
Ecology and Evolution. 2018;8:6005–6015.	 ﻿�   |  6005www.ecolevol.org

 

Received: 10 November 2017  |  Revised: 19 February 2018  |  Accepted: 29 March 2018
DOI: 10.1002/ece3.4135

O R I G I N A L  R E S E A R C H

Automating analysis of vegetation with computer vision: Cover 
estimates and classification

Chris McCool1  | James Beattie1,4  | Michael Milford1  | Jonathan D. Bakker2  |  
Joslin L. Moore3  | Jennifer Firn4

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1School of Electrical Engineering and 
Computer Science, Queensland University of 
Technolgy (QUT), Brisbane, Qld, Australia
2School of Environmental and Forest 
Sciences, University of Washington, Seattle, 
Washington
3School of Biological Sciences, Monash 
University, Clayton, Vic., Australia
4School of Earth, Environmental and 
Biological Sciences, Queensland University 
of Technolgy (QUT), Brisbane, Qld, Australia

Correspondence
Chris McCool, Queensland University of 
Technology (QUT), Brisbane, Qld, Australia.
Email: c.mccool@qut.edu.au

Funding information
Australian Research Council Future 
Fellowship, Grant/Award Number: 
FT140101229; Australian Research 
Council Centre of Excellence, Grant/Award 
Number: CE140100016; David R. M. Smith 
Professorship

Abstract
This study develops an approach to automating the process of vegetation cover esti-
mates using computer vision and pattern recognition algorithms. Visual cover estima-
tion is a key tool for many ecological studies, yet quadrat-based analyses are known to 
suffer from issues of consistency between people as well as across sites (spatially) and 
time (temporally). Previous efforts to estimate cover from photograps require consid-
erable manual work. We demonstrate that an automated system can be used to esti-
mate vegetation cover and the type of vegetation cover present using top–down 
photographs of 1 m by 1 m quadrats. Vegetation cover is estimated by modelling the 
distribution of color using a multivariate Gaussian. The type of vegetation cover is then 
classified, using illumination robust local binary pattern features, into two broad 
groups: graminoids (grasses) and forbs. This system is evaluated on two datasets from 
the globally distributed experiment, the Nutrient Network (NutNet). These NutNet 
sites were selected for analyses because repeat photographs were taken over time and 
these sites are representative of very different grassland ecosystems—a low stature 
subalpine grassland in an alpine region of Australia and a higher stature and more pro-
ductive lowland grassland in the Pacific Northwest of the USA. We find that estimates 
of treatment effects on grass and forb cover did not differ between field and automated 
estimates for eight of nine experimental treatments. Conclusions about total vegeta-
tion cover did not correspond quite as strongly, particularly at the more productive 
site. A limitation with this automated system is that the total vegetation cover is given 
as a percentage of pixels considered to contain vegetation, but ecologists can distin-
guish species with overlapping coverage and thus can estimate total coverage to ex-
ceed 100%. Automated approaches such as this offer techniques for estimating 
vegetation cover that are repeatable, cheaper to use, and likely more reliable for quan-
tifying changes in vegetation over the long-term. These approaches would also enable 
ecologists to increase the spatial and temporal depth of their coverage estimates with 
methods that allow for vegetation sampling over large spatial scales quickly.
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1  | INTRODUC TION

Point quadrat analyses and visual cover estimation of vegetation 
are widely used, standard vegetation survey techniques that date 
back to the 1920s (Gleason, 1920). These survey techniques are ex-
pensive and can be time-consuming because they require an expert 
ecologist or botanist to make decisions about the amount and type 
of vegetation present. For these reasons, vegetation surveys are 
often conducted sparsely in terms of geographical location as well 
as temporally. In the case of the management of natural spaces on 
either private or public land, vegetation surveys and regular moni-
toring can be constrained by the availability of expert ecologists to 
be in the field with a reasonable assessment taking up to half a day 
per plot; survey time based on a plot size of 40 m2 (Vittoz & Guisan, 
2007).

With long-term research and monitoring, different ecologists 
may be required to conduct vegetation surveys over time, which in-
creases the probabilities of inconsistencies in the accuracy of cover 
estimates made by multiple experts at the same site (Bergstedt, 
Westerberg, & Milber, 2009; Vittoz & Guisan, 2007). Vittoz and 
Guisan (2007) found that one ecologist completing a survey was 
more reliable than a succession of different ecologists. These issues 
motivated us to explore automated methods that could permit veg-
etation surveys to be conducted more frequently (temporally) and 
potentially over larger areas (spatially) with similar and, certainly for 
long-term monitoring, better consistency to an expert.

Algorithms that interpret the visual imagery are a key for auto-
mating plot-based vegetation surveys. Considerable work on de-
tecting the presence of vegetation from imagery, and on classifying 
vegetation/weeds, has been conducted in the field of robotics, au-
tomation, and computer vision. In robotics, vegetation detection has 
been dominated by the use of vegetative indices that usually consist 
of a ratio between pixel values of color and/or near-infrared (NIR) 
imagery (Haug, Michaels, Biber, & Ostermann, 2014; Keranen, Aro, 
Tyystjarvi, & Nevalainen, 2003; Weis et al., 2008). A downside of 
these approaches is that they often require specialized hardware 
as joint color and near-infrared imagery is necessary. Outside of 
vegetative indices, researchers have explored transforming the 
raw color information (RGB) to a more suitable color space. Philipp 
and Rath (2002) found that the Lab, Luv, and HSV color spaces 
were particularly effective to discriminate between vegetation and 
nonvegetation.

Automated classification of vegetation is a challenge because of 
large intraclass and small interclass variations. Intraclass variation 
includes differences among growth stages of the same vegetation 
(species of plant), differences among species in the same vegetation 
type, and differences in growth form (shape, size) based on environ-
mental conditions. Interclass variation can be small because species 
that are visually similar may belong to different vegetation types. For 
example, distinguishing a forb with long linear leaves (e.g., Plantago 
lanceolata) from a grass is a significant challenge. Successful applica-
tions of vegetation classification may require restricting the classi-
fication to particular subsets of plants. For example, Gerhards and 

Oebel (2006) distinguished between three different broadleaf weed 
species but grouped all grasses together. A variant of local binary 
patterns (LBPs) has also been used to classify leaf images for 51 spe-
cies (Herdiyeni & Santoni, 2012) achieving good accuracy of 72% 
for this challenging multiclass problem. Haug et al. (2014) and Hung, 
Xu, and Sukkarieh (2014) approached this as a two-class classifica-
tion problem, rather than multiclass classification. Haug et al. (2014) 
performed crop versus weed classification in an agricultural setting 
and achieved high accuracy using shape and pixel statistic features. 
Hung et al. (2014) learnt features to classify weeds versus not weeds 
to detect invasive weeds, using imagery collected by an unmanned 
aerial vehicle (UAV), they were able to achieve high accuracy (>90%) 
for two of three weed species. Recently, an approach to detect and 
classify vegetation was developed by Bawden et al. (2017) for au-
tomatic robotic weeding which achieved an accuracy of 96.0% and 
95.9% for classifying grass and forbs, respectively. However, this ap-
proach was only applied to simple weed detection in a monoculture 
crop.

Limited efforts have been made to apply such techniques in an 
ecological setting. One of the few examples is the work of Kendal 
et al. (2013) who used color threshold techniques for estimating 
vegetation cover using photographs. Kendal et al. demonstrated that 
their approach was promising for estimating total cover; however, it 
was not able to differentiate vegetation types, especially between 
species. Another limitation was that they required a ColorChecker 
board to be in the image so that the color in the images could be 
standardized. A reliable and consistent automated approach for es-
timating vegetation cover from visual imagery could revolutionize 
how we assess vegetation changes over time.

In this study, we take the approach of Bawden et al. (2017) 
and apply it to automate quadrat-based studies. This approach can 
make use of nonspecialized or consumer-level cameras, potentially 
even mobile phone imagery which is a near ubiquitous technology. 
As they rely on collecting imagery, the time spent in the field will 
be much less than a field ecologist performing vegetation surveys. 
Furthermore, such an approach has the advantage of being deploy-
able on many lightweight robotic platforms (including unmanned ae-
rial vehicles), as well as being usable by citizen–scientists.

We apply the automated system to digital SLR imagery and evalu-
ate its efficacy to: (1) detect vegetation, and (2) classify vegetation into 
two broad groups (classes), grasses and forbs. Overall, we find grass 
and forb cover estimates are correlated with estimates made in-situ by 
field ecologists. We then consider the implications of these estimates 
for determining differences among experimental treatments; in many 
cases, the same conclusions were arrived at whether based on esti-
mates from the automated system or from field ecologists.

2  | AUTOMATIC ESTIMATION OF 
VEGETATION COVER

We present an automated approach1 to detect and classify veg-
etation using still camera images. The proposed algorithms are 
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evaluated on quadrat images taken by a field ecologist, using a top–
down view of 1 m by 1 m quadrats. These images are taken at the 
same time that the field ecologist estimates the amount and type of 
vegetation present. This provides us with a catalogue of images with 
associated ground truth estimates of the amount and type of vegeta-
tion recorded by the ecologist in the field.

An assumption made is that the images taken from a site are con-
sistent. This means that a similar camera was used to take the images 
and that the scale and pose of the camera was similar; the images 
were taken at a similar distance with a similar angle.

The performance of our proposed algorithms is compared 
against the question that is central for this study: “Can images from 
consumer-level cameras be analyzed to automatically estimate im-
portant coverage values”? To this end, we only evaluate the per-
formance of our system against the result of the in-field ecologist 
(ground truth) for three key tasks: (1) estimating total vegetation 
cover, (2) estimating the total cover of vegetation type (grasses vs. 
forbs), and (3) the effect that a particular treatment had on the en-
vironmental system. As we concentrate on this central question, we 
do not explore engineering approaches to incrementally improve 
performance such as data augmentation (Krizhevsky, Sutskever, & 
Hinton, 2012; Poh, Marcel, & Bengio, 2003). More details on this 
dataset can be found in Section 3. Below, we outline the automated 
approaches for detecting and then classifying vegetation.

2.1 | Vegetation detection

To detect vegetation, we model the distribution of vegetation color 
using a multivariate Gaussian. We use a pretrained model as de-
scribed in Bawden et al. (2017). The model is trained on data not 
taken from the quadrat images to ensure its generality for detect-
ing (green) vegetation. This enables it to be deployed quickly and 
easily to different settings. The detection model was trained, evalu-
ated, and tested using 40 images taken with two cameras: a Canon 
7D and a mobile phone (Sony XPeria Z3 Compact). The 40 images 
were split such that 14 images were used for training, 14 for evalu-
ation, and 12 for testing; The DSLR camera had an image resolution 
of 2,592 × 1,728 and the mobile phone had an image resolution of 
3,840 × 2,160. Below we describe the approach taken, further de-
tails of this approach can also be found in Bawden et al. (2017).

The standard RGB representation of each pixel is first trans-
formed to other well-known color spaces. We make use of the Lab, 
Luv, and HSV color spaces as these are known to provide more con-
sistent representations of color than standard RGB. Each of these 
new color spaces consists of two chromaticity components and an 
intensity component (either L or V). To provide robustness to vary-
ing illumination conditions, we remove the intensity components by 
ignoring them and combine the three representations into a D = 6 
dimensional feature vector z.

The color of green vegetation is then modelled using a multi-
variate Gaussian, and is standard irrespective to the photograph 
imaging equipment. This model combines the information from 
all D = 6 dimensions of the feature vector, z, and is defined by its 

mean μ and covariance Σ (assumed to be diagonal as calculating 
the log-likelihood of the diagonal function is the most efficient2). 
The likelihood that a pixel represents green vegetation is then 
given by,

A pixel is then declared as being green vegetation if its likelihood is 
greater than a predetermined threshold τ,

The parameters of this model, θ = [μ, Σ], are estimated on an in-
dependent training set of 14 annotated images,

Where the operator diag(.) takes the diagonal of the resultant matrix. 
The predetermined threshold, τ, is calculated on an evaluation set 
of 14 annotated images and achieved an F1 score of 91.5 on the 12 
annotated test image (Bawden et al., 2017). The F1 score is the point 
at which the precision, the ratio of selected pixels which are vege-
tation, and recall, the ratio of vegetation pixels which are correctly 
selected, are equal.

2.2 | Vegetation classification

Once a pixel has been identified as containing vegetation, we classify 
the type of vegetation present using visual texture based on a region 
around the pixel. The visual texture feature is a histogram of LBPs 
which was shown by Bawden et al. (2017) to achieve an accuracy 
of 96.0% and 95.9% for classifying grass and forbs. The procedure in 
three steps.

1.	 For each pixel declared as being green vegetation, we take a 
two-dimensional (2D) window around it and each pixel within 
the window is converted to an LBP.

2.	 We use a histogram of LBPs as the feature to compactly represent 
each 2D window. This histogram of LBPs is now our feature vec-
tor, yk, which is used to represent the visual texture associated to 
the k-th window, Wk.

3.	 The class for the k-th window is compared against templates for 
each class (grass and forb) and the class template that best matches 
(represents) the window is declared as the vegetation type for 
that pixel.

An example of output of this procedure is given in Figure 1. Below, we 
describe each step in more detail.
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For step 1, we use a square sliding window of W × W pixels, also 
known as a sliding window. This type of window is commonly used to 
detect faces and other objects. Here, we used W = 100 pixels. Each 
pixel within the window is converted to an LBP.

LBPs have been used for a range of computer vision tasks from 
visual texture classification through to face recognition (Ahonen, 
Hadid, & Pietikainen, 2006; Ojala, Pietikainen, & Maenpaa, 2002). 
They encode local texture information into a binary string consisting 
of N entries. These entries are obtained by comparing the central 
pixel Pc with N surrounding pixels sampled at a distance R from the 
central pixel. This leads to an illumination robust feature as local dif-
ferences are used to obtain the feature.

The local binary pattern for pixel values can be interpreted as a 
binary string that can be converted to an integer value,

where h(x) is a binary function

This process is applied to each pixel. If pixels are on the edge, 
then they are reflected but this process uses the imagery from the 
quadrat so edges are not an encountered issue.

For step 2, we use a histogram of LBPs to compactly represent 
each 2D window. This is achieved by summarizing the W × W LBP 
values from each 2D window as a histogram. The total number of 
histogram bins is N = 256 for this work. Thus, the k-th window, Wk, 
is represented by the feature vector yk, which is the LBP histogram. 
The feature vectors for two windows, A and B, are then compared 
using the cosine similarity measure,

For step 3, we perform a two-class classification declaring each 
window of vegetation as being either grass or forb. Using the cosine 

similarity measure, the k-th window is compared against templates 
for each class (grass and forb) and the class template that best 
matches (represents) the window is declared as the vegetation type 
for that pixel; this is a nearest neighbor classifier.

The class templates were obtained by manually annotating a 
small number of randomly selected images from each site the class. 
A subset of these windows that contained only grass or forb was cho-
sen to be the templates. A total of 15 and 10 windows were anno-
tated for Bogong High Plains and Smith Prairie respectively. The low 
number of annotations makes this approach rapidly deployable to 
new sites; however, it meant that other classifiers such as support 
vector machines or random forests could not be utilized.

3  | DATA SETS AND E VALUATION 
PROTOCOL S

3.1 | Nutrient network

The automatic estimation of vegetation cover is evaluated on two 
sites from the Nutrient Network (NutNet) (Borer et al., 2014; Grace 
et al., 2016; Hautier et al., 2014). Bogong is an alpine grassland situ-
ated on the Bogong High Plains (Victoria, Australia) at an elevation of 
1,760 m and Smith Prairie is a more productive temperate grassland 
in Puget Sound (Washington state, United States of America) at an 
elevation of 62 m.

Each site had 30 quadrats where photographs were taken and 
cover was estimated. A PVC frame identified the perimeter of each 
quadrat. We analyzed photographs of 30 quadrats in each of 3 years 
(2009–2011) from Bogong and photographs of 29 quadrats for each 
of 2 years from Smith Prairie (2015–2016)3; see Figure 2 for example 
images. The Smith Prairie images were taken in May with a Canon 
PowerShot SD1200 IS camera (2015) or Canon PowerShot ELPH 
115 IS (2016). The Bogong images were taken with a Canon DIGITAL 
IXUS 80 IS.

Vegetative cover was surveyed at the Bogong site each year at 
the start of the growing season in January. Cover was estimated 

LBPP,R=

N−1
∑

n=0

h(Pn−Pc)2
n

h(x)=

{

1 x≥0

0 otherwise.

s(yA,yB)=
yA ⋅yB

||yA|| ||yB||
.

F IGURE  1 An example output of the 
vegetation classification procedure. On 
the left is the area within the quadrat and 
on the right, from top to bottom, is the 
result of grass and forb classification
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separately for each species, so total cover could sum to >100% be-
cause of overlapping canopies. Cover was generally recorded to the 
nearest percent. At Smith Prairie, the vegetation was assessed in 
both May (Spring) and June (Summer) to capture the variation asso-
ciated with species turnover at this higher productivity site charac-
terized by a longer growing season. Where a species was recorded 
during both census times, the highest cover estimates were retained 
as the estimate.

As each site was part of the NutNet study, the experimental 
treatments were the same. There were ten treatment types

that include the impact of the boundary (Fence) as well as the addi-
tion of nitrogen (N), phosphorus (P), potassium (K), and combinations 
thereof. Treatments were initiated in 2009 at Bogong site and in 
2008 at the Smith Prairie site. Fertiliser application will generally in-
crease species cover and generally increase the cover of graminoids 
particularly in areas that are fenced from vertebrate consumers, but 

this response can vary depending on the type of grasslands, and an-
nual climatic conditions such as rainfall and temperature.

3.2 | Performance analysis

To evaluate the effectiveness of the automatic system in comparison 
with vegetation surveys conducted by field ecologists, we employed 
two performance measures. First, we evaluate how accurately the 
automated approach estimates the amount and type of vegetation 
present compared with visual estimates from ecologists. Second, we 
evaluate whether inferences were consistent between the two meth-
ods, the automated system and ecologists, by comparing analyses of 
treatment effects using automated and expert (ecologist)-derived data.

To measure how accurately the automated system estimates the 
amount and type of vegetation, we use two measures: (1) the correla-
tion between the automated system and the field ecologist across all 
of the quadrats and (2) calculate Cohen’s kappa, inspired by (McHugh, 
2012), to measure the classification agreement for change in coverage 

Ttype=
{

Control, Fence, K,N,NK,NP,NPK,NPK+Fence, P, PK
}

F IGURE  2 Example quadrat images from the two datasets. (a–c) Show an example of quadrat photographs taken at the Bogong High 
Plains site over 3 years of the NutNet experiment 2009 to 2011. Photographs (b and c) provide an example of the increase in flowering by 
forbs in the plots. (d–f) Show an example of quadrat photographs taken at the Smith Prairie site. These three images highlight the different 
vegetation being estimated. (d) Provides an example of the typical grass present, (e and f) provide an example of the small and large leaf 
forbs present
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(either increasing or decreasing) between the automated system and 
ground truth (ecologist) across the years. Cohen suggested the follow-
ing interpretations for kappa values: indicating no agreement ≤0, none 
to slight agreement 0.01–0.20, fair agreement 0.21–0.40, moderate 
agreement 0.41–0.60, substantial agreement 0.61–0.80 and almost 
perfect agreement 0.81–1.0. We treat the coverage estimates from 
the field ecologist as the true estimate of total vegetation (Vveg.), forb 
(Vforb) and grass (Vgrass). From the automated system, we obtain the 
percentage of pixels that are vegetation (Aveg.) within the quadrat (the 

region defining the interior of the quadrat is marked manually). Each 
pixel classified as being vegetation is then declared as being either 
grass of forb, this is the percentage of declared vegetation that is either 
grass (Agrass) or forb (Aforbs). To convert these percentages into a cover-
age estimate, we normalize using the percentage of total vegetation,

This allows us to normalize the estimates for grass and forb; however, 
it does not allow us to normalize the estimate for the amount of total 
vegetation.

To measure the consistency of inferences, we use linear mixed 
effect models (LMEMs) (Bates, Maechler, & Bolker, 2012; Bolker 
et al., 2008) to measure the impact of treatment types. We used 
LMEMs to model how the proportion of forb, grass and vegetation 
are influenced by the treatment at the plot site. A model, H0, is de-
rived for each treatment type which accounts for the effect that 
treatment had upon the amount of coverage, and the random effects 
associated with the quadrats being nested in the year. For the j-th 
coverage estimate (grass, forb or vegetation)

A∗

grass=Agrass ∗Aveg., A∗

forbs
=Aforbs ∗Aveg..

TABLE  1 Correlations between the automated system and the 
ground truth from an in-field ecologist

Year Grass Forb Vegetation

Bogong High 
Plains

2009 0.61 0.83 0.41

2010 0.82 0.60 0.34

2011 0.62 0.59 0.29

Smith Prairie 2015 0.52 0.48 0.51

2016 0.63 0.55 0.41

F IGURE  3 Cover estimates conducted in the field (Ground Truth, salmon) versus the estimates generated by the algorithm (Model, 
aqua) for the Bogong High Plains dataset. Each column shows results from a different year, from left to right 2009, 2010 and 2011. Each 
row corresponds to the estimated forb, grass, and total vegetation coverage, moving from top to bottom. Points shown within each panel 
correspond to one of 30 quadrats that were measured over the 3 years



     |  6011MCCOOL et al.

where Zi is the random effect parameter and D is the covariance 
matrix of random effects, ui is the covariate associated with each 
treatment for the random effects, β0 is the control treatment, εi is 
the irreducible error, Σi is the covariance matrix of the irreducible 
errors, and h(.) is a binary indicator function.

4  | RESULTS

4.1 | Estimating vegetation and group coverage

We found reasonable Pearson’s correlations between cover esti-
mates made by the field ecologist(s) and automated system (Table 1). 
For Bogong, across the 3 years, the correlation for grass and forb is 

0.59 or greater. The correlations for Smith Prairie, for grass and forb, 
are slightly lower but always 0.48 or greater. This trend can also be 
seen in Figure 3, for Bogong, and Figure 4, for Smith Prairie, which 
present the estimated coverage for the automated system and field 
ecologist. Equivalent scatter plots are given in Figure 5, for Bogong, 
and Figure 6, for Smith Prairie.

Examining the kappa coefficients (Table 2) for coverage through 
the years indicates that forbs are the most consistent group coverage 
between the ground truth and the automated system. For Bogong, 
across the 3 years, there is fair agreement for forbs, 0.34, but no 
agreement for vegetation and grass, −0.31 and −0.43, respectively. 
For Smith Prairie, across the 2 years, there is moderate agreement 
for grass, 0.43, fair agreement for forbs, 0.31, and slight agreement 
for vegetation, 0.02.

The lowest correlations occur for total vegetation coverage for 
Bogong, with the lowest correlation being 0.29 for 2011. For Bogong, 
the 2011 growing season experienced a spike in vegetation cover 
most likely due to increased rainfall, but this peak cover change was 
not detected by the automated system. To better understand why 
this might be the case, we examined the images from 2011 of Bogong 
and note there is a consistent increase in not just vegetation but also 
of flowers, as can be seen in Figure 2. A similar trend can be seen 
from 2009 to 2010, where the vegetation increases, but so do the 

H0:Coveragej∼Treatment+

(

1
|

|

|

Year

Plot

)

,∀j

Coveragei,j=β0+

9
∑

k=1

βk

(

hi==Treatmentk
)

+Ziui+�i

Zi∼Nq(0,D)

�i∼Nni

(

0,Σi

)

,

F IGURE  4 Cover estimates conducted in the field (Ground Truth, magenta) versus the estimates generated by the algorithm (Model, 
cyan) for the Smith Prairie dataset. Each column presents the results for a particular year, left is 2015 and right is 2016. Each row 
corresponds to, from top to bottom, the estimated forb, grass and total vegetation coverage. Points shown within each panel correspond to 
one of 27 and 28 (of 30) quadrats that were measured over 2015 and 2016, respectively
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instances of flowers. Unfortunately, the current automated system 
does not currently classify flowers as vegetation as they are not 
green. This impacts the total vegetation estimate as well as the esti-
mates for grass and forb. The images from Smith Prairie also captured 
plants flowering; however, their flowers were green and so this trend 
is not present.

A limitation with the automated system is that it is unable to de-
tect some of the peaks for vegetation coverage, in particular when 
the estimated coverage exceeds 1.0. The automated system is un-
able to provide a coverage value greater than 1.0 as the vegetation 
coverage is the percentage of pixels that are considered to be vege-
tation (green), consequently the maximum value is 1.0. This explains 
the discrepancies in the Smith Prairie data for 2016, see Figure 4.

4.2 | Impact of treatment type

The field ecologist(s) and automated system are reasonably cor-
related when we examine cover response to the treatments (i.e., 
nutrient and/or exclusion of vertebrate consumers) using a LMEM 
(Figure 7). When examining Figure 7, we concluded there was no 
significant change if the variance of the model, blue line for ecol-
ogist and red line for the model, contained zero. We concluded 
there was a significant change if the 95% confidence interval did 
not include zero. We then examined the results of Figure 7 to de-
termine when the same conclusion was made by the ecologist and 
the model.

For the forb and grass groups, it can be seen that the same con-
clusion is made for eight of the nine treatments (excluding control) 
for both Bogong High Plains and Smith Prairie. A similar trend can be 
seen for Bogong High Plains for vegetation coverage with the same 
conclusion for seven of the nine treatments. However, for Smith 
Prairie, the vegetation coverage leads to a different trend with the 
same conclusion for just four of the nine treatments.

We attribute the poor performance for vegetation coverage for 
Smith Prairie to the fact that the automated system describes vege-
tation coverage as the percentage of pixels that contain vegetation. 
This is not equivalent to what a field ecologist is estimating. In partic-
ular, this analysis focused on dominant species at the time the images 
were taken, whereas the ecologist estimated cover in both spring and 
summer, and some species were subordinates that grew beneath the 
dominant species and thus were not evident in the images.

5  | DISCUSSION

In this study, we have presented an automated approach that can 
estimate vegetation cover from digital images of quadrat taken with 
a regular camera and can classify that cover into two functional 
groups: grass and forb. The automated system-  and field-based 
measurements from ecologists were reasonably well correlated 
even though the grasslands were ecologically very different—one a 
relatively low stature subalpine grassland in Australia and the other 

F IGURE  5 Scatter plot for the 
Bogong High Plains dataset. Each column 
corresponds to, from left to right, 
forb, grass and vegetation. Each row 
corresponds to a different year, from top 
to bottom, 2009, 2010, and 2011. The 
black dashed line represents a Pearson’s 
correlation of 1 and the solid red line 
represents the linear fit to the points
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a high stature and more productive lowland grassland in the USA. 
We found that using the automated system would lead to similar 
treatment conclusions. Based on grass and forb coverage, nine of 10 
of the interpretations of treatment responses would be the same 
at each of the two sites whether using the automated photograph 
interpretation process or the field ecologist data, although inference 
was less consistent for total vegetation cover. This demonstrates 
the potential of an automated system to facilitate the interpretation 
of quadrat imagery and provide important information with similar 
consistency and accuracy over space and time to a field ecologist.

A particularly exciting aspect of this work for ecology is the pros-
pect to increase the spatial and temporal resolution of vegetation 
studies. An automated system like this could be applied to images of 
larger areas than quadrats. For example, images could be obtained 
from a UAV during a short time window, thus avoiding errors in 

interpretation that arise from species turnover and the phenological 
changes that occur during a long field season of vegetation sampling. 
In fact, those phenological changes could also be studied at large 
scales by taking additional images throughout the season.

There are three limitations with the current automated system. 
First, the photographs convert a three-dimensional system into a 
two-dimensional image, which limits the ability to assess under-
story cover. Also, we have assumed that the scale of the images 
is similar for a given site and that the viewing angle of the cam-
era does not impact the overall area that a pixel is responsible for. 
Future work could alleviate these assumptions by normalizing the 
images. This image normalization could include normalizing the 
image to a constant size based on the estimated quadrat location, 
accounting for lens distortion and exploiting the known size of the 
quadrat. Second, having lost the three-dimensional information, 
total vegetation cover is given as a percentage of pixels that are 
considered occupied by vegetation. However, when an ecologist 
performs a survey, a pixel region could contain both grasses (or 
other graminoids) and forbs, and this can lead to coverage estimates 
greater than 1.0, which is not possible with the automated process 
developed here. This means that simply declaring that a pixel con-
tains vegetation is insufficient to accurately estimate the amount 
of vegetation present within a quadrat. Third, the system can be 
confused by the presence of flowers leading it to conclude that less 
vegetation is present than is actually the case. Regardless of these 
limitations, we have shown an ecologist’s assessment of responses 

F IGURE  6 Scatter plot for the Smith 
Prairie dataset. Each column corresponds 
to, from left to right, forb, grass and 
vegetation. Each row corresponds to 
a different year, from top to bottom, 
2015 and 2011. The black dashed line 
represents a Pearson’s correlation of 1 
and the solid red line represents the linear 
fit to the points

TABLE  2 Kappa coefficients through the years between the 
automated system and the ground truth from an in-field ecologist. 
The Kappa coefficient measures how successfully the automated 
system measures the change in cover (increase or decrease) over 
time

Bogong High Plains Smith Prairie

Forbs 0.34 0.31

Grass −0.43 0.43

Vegetation −0.31 0.02
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to treatments over space and time would be remarkably similar to 
the proposed automated method.

Future work could address this by performing multilabel classi-
fication or regression for each pixel, such that a single pixel in the 
image could represent both grass and forb. Such an approach would 
better match the process undertaken by field ecologists and would 
potentially overcome the limitation that the current automated sys-
tem can only provide a percentage of total vegetation (it is unable to 
produce a coverage estimate greater than 1.0).

Finally, our approach does not yet have the sensitivity to reliably 
estimate cover for all species individually or to measure finer detail 
functional groups such as the difference between forbs and legumes 
and grasses and sedges.

Nevertheless, this method illustrates how cover of different vege-
tation types can be easily collected and then quantitatively evaluated 
to record changes over time. In particular, these methods offer a reli-
able alternative or complimentary approach to estimating cover that is 
more repeatable and likely to be more reliable over the long term and 
so is especially useful for long-term monitoring We recommend that 
top–down photographs be taken as a standard adjunct to any quadrat-
based measurement, and possibly even top–down video of an entire 
site using transects. While aggregated cover estimates can reliably be 

made, photographs also provide a permanent picture of vegetation at 
a point in time that can be analyzed retrospectively. As image analysis 
methods develop, the photographs can be reanalyzed to reflect these 
advances and so enable improved measurement of historical data.
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ENDNOTE S
1	The code and data used is available through the following link: https://
tinyurl.com/automation-ecv.

2	Initial experiments found no improvement in performance when using the 
full covariance matrix.

3	30 quadrats were examined by a field ecologist from Smith Prairie; how-
ever, only 27 and 28 images were used, from 2015 to 2016, respectively, 
as the other images had inconsistent top–down views of the quadrats.
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