a single
update is equal to one for all nodes.

Use of the weighting scheme has two implications. First, either only the Evidential Reasoning
combination method can be used, or other methods must be modified to handle weighting. Second,
given that weighting is necessary, further weighting methods can be used to improve update
stability as discussed subsequently. Modifications for weights are easy to add to Murphy’s Rule,
Zhang’s combination method, and the Rayleigh combination methods. Details on these modifications
can be found in Appendix B.

Table 6 shows why additional weighting schemes are necessary since a single event, regardless
of the length of operation time it represents, can significantly impact the per-hour risk if weights
are not adjusted for the evidence sets. Since the combination scheme impacts the results as well,
the Rayleigh and Murphy results are still significantly different regardless of weighting method.
Consequently, risk analysis results thrash between extremes as differing events are entered into
the network. Instead, a weighting scheme based on completed flight hours is defined. For each
network node, the accumulated hours of experience represented by the combined evidence is stored.
New evidence sets are relatively weighted as operation hours

total operation hours . This concept is similar to how new
values are added into an average: by multiplying the average by the total experience it represents
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and adding the new values before dividing by the new total experience. In both cases, the weighting
scheme prevents new evidence from over-influencing previous experience.

Table 6. Example of why additional weighting schemes are necessary. “Evidence 1” has significantly
higher weight than “Evidence 2”. Without an included weighing scheme, the resulting combined data
in “Rayleigh” and “Murphy” have a balance in potential solutions between “A” and “C” instead of
heavily favoring “A”, which would be expected if only “Evidence 1” were combined through the DS
combination methods. The resulting combined data in “Weighted Rayleigh” and “Weighted Murphy”
favor “A”, which is expected since “Evidence 1” favors “A”. Note that the Rayleigh [28] method is
designed to amplify decisions; thus a combination comprised of “Evidence 1” multiple times would be
expected to nearly exclusively return “A”.

Data Set Experience A B C (A,B) (A,C) (B,C) (A,B,C)

Evidence 1 30.0 0.5 0.1 0.2 0.0 0.05 0.05 0.1
Evidence 2 0.5 0.1 0.05 0.4 0.05 0.2 0.1 0.1
Rayleigh n/a 0.47 6.1 × 10−4 0.24 2.6 × 10−4 0.28 1.2 × 10−3 2.2 × 10−4

Weighted Rayleigh 30.5 0.91 3.8 × 10−5 2.2 × 10−2 1.4 × 10−5 6.9 × 10−2 1.6 × 10−4 2.2 × 10−3

Murphy n/a 0.30 0.03 0.30 0.025 0.13 0.075 0.10
Weighted Murphy 30.5 0.49 0.011 0.20 8.2 × 10−4 5.2 × 10−2 5.1 × 10−2 0.10

Two further available weighting modifications were tested and found to be less effective,
although they are reasonable options.

• Recency: new evidence can be weighted higher than the relative weight to the total experience for
risk analysis in which more recent information is considered more reliable.

• Inference: an additional weight reduction can be applied across all transition inferences assuming
that inferred evidence is less reliable than directly observed evidence. This method has been used
previously [3], although the weights are explicitly now defined for each Evidential Reasoning
combination method.

Finally, this method does assume equal importance between nodes. If nodes are unequal in
their importance or reliability, then additional weight reductions can be applied to account for those
imbalances, similar to the inference modification detailed above.

6. Results

A DS network was developed to test the algorithms developed in Section 3. Testing covered the
following areas:

• Single node updates with and without learning transitions, and with and without weighting.
These tests include modifying the transition potentials, learning from a completely unknown
starting point, and multi-level learning (i.e., with unobserved nodes between nodes with
observations). See Section 6.3.

• Multiple parent updates with weighting and learning transitions. See Section 6.4.
• A complex network to better understand the speed and effects of evidence propagation in a more

realistic DS network. See Section 6.5.

6.1. Testing Methods

For each test, evidence sets were randomly generated. The same evidence sets and order of input
were used for all combination algorithms at each test to provide consistency. Each test consisted of
30 updates of 3 simultaneous evidence sets per update. The nodes to which the evidence sets were
injected were randomly generated as well. The number 30 was chosen to allow randomly generated
sets to provide acceptable analysis metrics within a reasonable evaluation time. Furthermore, 30 tests
were conducted per test case. For each evidence set, the complete set (unknown information) mass was
set to 0.0, which ensured that the learning capabilities of the networks were properly evaluated against
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the metrics discussed in Section 6.2. For cases without learning, approximately 80% of transition
potential values were randomly set, since, without learning, the majority of transitions need to be set for
the network to make sense. For learning cases, all values were defaulted to all belief mass assigned to
the complete set (i.e., completely unknown starting points). The primary limitation of these tests is that
the evidence sets are randomly generated. DS theory is designed to combine evidence sets for a given
situation to arrive at a conclusion. As such, some consistency between the evidence sets is assumed.
In fact, complete conflict, as discussed in Section 2, produces incalculable results for Dempster’s Rule
and the ECR rule without weighting. Due to round-off error and pseudo-random selection of evidence
sets, it was assumed that complete conflict would not occur. However, since combination algorithms
handle conflict differently, results are generally only valid when analyzed in comparison between tests
using the same combination algorithm.

6.2. Metrics

The DS network extensions developed in this work were evaluated for the following goals:
propagation time for implementation in real-time on an embedded system, learning for the ability to
start from a state with completely unknown information, and explainability for the decisions to be
accepted by organizations that use risk analysis.

• Propagation time per update per node: comparison between the baseline implementation and
specific novel additions.

• Failures: how many of the tests fail, and the explanation for each failure.
• Consistency: the L2 norm of the error between the parent marginals multiplied by the transition

potentials and the child marginals. Note that for a multi-parent node, the results of the parent
marginals multiplied by the transition potentials are then combined via the appropriate DS
combination algorithm.

• Unknown fraction: the fraction of node marginals and transition potentials that remain in the
complete set (unknown information) at the end of the update set, given that the network started
with all masses in the complete (unknown) set.

• Weight per node: the total weight/experience attributed to each node at the end of every update.

The propagation time metric provides insight into the ability to implement in real-time on an
embedded system. Likewise, the unknown fraction metric provides insight into the learning capability
of the network and the ability to start from an unknown state. Less intuitive are the consistency and
weight per node metrics, which provide insight into the explainability of the network. Weight per
node maps the “experience” per node after the updates. For example, if each update represents one
flight test hour, and 30 updates are made, each node should show approximately 30 h of experience.
Significant increases from that suggest that information is used more than once, which calls into
question the validity of any conclusions.

The final metric—consistency—evaluates the mathematical explainability of the network at the
end of all updates. Given a simple network where a parent node “A” connects to a child node “B”,
an inconsistent situation is one in which, after evidence propagation through the network, the marginals
of “A” multiplied by the transition potentials do not equal the marginals of “B”. From an explainability
perspective, if only the final network state is viewed by the organization that needs to accept the
decision, it is unclear from where the decision came and whether the network operated correctly.
In short, the result is unexplainable. Since the original DS network implementation overwrites data at
each node after propagation, an “overwrite” algorithm is included as the baseline for comparison.

6.3. Network Updates with Single Parent Only

This test analyzes the performance of the developed algorithms when applied to networks that
only have single parents per child. The test network is shown in Figure 9. Each DS combination
algorithm was analyzed using this test network including an “overwrite” algorithm that does not
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combine evidence but rather uses the newest evidence set to provide a baseline. This test case analyzed
the following options: learning transitions, single versus multi-node updates, and weighting inputs.

Figure 9. Test network used to analyze the performance of the novel Dempster-Shafer network
algorithms. Only includes single parents for each node. The number after the node name shows the
number of θs for the node. Nodes with two and three θ were used since these are the more common
cases for nodes in a DS network.

The results of these tests are shown in Figures 10–13. Figure 10, showing the time test results,
emphasizes that the weighting methodology helps to overcome the additional burden of the learning
calculations. In all combination algorithms, weighting improves the update time to only [1, 2] orders
of magnitude greater than the no-learning overwrite case, which is the baseline (10−3 and 10−4

versus 10−5). Compared with the unweighted cases, which are always in the mid to high 10−3 order
of magnitude, this is a significant improvement, thus potentially enabling single-parent network
implementation in a real-time embedded system. In the second result, Figure 11, the learning
method returns an obvious improvement over all non-learning methods, resulting in effectively
perfect consistency with round-off error and a high degree of explainability. In the third result,
Figure 12, the three learning cases clearly improve upon the unknown knowledge in the network,
even given that the no-learning cases started with a high degree of known transition potentials, and the
learning cases started with fully known information. This result is dependent upon the number of
evidence sets injected, but the potential to reduce unknown information is shown clearly through this
test. The final result, Figure 13, is perhaps the most straight-forward. The weighting method clearly
shows approximately 30 units of experience/weight for 30 updates of 1 unit of experience, as expected.
All unweighted methods show 3X units of experience per node, which suggests information was used
3 times for each update. This result brings into question the validity of results obtained from networks
using unweighted updates since reusing the same information in DS logic changes the results.
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Figure 10. Test results for run time with single parent network. Within each combination algorithm
group, the no-learning method is faster that un-weighted learning methods, showing the increased
burden of the learning calculations. Both Rayleigh and Weighted Rayleigh methods show the
same order of magnitude for no-learning time and un-weighted learning time, suggesting that
the combination algorithm is the driving factor for the update time. Dempster-Shafer, Evidential
Combination Reasoning (ECR), and Overwrite have faster update times due to not retaining explicit
history. Note further that un-weighted single and un-weighted multi-update methods do not
significantly change the update times. Finally, the weighted methods are typically at least as fast
as the no-learning method.

Figure 11. Test results for consistency with single parent networks. The y-axis uses a logarithmic scale.
All per-node consistency is low without learning, with the best case being the overwrite case. Since
transition potential matrices are not reversible (propagating up through a transition does not guarantee
perfect consistency down the transition), the overwrite case has a non-zero consistency test result.
However, in all learning cases, the consistency checks return an effectively zero result, equating to
perfect consistency with round-off error.
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Figure 12. Test results for learning with a single parent network. Results vary depending on the
combination algorithm used. Except for Rayleigh, Weighted Rayleigh, and overwrite methods,
the learning method resulted in significant reduction of unknown information over the baseline
case of no-learning with preset transition potentials. Deviations in the combination algorithms can be
explained through handling of conflict. High conflict in the Rayleigh and Weighted Rayleigh algorithms
means lower assignment of mass to the new focal elements, resulting in higher mass retained in the
unknown/complete set. This is a result of the randomized evidence set testing methodology and
does not impact the choice of algorithm. Finally, since the overwrite method does not retain previous
evidence, propagated evidence through unknown transitions will tend to have higher impact, retaining
unknown information.

Figure 13. Test results for weighted versus unweighted methods in a single parent network after
30 updates of 1 unit of experience each. This test shows a clear difference between unweighted methods
(90 units of experience per node), and the weighted methods (approximately 30 units of experience
per node). The unweighted methods clearly suggest that data is reused. While not the case (each
propagated evidence set is from a different observation), this result is less explainable than the weighted
methods, calling into question the ability for the network results to be accepted in decision-making
scenarios.
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6.4. Multi-Parent Learning Results

Based on the results of the single parent tests, the multi-parent tests are set up to only test learning
with weighted simultaneous updates. The additional complexity that these tests add is the need to
calculate multiple simultaneous parent marginals through the use of an optimizer or the root finding
method detailed in Section 3.3. The test network used is shown in Figure 14. The results are shown
in Figures 15–18. In most cases, no significant deviation is observed between the optimizer and root
finder, especially for the combination methods most likely to be used. The exception to this statement
is the run time. The primary reason for developing the root finder is that it is significantly faster than
the optimizer (at least one order of magnitude per node), and it is deterministic, especially for two
and three option nodes requiring quadratic or cubic solutions, which are closed form. For a real-time
implementation on an embedded system, the root finder can be reliably scheduled and interrupted as
necessary while operating in a way that is difficult for generic optimizers. The consistency result is
not shown in graphical form since the results were all within round-off error of zero, demonstrating
perfect consistency, which aligns with the results from the single parent case in Figure 11.

Figure 14. Test network used to analyze the performance of the novel Dempster-Shafer network
algorithms. This network only includes multiple parent nodes for each child node. The number after
the node name shows the number of θs for the node. Two and three θs nodes were used since these are
the more common cases for nodes in a DS network.

Figure 15. Test results for run time with a multiple parent network. The root finder primarily works
for Murphy’s and Zhang’s combination methods, as expected. For those methods, the root finder
shows at least an order of magnitude improvement in run time per node, which translates to significant
improvements for larger networks.
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Figure 16. Test results for learning with a multi-parent network. The unknown fraction are similar
between the optimization and root finder methods. This result is expected, given that similar solutions
should be found. Notably, significantly higher unknown fractions are found for the multiple parent
cases than for the single parent cases. This difference is due to the learning method since identical
marginals are first calculated for each parent, resulting in duplicated unknown information being
retained significantly longer.

Figure 17. Test results for weighting with multi-parent networks. Since all cases are weighted,
no deviations between cases were expected or observed. All cases show expected total weights
per node of approximately 30, confirming the results from the single parent test case in Figure 13.
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Figure 18. Test failures for the multiple parent cases. The ECR method, Dempster’s Rule, and the
overwrite method were not expected to reliably succeed due to the random evidence sets that were
not within bounds required for the reverse solver method to succeed. As expected, these methods
tend to fail. The root finder method more consistently succeeds or fails. In each set of tests, the root
finder method either succeeds or fails in all tests while the optimizer can find solutions that the root
finder misses. Murphy’s Rule and Zhang’s Rule show better performance by the root finder than the
overwrite method.

6.5. Complex Network Results

The final tests are performed on the complex network shown in Figure 19, and the results are
shown in Figures 20 and 21. Within these tests, the comparison is made between unweighted single
updates and weighted multiple simultaneous updates. In this case, it is also instructive to compare
these results with the previous tests. Overall, the complex test case falls between the single parent
and multi-parent test cases, as expected, given that it is a combination of the two. The complex test
case is more similar to the multi-parent test case, suggesting that the multi-parent root finding method
properties tend to dominate the metrics in these tests. Failure results are not shown in graphical form
since the trends add no new information. There were 30 failures for Dempster’s Rule [1], ECR [15],
and the Overwrite Rule. There were zero failures for Zhang’s Method [13] and Murphy’s Method [14].
In all cases, the weighting scheme had no effect on the number of failures. Likewise, the weighting
results for complex networks were consistent with Figures 13 and 17, suggesting that the weighting
results obtained in this section can be extended to DS networks of arbitrary complexity. Finally,
the consistency test results for the complex network are not shown since all tested cases resulted
in effectively zero, demonstrating perfect consistency in line with the results from the single and
multi-parent solutions (Figure 11).
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Figure 19. Test network used to analyze the performance of the novel Dempster-Shafer network
algorithms. This example includes nodes that have both single and multiple parents. The number after
the node name shows the number of θs for the node. Two and three θs nodes were used since these are
the more common cases for nodes in a DS network.

Figure 20. Test results for run time for a complex network. In both cases which succeeded, the weighting
method significantly decreased run time, as expected. In both cases, the run time order of magnitude
more closely resembles the multiple parent tests (Figure 15) than the single parent tests (Figure 10).
This is expected, given that the complex network adds the additional multi-parent calculations.
These results also suggest that the root finding method for multi-parents still dominates the single
parent solution method.
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Figure 21. Test results for learning for a complex network. There are two points of interest here: i.
The weighted, multiple update method does display a higher unknown fraction. This opposes the
results seen in the single-parent tests (Figure 12), suggesting that the multiple parent solution method
fares less well when dealing with weighted data; ii. The unknown fraction is between the single parent
tests (Figure 12), and the multi parent tests (Figure 16), which is expected, given that the complex
network is a combination of the previous networks.

6.6. Episodic Learning Evaluation

Tests for episodic learning were conducted to determine whether this learning method better
captured expected relationships than the least squared method without episodes. A two-node network
was constructed with a parent node and a child node linked through a transition potential matrix.
Both nodes and the transition potentials were initialized to unknown and vacuous, respectively.
Two equal weight evidence sets were then entered as defined in Table 7. Murphy’s Rule [14] was used
to combine the data since Murphy’s Rule [14] provides a simple result, allowing the effects of the
episodic learning to be tested. The baseline test case without episodic learning injected the evidence
sets to their respective nodes and update the transition potentials matrix after each update. The results
are shown in Table 8. The network was then reset, and the episodic test case was run, with the two
evidence sets injected to their respective nodes. In this case, the two evidence sets (“Evidence 1” and
“Evidence 2”) were considered to be different episodes, and the episodic learning algorithm was run.
The results are shown in Table 8. As can be seen by comparing the values in the table, the episodic
learning adjusted the weights in the transition potential matrix to a more intuitive result based on our
expectations, given the matching evidence sets.

Table 7. Episodic Learning Test. The following two evidence sets have distinctly different correlations
for the two-node network. “Evidence 1” shows a correlation between “Option A” in the parent node
and “Option C” in the child node, and “Evidence 2” shows a correlation between “Option B” in the
parent node and “Option D” in the child node.

Data Set Option_A Option_B (Option_A, Option_B) Option_C Option_D (Option_C, Option_D)

Evidence 1 0.9 0.08 0.02 0.9 0.1 0.0
Evidence 2 0.05 0.9 0.05 0.1 0.7 0.2
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Table 8. Episodic Learning Results. The baseline without episodic learning started with unknown
information (all marginal masses in the complete sets). Both evidence sets were added and combined
via Murphy’s Rule [14] into their respective nodes, and the transition potential matrix was updated
after each evidence injection. The second test applied the “Evidence 1” sets to the appropriate nodes
and subsequently ran the transition potential matrix update algorithm. The node marginals were then
reset to the unknown state, and the “Evidence 2” sets were applied to the appropriate nodes. The
transition potential matrix update algorithm was again run to incorporate the second episode.

Without Episodic Option_A Option_B (Option_A, Option_B)

Option_C 0.552 0.455 0.821

Option_D 0.448 0.329 0.179

(Option_C, Option_D) 0.0 0.216 0.0

With Episodic Option_A Option_B (Option_A, Option_B)

Option_C 0.727 0.0 0.233

Option_D 0.129 0.703 0.336

(Option_C, Option_D) 0.143 0.297 0.431

7. Conclusions

The new rules created for the DS network updates significantly changed how the networks
function. By requiring a combination algorithm to be used at each node, similar to previous works,
simultaneous evidence can be entered, allowing the transition potentials to be calculated from the
evidence. This relies on the concept of consistency in the network—that transition potentials both
define the influence between nodes and can be used for exact mathematical relationships. As shown
in Section 6, propagation of evidence without learning updates to the transition potentials results
in a significantly less consistent network. While it can be argued that the transition potentials in
this case are merely measures of influence and do not require consistency, the breakdown in the
mathematical structure of the network means that important properties are lost, such as the ability
to reconstruct the network from partial information. There are some limiting assumptions made,
primarily for multi-parent nodes. In these cases, the assumption of identical evidence inputs from the
parent nodes along with the limitation to certain DS combination algorithms limits the novel algorithm
developments from being used in all scenarios. However, the DS combination algorithms used can
be applied to most scenarios through appropriate network definition, as discussed in Section 3.3.
The identical evidence assumption is reasonable for many scenarios since this assumption is only
made while updating the transition potentials and aligns with the initial conditions of unknown
marginals and vacuous transition potential matrices. Further, that restriction only applies when
using the polynomial solution; a higher order optimizer can relax that assumption. Future research
trajectories include relaxing this assumption without the use of higher order optimizers.

Beyond the consistency obtained through updating the transition potentials, the learning
mechanism enables starting from a completely unknown set of data to fill in the entire network.
As shown in Section 6, learned networks with random input data results in better known networks
than those with a priori data provided. The a priori data provided is based on assumptions of data
that would be available. That a priori data could serve as a starting point for learning, resulting in
a better known network in all cases. The transition update rules defined in this chapter capture
relationships when the entire belief distributions can be considered simultaneously. For scenarios
in which this is not the case, episodic learning was introduced to focus the transition updates on
the portion of the belief distribution that was observed during the evidence, borrowing from the
well-known concept of observability in control theory [30]. This novel use of episodes for updating
Dempster-Shafer network transitions significantly improved how the relationships between nodes
were captured, as shown in Section 6.6. Future research trajectories include using statistical tests to
determine breaks between episodes.
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The evidence weighting has a considerable impact on the updates to the network. Speed
improved considerably since propagation was not required to all nodes in the network. Furthermore,
the automatic handling of reliability of propagated evidence versus observed evidence enables more
reliable results. Finally, an accurate representation of the accumulated evidence in the network enables
testable results since they can be benchmarked against a consistent basis. While evidence weighting
based on inference versus direct observations has already been implemented [3], Section 5 codifies
explicit rules for calculating the weights from evidence entry in the network, creating a consistent basis
for updates with clearly defined reasoning.

Combining these rules together results in decreased requirements for subject matter expert’s
inputs. As detailed in Section 2.3, previous methods have data requirements of all values in every
transition matrix, updated each time the matrices change. Using the novel rules defined in this
paper, the subject matter expert must define the combination method used at each node, weighting
scheme used, episodes (or method used to distinguish episodes), and the control value used in
episodic learning. These requirements are different than the original requirements; more importantly,
these values can be set once instead of on each update as previously required, resulting in a significant
reduction in user input.

As detailed in Section 3, the proposed update rules do not require the specific novel algorithm
developed for learning the transition matrices. Use of the novel algorithm enables transition matrix
updates with limited computation resources and time. This combination of novel algorithm and
update rules enables a wide use of auto-updating DS networks.

Together, these rules realize a capability which was envisioned in the 1980s [7], extended through
multiple works in the 1990s and 2000s, and brought to fruition through this work. While valuation
networks provide an enormously capable system for understanding and evaluating knowledge of the
world, this work enables starting from unknown or limited information and learning relationships
without requiring significant subject matter expert’s inputs—a capability which allows reasoning about
the world to progress quickly and with reduced guidance from experts.
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Nomenclature

Belief Mass A non-negative measure similar to probabilities, but a non-classical idea in which the
masses are not necessarily based on the occurrence of an event.

Frame of Discernment (Θ) A set of mutually exclusive elements. Belief masses can be assigned to these elements
or to sets of these elements.

Powerset (2Θ) The set of all subsets of Θ. If there are n elements in Θ, then there are 2n elements in
the powerset of Θ.

Basic Probability Assignment (BPA) An assignment of a belief mass in the range [0, 1] to each element of the powerset.
m : 2Θ → [0, 1], where m (∅) = 0, ∑ m (A) ≥ 0, A ∈ powerset. If ∑ m (A) = 1 and the
masses are based on the occurrence of an event, then these masses are equivalent to
probabilities. Subsequently, we will assume ∑ m (A) = 1.

Evidence An observation described by a BPA.
Focal Point Any subset of the powerset to which a belief mass of greater than zero is assigned.

A ∈ powerset | m (A) > 0
Belief Function (Bel) Given a BPA with {A1, . . . , An} ∈ 2Θ and Ax ∈ Θ, Bel (Ax) = ∑Ax⊆A m (Ai).
Plausibility Function (Pl) Given a BPA with {m (A1) , . . . , m (An)} ∈ 2Θ and Ax ∈ Θ,

Pl (Ax) = 1−∑A∩Ax=∅ m (Ai).
Dempster’s Rule The original rule proposed by Arthur Dempster [1] for combining evidence:

(m1 ⊕m2) (x) =
∑

E∩E′=x
m1(E)m2

(
E
′ )

1−∑
E∩E′=∅

m1(E)m2(E′ )
.
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Appendix A. Dempster-Shafer Multi-Parent Reverse Solver Restriction Validation

In this appendix, we develop the result necessary to enable restricting the inputs to Dempster’s
Rule and ECR that enable calculating a valid solution to the reverse solver for multiple parents.
The following assumption still applies: for a valid solution to be guaranteed, there must be at least as
many evidence inputs as parent marginals for which the algorithm is solving, not including evidence
inputs that contain all mass in the universal set.

Furthermore, the following simplifying assumptions enable easier analysis while still applying to
the general result:

• ECR is only valid for this result when all weights and reliabilities are equal, thus reducing ECR to
Dempster’s Rule.

• The result is only required to be developed for two evidence inputs. This assumption is because
both Dempster’s Rule and ECR add the new evidence into the combined result of the old evidence.
Thus, if the combined result provides a valid reverse solution method, then combining any new
evidence using the same restrictions will in itself be a combination of two evidences under the
same restrictions, resulting in a recursive proof.

• This result is only shown for a three option evidence set (a, b, c) and the associated power set.
The reason for this can be seen through the solution method developed in Section 3.3. Each solved
mass only depends on the masses of higher ambiguity which apply to the solution mass. Thus,
the shown proof is, again, recursive.

Recall from Section 3.3, the child marginal a in terms of two identical sets of parent marginals is
given by Equation (A1).

ac = a2
p + 2 ∗ ap

[
(a, b)p + (a, c)p + (a, b, c)p

]
+ 2 ∗ (a, b)p (a, c)p (A1)

To solve for ap, the quadratic formula is used to give Equation (A2).

ap = −
[
(a, b)p + (a, c)p + (a, b, c)p

]
+√[

(a, b)p + (a, c)p + (a, b, c)p

]2
−
(

2 ∗ (a, b)p (a, c)p − ac

) (A2)

From Equation (A2), it is quite clear that a valid, positive solution will be obtained provided that
Equation (A3) holds.

ac ≥ 2 ∗ (a, b)p (a, c)p (A3)

However, this solution specifically applies to the cases in which the two parent evidence sets are
not identical. Thus, from Table 4, ac can be calculated through Equation (A4) where ()1 denotes the
first evidence set and ()2 denotes the second evidence set.

ac = a1 ∗ a2 + ((a, b) + (a, c) + (a, b, c))1 ∗ a2+

((a, b) + (a, c) + (a, b, c))2 ∗ a1 + (a, b)1 ∗ (a, c)2 + (a, b)2 ∗ (a, c)1
(A4)

Likewise for the left side of the inequality, the following relationships hold:

(a, b, c)p =
√
(a, b, c)c (A5)

(a, b)p = − (a, b, c)p +
√
(a, b, c)2

p + (a, b)c (A6)

Recalling further from Table 4 the following two relationships:

(a, b)c = (a, b, c)1 (a, b)2 + (a, b, c)2 (a, b)1 + (a, b)1 (a, b)2 (A7)
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(a, b, c)c = (a, b, c)1 (a, b, c)2 (A8)

With substitution, Equations (A4)–(A8) result in Equation (A9).

2
(
−
√
(a, b, c)1 (a, b, c)2

+
√
(a, b, c)1 (a, b, c)2 + (a, b, c)1 (a, b)2 + (a, b, c)2 (a, b)1 + (a, b)1 (a, b)2

)
(
−
√
(a, b, c)1 (a, b, c)2

+
√
(a, b, c)1 (a, b, c)2 + (a, b, c)1 (a, c)2 + (a, b, c)2 (a, c)1 + (a, c)1 (a, c)2

)
≤

a1 ∗ a2 + ((a, b) + (a, c) + (a, b, c))1 ∗ a2+

((a, b) + (a, c) + (a, b, c))2 ∗ a1 + (a, b)1 ∗ (a, c)2 + (a, b)2 ∗ (a, c)1

(A9)

Next, we simplify the left side of Equation (A9) slightly. Note that
√

a + b ≤
√

a +
√

b. Therefore,
Equation (A10) holds, and Equation (A11) can be used to constrain the left side of Equation (A9).√

(a, b, c)1 (a, b, c)2 + (a, b, c)1 (a, b)2 + (a, b, c)2 (a, b)1 + (a, b)1 (a, b)2 ≤√
(a, b, c)1 (a, b, c)2+√

(a, b, c)1 (a, b)2 + (a, b, c)2 (a, b)1 + (a, b)1 (a, b)2

(A10)

2
(
−
√
(a, b, c)1 (a, b, c)2

+
√
(a, b, c)1 (a, b, c)2 + (a, b, c)1 (a, b)2 + (a, b, c)2 (a, b)1 + (a, b)1 (a, b)2

)
(
−
√
(a, b, c)1 (a, b, c)2

+
√
(a, b, c)1 (a, b, c)2 + (a, b, c)1 (a, c)2 + (a, b, c)2 (a, c)1 + (a, c)1 (a, c)2

)
≤

2
(√

(a, b, c)1 (a, b)2 + (a, b, c)2 (a, b)1 + (a, b)1 (a, b)2

)
(√

(a, b, c)1 (a, c)2 + (a, b, c)2 (a, c)1 + (a, c)1 (a, c)2

)

(A11)

Thus, if we show that the right side of Equation (A11) is less than or equal to the left side of
Equation (A9), then Equation (A9) holds, and the restrictions will satisfy the constraint necessary to
ensure a solution to the reverse solver. To do this, we introduce the restrictions from Equations (9)
and (10). Further, without loss of generality, we assume that (a, b)1 ≥ (a, b)2, (a, c)1 ≥ (a, c)2, (a, b)1 ≥
(a, c)1, and (a, b)2 ≥ (a, c)2.

Using Equation (9) for a1 and a2 the least constraining choices of (a, b)1, (a, b)2, (a, c)1, and (a, c)2,
the right side of Equation (A9) can be constrained via Equation (A12), which also includes a square
and square root to end up with the same form as the right side of Equation (A11).

((3 (a, b)1 (a, b)2 + (a, b, c)1 (a, b)2 + (a, b, c)2 (a, b)1

+2 (a, c)1 (a, b)2 + 2 (a, c)2 (a, b)1)
2
) 1

2 ≤

a1 ∗ a2 + ((a, b) + (a, c) + (a, b, c))1 ∗ a2+

((a, b) + (a, c) + (a, b, c))2 ∗ a1 + (a, b)1 ∗ (a, c)2 + (a, b)2 ∗ (a, c)1

(A12)
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Using the restrictions from Equation (10), we cancel terms and end up with Equation (A13).

2
(√

(a, b, c)1 (a, b)2 + (a, b, c)2 (a, b)1 + (a, b)1 (a, b)2

)
(√

(a, b, c)1 (a, c)2 + (a, b, c)2 (a, c)1 + (a, c)1 (a, c)2

)
≤

((3 (a, b)1 (a, b)2 + (a, b, c)1 (a, b)2 + (a, b, c)2 (a, b)1

+2 (a, c)1 (a, b)2 + 2 (a, c)2 (a, b)1)
2
) 1

2

(A13)

Therefore, the original inequality in Equation (A3) is true, and the restricted set is shown to have
a valid reverse solution via the method developed in Section 3.3.

Appendix B. Dempster-Shafer Algorithm Weighting Modifications

Other than the ECR method [15], Dempster’s Rule and rules created to replace/improve
Dempster’s Rule consider all evidence equally, without weight. Due to the modifications in Figure 8,
it was necessary to introduce weights to algorithms which could be used in the Dempster-Shafer
network. Murphy’s Rule [14] and the two Rayleigh methods [28] were easily modified to include
weight by weighing the evidential inputs. For Murphy’s Rule, this equates to a weighted average.
For the Rayleigh methods, this means that evidential masses are multiplied by the associated
weights when combined with the other evidential masses, whether they are supportive or in conflict.
Zhang’s Rule [13] had to be handled differently since multiplying the input evidence masses by the
weights do not effect the result because the first use of the evidence masses is to calculate conflict.
The conflict calculation uses a dot product, which is normalized, thus removing the weighting. Instead,
the weighted average credibility of the original reliability was modified to use both the weighting
developed through Zhang’s support calculations and the input evidence weights, thus affecting the
final result through the evidence input weights.

Appendix C. Dempster-Shafer Transition Solution Alternate Methods

The solution to solve the transitions in a Dempster-Shafer network, as detailed in Section 3.2,
was chosen to be least squares with modifications to the solution when the non-negative constraint
on all transition values was violated. Alternate solution methods are available that could satisfy the
design requirements of low computation requirements and fast solutions. In particular, three options
were discussed and are recommended for future evaluation, and a fourth option was evaluated but
determined to be unreliable in practice.

• Moore-Penrose Pseudo-Inverse [31]. The definition of the transition in the Dempster-Shafer
hypertree, as given in [7], provides the child-to-parent transition values using the transpose of the
parent-to-child transition values. This is potentially not the only available definition. An inverse
is impossible, given that many cases result in a non-invertible matrix. Figure 4 is a simple
example of this case. However, the generalized inverse, using the Moore-Penrose definition,
is not restricted in the same manner. This method was not chosen for current development
in order to use the hypertree definition given in [7]. It is recommended in future analysis
to compare the Moore-Penrose pseudo-inverse definition with the transpose definition in the
Dempster-Shafer hypertree and evaluate which method performs better and provides more
intuitive and explainable results.

• Iteration using the separation principle [30]. The separation principle is a well-known concept
in control theory that allows the system observer to be designed separately from the system
controller because the observer dynamics are sufficiently faster than the controller dynamics that
the two parts of the system are effectively decoupled. Similarly, the Dempster-Shafer network is
typically updated at a slow rate relative to the update rate of a real-time system. For example,
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the network is often updated on the order of 1Hz to 10Hz, while real-time controllers usually
update significantly faster. Given the relatively slow update rate, it should be possible to design a
dynamic transition solution method which has significantly faster dynamics than the network
update. Again, it is recommended in future analysis to compare this solution method with the
least squares solution method developed in this paper.

• Constrained quadratic optimization. This method is similar to least squares in that it
uses a quadratic cost function, but this method also includes constraints such as requiring
non-negative values in the design vector. Since this is a fairly well-studied area of optimization,
an implementation of this method could be fast enough to perform in real-time. However,
since there are no guarantees on maximum iterations to complete, this method was not selected
for the current development.

• Linear programming. Linear programming, which automatically guarantees positive semi-definite
design variables and returns solutions quickly, was tested as part of the development for this
paper. Two modifications were made for linear programming. First, the design variables were
changed to be the new transition potentials. Second, the cost function was changed to be the
sum of the design variables with weights. Higher weights were placed on design variables that
were previously close to zero to approximate the effect of least squares minimization. While
this optimization resulted in a different solution than the least squares method, it provided
feasible solutions with fast computations, which is necessary for real-time updates. However,
in practice, the NumPy [32] implementation of this method was found to be unreliable at finding
feasible solutions.
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