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Abstract

Children with movement impairments needing assistive devices for activities of daily living

often require novel methods for controlling these devices. Body-machine interfaces, which

rely on body movements, are particularly well-suited for children as they are non-invasive

and have high signal-to-noise ratios. Here, we examined the use of a head-joystick to enable

a child with congenital absence of all four limbs to control a seven degree-of-freedom robotic

arm. Head movements were measured with a wireless inertial measurement unit and used

to control a robotic arm to perform two functional tasks—a drinking task and a block stacking

task. The child practiced these tasks over multiple sessions; a control participant performed

the same tasks with a manual joystick. Our results showed that the child was able to suc-

cessfully perform both tasks, with movement times decreasing by ~40–50% over 6–8 ses-

sions of training. The child’s performance with the head-joystick was also comparable to the

control participant using a manual joystick. These results demonstrate the potential of using

head movements for the control of high degree-of-freedom tasks in children with limited

movement repertoire.

Introduction

According to the 2010 American Census, there were approximately 300,000 children with dis-

abilities requiring some form of assistance with activities of daily living [1]. In this context,

assistive devices such as wheelchairs and robotic arms are vital for activities requiring mobility

and manipulation. Importantly, these devices are not only critical from a sensorimotor per-

spective, but they also support psychosocial development by providing children with greater

independence [2].
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Among methods of controlling assistive devices, manual joysticks are the most popular [3];

however, because they require upper limb functionality, they are not suited for individuals

with severe motor impairments such as high-level spinal cord injury or congenital limb

absence. For these individuals, interfaces have been developed based on signals from the brain

[4–6], or the body [7–9]. For children in particular, interfaces based on brain signals, invasive

or non-invasive, are less than ideal for long-term use because of issues related to risks of sur-

gery, signal quality, signal drift and longevity [10, 11]. These limitations highlight the need for

developing body-machine interfaces that are non-invasive and robust, and, importantly, also

have form factors that make them inconspicuous during interaction with peers [12].

A specific class of body-machine interfaces that addresses these requirements are interfaces

based on head movements [13]. Head movements are typically preserved in individuals with

severe motor impairments, often making such interfaces the only viable option. Two common

approaches based on head movements are head arrays and head joysticks. Head arrays rely on

a series of switches that are physically activated by contact with the head. Although they are

commercially available and have been used for wheelchair control, they are not well-suited for

high degree-of-freedom (DOF) tasks because of the binary nature of the switches. Head joy-

sticks, in contrast, mimic manual joysticks and provide a continuous method of controlling

degrees of freedom [14, 15], thus having the potential for being used for high-DOF tasks. In

addition, head joysticks based on commercially available inertial measurement units (IMUs)

are non-invasive, wireless, and have high signal-to-noise ratios. Previous research has shown

the utility of head joysticks for low-DOF tasks such as wheelchair control [14, 16, 17], but evi-

dence of control of high-DOF tasks using head joysticks is limited [18, 19], especially in

children.

In this study, we investigated the use of an IMU-based head joystick for controlling a

robotic arm to perform high-DOF functional tasks. In a child with congenital absence of all

four limbs, we examined the child’s ability to perform two tasks related to activities of daily liv-

ing–(i) picking up a cup and drinking using a straw, and (ii) manipulating objects placed on a

table. We show that the child can use the head-joystick to successfully perform these complex

tasks and improve over time to a level that is comparable to that of an unimpaired individual

using a manual joystick.

Materials and methods

Participants

Our main participant was a 14-year old male with congenital absence of all four limbs—see Fig

1a. He had participated in two previous studies with our group which involved position con-

trol of a cursor [20] and 2-DOF velocity control of the end-effector of a robotic arm [21].

These prior studies involved the control of these devices using shoulder and torso movements.

In the current study, he used his head as a joystick to control the robotic arm as shown in Fig

1a. Initially, there were 4 unstructured sessions, each lasting about 30–45 minutes in length.

We used these sessions to calibrate the interface to make sure that the head movements per-

formed were in a comfortable range when controlling the robot. During each session, the par-

ticipant was asked to do some exploratory movements of the head to understand how

movements of each DOF controlled the robot, and to learn the operation of the switches

(which were used to toggle between the translation/orientation modes and control the end-

effector). In addition, the participant was also free to perform any tasks of their liking using

the robot arm like trying to pick up an object from a table. The child was paid $10 per visit.
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Our control participant was an able-bodied college-aged male volunteer (21 years old)- see

Fig 1b. He controlled the robot with its accompanying manual joystick. He had no prior expe-

rience interacting with the system or observing its use.

All participants provided informed consent or assent (including parental consent in case of

child) and experimental protocols were approved by the IRB at Michigan State University. The

individuals pictured in Fig 1 (and the S2 and S1 Videos) have provided written informed con-

sent (or parental consent when appropriate, as outlined in PLOS consent form) to publish

their images and videos alongside the manuscript.

Apparatus

Robot: We used a 7-DOF robotic arm (JACO v2 arm, KINOVA robotics, Boisbriand QC, Can-

ada) mounted on a table for performing the object manipulation tasks. The robotic arm,

shown in Fig 1, is anthropomorphic with 2 DOFs at the shoulder, 1 DOF at the elbow,

Fig 1. Interfaces for controlling the robot and experimental setup for the drinking and stacking tasks. (a) Interface

for main participant using the head-joystick. A head mounted IMU was used to control the robotic arm, and switches

(SW1, SW2, SW3) placed behind the shoulder were used to toggle between different control modes and for control of

the grasper. (b) Interface for control participant using the manual joystick. (c) Initial layout of drinking task.

Participants had to use the robotic arm to grasp the cup and bring it to the mouth. (d) Initial layout of stacking task.

Participants had to use the robotic arm to stack the five blocks on top of each other in order of decreasing size with the

biggest block at the base.

https://doi.org/10.1371/journal.pone.0226052.g001
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3 DOFs at the wrist, and a 1 DOF gripper; specifications of the robot can be found at www.

kinovarobotics.com.

Head-Joystick: For the child with congenital limb absence, the robotic arm was controlled

via signals generated by a wireless inertial measurement unit (IMU) (YEI Technologies Inc.,

Ohio) worn on the top of a baseball cap with the bill removed—see Figs 1a and 2a. A second

IMU, shown in Fig 1a, was placed on the table to determine the relative orientation between

the participant and the robot reference frame. This second IMU, although redundant in the

current study (because the table was always fixed), is necessary for preventing unintended

movement of the robotic arm when the robot reference frame moves along with the partici-

pant (for example, when the robot is mounted on the wheelchair of the participant). Together,

these IMUs were used to control the six DOFs of the robot end-effector—three position DOFs

and three orientation DOFs. The head-joystick was not used to control the seventh DOF—

opening and closing of the end-effector, which was performed by operation of switches

described below.

Switches: In addition to the two IMUs, there were three switches. The first switch (SW1)

enabled toggling between position control of the end-effector, orientation control of the end-

effector (both using the head-joystick), and a no-movement mode. SW1 was a small button-

type off-the-shelf switch (requiring a 1 N activation force) placed below the primary partici-

pant’s left shoulder—see Fig 1a). The three modes allowed the participant to use the head-joy-

stick to control all six DOFs of the robot, and the no-movement mode allowed the participant

to freely move his body when not intending to control the robot—see Fig 3a. Two additional

switches (SW2 and SW3—see Fig 1a) were attached to the chair’s backrest, behind the shoul-

ders of the participant, and controlled the opening and closing of the end-effector. These

switches were custom-made with a diameter of 70 mm, a throw of 1 mm, and an activation

force of approximately 10 N. Pressing only SW2 caused the grasper to close, while pressing

only SW3 caused it to open. Pressing neither or both switches resulted in the current grasp

Fig 2. Configurations of head-joystick and manual joystick. (a) Configuration of the head-joystick. It consisted of a

three DOF wireless inertial measurement unit (IMU) (YEI Technologies Inc.) on top of a baseball cap with the bill

removed. (b) Configuration of the manual joystick. The joystick could move forward or backward, left or right, or be

twisted clockwise or counterclockwise. Buttons on the joystick enabled the user to switch control modes as indicated

by the light-emitting diodes (LEDs) at the top.

https://doi.org/10.1371/journal.pone.0226052.g002
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being maintained—see Fig 3b. The participant was able to determine the state of the grasper

from LEDs placed on the table—see Fig 1a.

Traditional Joystick: The able-bodied adult participant controlled the robotic arm using the

manual joystick (shown in Figs 1b and 2b). This allowed for 3-DOF end-effector position con-

trol, 3-DOF end-effector orientation control, and 1-DOF opening and closing of the end-effec-

tor grasper. These three modes were toggled using buttons on the joystick while LEDs (located

on the joystick) signaled the active mode. This functionality inspired the design of the head-

joystick and switches used by our primary participant.

Controlling the six DOFs of the robot using the head-joystick

The head-joystick has three independent DOFs associated with the head tilting up and down

(neck flexion/extension, see Fig 4a), the head turning right and left (rotation, see Fig 4b), and

the head tilting right and left (lateral flexion/extension, see Fig 4c). These three DOFs were

measured by the IMU on the head and mapped to control either the three DOFs of the end-

effector position or the three DOFs of the end-effector orientation. We used a velocity-control

mode where the IMU signals were mapped to velocity commands. The robot internally per-

formed inverse kinematic and inverse dynamic computations for joint angle velocities and

actuator torques to produce the commanded end-effector velocities. Velocity commands for

the end-effector position were computed with respect to the base frame of the robot (XYZ

frame in Fig 4d), while velocity commands for the end-effector orientation were computed

with respect to the body-fixed frame of the end-effector (e1e2e3 frame in Fig 4e).

In the end-effector position control mode (achieved by toggling SW1), tilting the head

upwards relative to a neutral home head orientation, as shown in Fig 4a, resulted in an upward

(+Z) motion of the end-effector—see Fig 4d. Through the same process, tilting the head down-

wards (see Fig 4a) resulted in downward motion (-Z). The magnitude of the velocity command

was proportional to the angle of head tilt. Similarly, turning the head right and left (see Fig 4b)

resulted in the end-effector motion towards the right (+X) and left (-X), respectively—see Fig

4d. Finally, following the right-hand-rule, tilting the head to the right and left (see Fig 4c)

resulted in end-effector movement forward (+Y) and backwards (-Y)—see Fig 4d.

In the end-effector orientation control mode (achieved by toggling SW1—see Fig 3a), the

IMU signals were translated to rotational velocities of the end-effector about its body-fixed

frame. Tilting the head up and down (see Fig 4a) resulted in the end-effector pitching about its

e1 axis in the positive and negative direction (see Fig 4e). Similarly, turning the head right and

left (see Fig 4b) resulted in the end-effector rotating about its e3 axis in the negative and

Fig 3. Description of switches used to toggle between modes. (a) The three modes of end-effector control as toggled

by switch one (SW1). (b) Switches SW2 and SW3 were used to close and open the grasper. The truth table shows how

pressing and releasing each button on and off causes the grasper to react.

https://doi.org/10.1371/journal.pone.0226052.g003
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positive direction. Finally, tilting the head to the right and left (see Fig 4c) caused the end-

effector to rotate about the e2 axis in the positive and negative direction, respectively.

Because even small unintentional deviations from the resting posture could be captured by

the IMUs and potentially affect the velocities, we implemented a ‘dead-zone’ of 0.1 radians

(�6 deg) so that robot actually started moving only when the IMU roll, pitch, or yaw angles

exceeded this threshold. When a measured angle exceeded this threshold, we subtracted the

value of 0.1 from the magnitude of angle before computing the commanded velocity to main-

tain smooth control (e.g. an IMU yaw angle of 0.15 rad would only cause the end-effector to

move at 0.05 m/s to the X direction in cartesian mode). The dead-zone not only provided the

user with a larger range of rest postures, but also helped the user generate distinct commands

along a single direction as velocities in the other two directions would be under the threshold.

Tasks

We used two tasks that mimicked activities of daily living to assess the participants’ abilities to

control all 7 DOFs of the robotic arm: a drinking task and a stacking task.

Drinking task. The first task involved drinking from a cup. The participant was required,

as quickly as possible, to reach for and grasp a cup containing liquid, bring the cup towards the

mouth, and drink from it using a straw. The paper cup was semi-rigid: it provided enough

resistance to be firmly grasped while also deforming enough to allow the participant to visually

confirm the strength of the grasp. The robotic arm was always initialized in the same starting

Fig 4. Mapping between head motion and robotic arm motion for the head joystick. Three sets of possible motions

of the head for controlling the three DOFs of the head-joystick: (a) tilting the head up and down, (b) turning the head

right and left, (c) tilting the head right and left. (d) Coordinate frame fixed to the robot base for controlling the position

of the end-effector showing the corresponding change in position of the end-effector for each set of head motions. (e)

Coordinate frame fixed to the robot end-effector for controlling the orientation of the end-effector showing the

corresponding orientation of the end-effector for each set of head motions.

https://doi.org/10.1371/journal.pone.0226052.g004
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position (X: 0.40 m, Y: 0.30 m, Z: 0.30 m from the base of the robot with the gripper open

enough to grasp the cup and facing towards the right) while the cup was in front of and to the

right of the participant on the table (mean X: 0.58 m, mean Y: 0.25 m, Z: 0.00 m)—see Fig 1c.

The straw was also kept consistently in the same orientation. To impose similar constraints on

both participants, the control participant was instructed to minimize trunk movement and to

move the straw to their mouth (and not move their upper body towards the straw). The final

position of the grasper holding the cup when the main participant took a drink was (mean X:

0.35 m, mean Y: -0.04 m, Z: 0.10 m) with the grasper facing towards the participant.

Stacking task. The second task involved stacking five cube-shaped blocks of decreasing

size (see Table 1), each with an open face, on top of each other—see Fig 1d. From the same ini-

tial end-effector position as the drinking task, each block had to be grasped, reoriented, and

placed on the previous larger block to build a tower. Each block had a lip that protruded 8–10

mm outside the base of the next larger block, thereby determining the required accuracy

needed to successfully stack the blocks. The location of the tower was chosen by the participant

(mean X: 0.39 m, mean Y: 0.28 m) to allow them to have a clear vision of the remaining blocks

for the remainder of the tasks.

The blocks were placed directly across the table from the participant in five orientations not

matching the target orientation—see Fig 1d. The first block had its opening facing upwards;

the second block had its opening facing away from the participant; the third block had its

opening facing towards from the participant; the fourth block had its opening facing to the

right of the participant; the fifth block had its opening facing to the left of the participant.

These starting positions were standardized throughout trials (position of first block with

respect to the base of the robot: mean X: 0.31 m, mean Y: 0.49 m). Each block required a differ-

ent approach strategy and subsequent placement strategy. Indeed, this task was more difficult

than the drinking task.

Protocol

Child with congenital limb absence. The amount and distribution of practice for both

participants are shown in Table 2. We made nine visits to the school of the main participant

for testing him over a period of 2 months. Visits were during the participant’s free period and

were not evenly spaced as they were subject to scheduling availability such as school breaks

and exams. Each session was no longer than 60 minutes as constrained by the participant’s

class schedule. He performed a total of 19 drinking task trials and 11 stacking task trials over

the course of all the sessions. The number of trials during each session was variable and

Table 1. Dimensions of five blocks used in the stacking task.

Block Outer dimension of closed face (mm) Inner dimension of open face (mm)

1 67 84

2 60 77

3 53 68

4 46 61

5 44 54

The difference between the outer dimension of the previous block and the inner dimension of the subsequent block

defined the precision to which the block had to be placed to be secure. For example, the precision requirement when

stacking the 2nd block on top of the 1st was 77–67 = 10 mm, and that for stacking the 5th on the 4th block is 54–46 = 8

mm.

https://doi.org/10.1371/journal.pone.0226052.t001
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dependent on the tasks performed: a stacking task generally took longer than the drinking

task. For both participants, the study was concluded when their performance plateaued on

each task.

During each session, the main participant sat in his personal wheelchair with the table at

his navel level, robot to his left front side and eyes at the level of robot’s shoulder joint. He

wore a cap with an IMU attached on top of it. The IMUs sampled at 125Hz, the same rate at

which the signals were processed and sent as commands to the JACO arm. The states of both

the head IMU and chair IMU were polled continuously and their difference was sent to the

robotic arm as either cartesian velocity commands or rotational velocity commands, depend-

ing on the current mode. All IMU values were taken relative to a comfortable base position as

defined by the participant before starting each trial.

Control participant. There were 4 lab visits made by the control participant over a two-

week period (2 visits per week). Each session was no longer than 60 minutes to match the

main participant’s sessions. A total of 10 drinking task trials and 8 stacking task trials were per-

formed over the course of all the sessions. Similar to the main participant’s sessions, the num-

ber of trials per session varied and were dependent on the tasks performed.

The control participant sat at a table with the height adjusted such that the participant’s

mouth was at the same height relative to the table’s surface as the main participant’s. This was

to ensure the movement domain of the robotic arm would be similar between participants.

This participant was instructed to not translate his head location significantly during the tasks

as this could provide an unfair advantage relative to the main participant.

It is important to note that the control participant was an adult controlling a manual joy-

stick; therefore, these data are not intended to be a direct comparison with the child using the

head-joystick. Rather, given that the tasks we used were complex tasks for which benchmarks

are not already available, the data from the control participant provide reference values that

help in interpretation of the magnitudes of the change in performance with learning and the

final performance level achieved by the child.

Procedure

At the beginning of each session, participants were allowed to explore the robotic arm’s range

of movement for as long as they wanted. This generally lasted anywhere between 3–5 minutes.

The goal of this free exploration was just to ensure that the interface was working as intended

and the participant was ready to start controlling the robot arm.

Table 2. Experimental protocol.

MAIN PARTICIPANT CONTROL

PARTICIPANT

Visit 1 2 3 4 5 6 7 8 9 1 2 3 4

Day 1 4 8 11 45 50 52 57 64 1 5 8 12

Drinking task trials 2 7 0 0 5 4 0 1 0 2 7 0 2

Stacking task trials 0 0 1 3 1 0 2 2 2 0 2 3 3

Experimental protocol showing the amount and distribution of practice across days for the main participant (i.e. the

child with congenital limb absence) and the control participant. For the main participant, there were a total of 19

trials on the drinking task and 11 trials on the stacking task. For the control participant, there were a total of 11 trials

on the drinking task and 8 trials on the stacking task.

https://doi.org/10.1371/journal.pone.0226052.t002
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The order of tasks was decided based on discussion with the participant. The robotic arm

was put in a home position before every trial. Breaks were taken between trials if the partici-

pant wanted to.

The experimenters also occasionally provided ‘coaching’ in the form of suggested move-

ments and grasping strategies during both trials and breaks. The type and amount of coaching

was not predetermined as the goal of this study was to determine the best level of performance

capable with the interface. The amount of coaching decreased over time as control skill and

strategies improved.

Data analysis

Task completion

Task completion was measured by the number of successful trials at the task. For the stacking

task, trials were considered incomplete if the participant was not able to finish stacking all five

blocks. However, we still report the characteristics of these incomplete trials in the data analy-

sis as they potentially reflect exploration and learning strategies.

Movement time

Movement time for the tasks were computed from video recordings of the session. For the

drinking task, the movement time began on the frame when the robot was first moved from its

initial home position by the participant and ended when the participant’s mouth made contact

with the straw. For the stacking task, the movement times were split into movement times for

each block. The first block’s time began on the frame when the robot first moved and ended

when the robot was no longer touching the correctly placed block. The next block’s time began

when the previous block’s time ended. Together these were combined into a total completion

time for the block stacking task.

Dimensionless jerk

To quantify the smoothness of the movement, we computed the dimensionless jerk values for

the tasks from the end-effector position data on each trial. The jerk was normalized by the

time and peak velocity to yield a dimensionless measure which has been shown to be more

appropriate measure [22]. The position values were first low pass filtered using a 2nd order But-

terworth filter with a cutoff frequency of 6 Hz. The jerk values for each trial were then calcu-

lated from subsequent derivatives of the filtered position data and integrated over the duration

of the trial. The dimensionless jerk value was then computed as follows

Dimensionless Jerk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ t2

t1

kx:::k2dt
� �

MT3=v2
peak

s

where x
:::

indicates the instantaneous jerk, MT = (t2 − t1) is the movement time of the trial, and

vpeak indicates the magnitude of the peak velocity during the trial.

Results

Task completion

For the drinking task, both participants completed all trials (main participant = 19/19 trials;

control participant = 11/11 trials).

For the stacking task, the main participant completed 8/11 trials. Three stacking trials were

considered incomplete because the final stacking block (red block in Fig 1d) was dropped to a
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position outside of the reach of the robotic arm during the course of the trial. The control par-

ticipant completed 8/8 stacking trials. Examples of the main participant performing the two

tasks are shown in S1 and S2 Videos.

Movement time

Drinking task. The main participant’s slowest movement time was measured at 99 s, his

fastest time was measured at 30 s, while the average of his movement times was 55.2 s

(SD = 16.3 s) (see Fig 5). However, two trials on visit #5 (trials marked with an “x” on Fig 5)

involved a lot of talking during the trial and a poorly aligned IMU. Excluding these two trials

showed the main participant improved by 43% from his first trial. The control participant’s

slowest movement time was 75.1 s, his fastest time was 16.9 s, while the average of his move-

ment times was 36.0 s (SD = 15.7 s). Using the head joystick, the main participant’s average

movement time was around 40% slower than the control participant’s average movement time

when using the manual joystick.

Stacking task. For completed trials, the main participant’s slowest movement time was

1020 s, his fastest time was 446 s, while the average of his movement times was 608 s (SD = 175

s) (see Fig 6). The control participant’s slowest movement time was 797 s, his fastest time was

Fig 5. Movement times for drinking task trials. The movement times for the drinking task trials for the main participant across practice. The range

and mean of the control participant’s times are included for comparison. Movement times denoted with a “x” were those in which the main participant

had significant distractions or poor IMU alignment. They are not included in mean session movement time but are reported since the main participant

was able to complete the task.

https://doi.org/10.1371/journal.pone.0226052.g005
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376 s, while the average of his movement times was 549 s (SD = 128 s). Overall the reduction

in their completion times on their last days’ trials relative to their respective first trials were

very comparable (main participant = 50%; control participant = 39%) and the main partici-

pant’s best trial was only 19% slower than the control participant’s best trial. For the main par-

ticipant, the average times it took to successfully place each block were 74 s (SD = 47 s), 123 s

(SD = 28 s), 123 s (SD = 30 s), 156 s (SD = 98 s), and 168 s (SD = 52 s), in order. Average

improvements in movement time on the last day of each block relative to trial 1 were 76%,

40%, 39%, 33%, and 51%.

Dimensionless jerk

Drinking task. The dimensionless jerk of the main participant closely followed the pattern

of the movement times—see Fig 7. Two trials on visit #5 (trials marked with an “x” on Fig 5)

involved a lot of talking during the trial and a poorly aligned IMU. Additionally, the data for

trial #15, which occurred during visit 6, was corrupted and therefore omitted from the jerk

analysis. Comparing the dimensionless jerk values from the first four trials (Trials 1–4) to the

last four trials (Trials 16–19)) shows a 45% decrease in dimensionless jerk value.

Stacking task. The dimensionless jerk of the main participant for the stacking trials also

closely followed the pattern of the movement times—see Fig 8. Comparing the jerk values

from the first three completed trials (trial 3 (visit 4), trial 5 (visit 5), and trial 8 (visit 8) were

incomplete) to the last three completed trials shows an 57% decrease in dimensionless jerk

value.

Fig 6. Movement times for stacking task trials. The movement times for the stacking task for the main participant across practice. The range and

mean of the control participant’s complete stacking times are included for comparison. Trials 3, 5, and 8 were incomplete in which the main participant

was unable to successfully place the last block due to dropping it outside the reach of robotic arm.

https://doi.org/10.1371/journal.pone.0226052.g006
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Discussion

The goal of this study was to examine the use of an IMU-based head-joystick for controlling a

robotic arm to perform high-DOF functional tasks. We showed that a child with congenital

limb absence was able to successfully use the head-joystick to perform two complex functional

tasks. Moreover, the child was able to improve his performance over time to a level comparable

to that of an unimpaired individual using a manual joystick.

Across a fairly limited practice time (~6–8 sessions) for both the drinking and stacking

tasks, the child achieved the task goal almost twice as fast as compared to his first attempt.

These times were, as expected, somewhat higher relative to the performance of the control par-

ticipant on the joystick, but here we found an effect of task complexity: in the simpler drinking

task, the performance of the child was about 40% slower than the control, whereas in the more

complex stacking task, this difference shrunk to about 20%. A likely explanation for this is that

even though the control algorithms were identical in both cases, in the simpler drinking task,

where the robot could travel with higher velocity, the manual joystick had an advantage

because the user could simply push the joystick instantaneously to the end of its range of

motion and maintain it in that spot without discomfort. In contrast, such rapid movements

would have been difficult using the head. One alternative could have been to increase the gain

Fig 7. Dimensionless jerk values for drinking task trials. Dimensionless jerk values for drinking task trials for the main participant across practice

(smaller jerk values indicate smoother movements). Jerk values denoted with a “x” were those in which the main participant had significant distractions

or poor IMU alignment which led to large jerk values. Additionally, trial #15, which occurred during visit 6, is omitted due to data corruption.

https://doi.org/10.1371/journal.pone.0226052.g007
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on the head joystick, but this would have likely compromised fine control required in more

complex tasks. However, in the more complex stacking task, where movement speed was not

the limiting factor in performance, the head-joystick was almost on par with the manual joy-

stick. Moreover, although we had no direct measures of user satisfaction, the fact that the par-

ticipant continued this task for over 3 months and was enthusiastic about returning for future

visits is a potential indicator that he was satisfied with the interface.

Controlling high DOFs using a body-machine interface in individuals with limited move-

ment repertoire has always posed a significant challenge. One popular approach is to use

dimensionality reduction techniques like principal component analysis (PCA) to extract the

most relevant movement directions for control. While this technique can accommodate differ-

ent movement repertoires, they have only been implemented for controlling one or two

degrees of freedom [7, 9]; furthermore, the mapping between the motion of the body and that

of the assistive device can often be non-intuitive [21]. A more recent approach—the Virtual

Body Model (VBM) [23]- is more intuitive for control of high DOFs because of the pre-defined

mapping between the body and device DOFs but it relies on a nearly full range of movement

in the torso. Since our primary participant had no lower limbs, seatbelts are used to constrain

his body to an upright posture in the wheelchair; this limited range of movement of the torso

makes the VBM approach unsuitable in our case. These specific constraints required the

design of a custom interface that relied primarily on head movements. In this design, the head

Fig 8. Dimensionless jerk values for stacking task trials. Dimensionless jerk values for stacking task trials for the main participant across practice

(smaller jerk values indicate smoother movements). Trial 3 (visit 4), trials 5 (visit 5) and 8 (visit 8) were incomplete in which the main participant was

unable to successfully place the last block due to dropping it outside the reach of robotic arm.

https://doi.org/10.1371/journal.pone.0226052.g008
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was used as a joystick to control up to three DOFs of the end-effector at a time; toggling

between different sets of DOFs was achieved by activating switches using the body.

One of our primary goals was to provide greater independence for the child in activities of

daily living. To this end, we designed the two tasks to not only involve control of high DOFs,

but also resemble activities that are frequently needed in both the home and school environ-

ments. The drinking task required the child to position the robot end-effector near the cup,

grasp the cup, and position and orient the cup near his mouth so that he could drink comfort-

ably using the straw. The stacking task was more complex; it not only involved proper posi-

tioning and orienting of the end-effector to grasp and place individual blocks, but also

required sequence planning and on-the-fly adaptations to accommodate for variations in prior

movement outcomes. For example, the final block of the task required a two-step strategy:

given the distant location and orientation of the block, it could not be grasped and placed on

the stack using a single grasp. Instead, the block needed to be repositioned and released before

regrasping it in such a way that it could be placed on the stack. The use of such tasks with sev-

eral levels of complexity may especially be critical when designing interfaces of children, as

performance may not only be determined by the intuitiveness of the control but also the cogni-

tive planning of the task. It is also worth noting that despite requiring the use of head move-

ments to control the robot to precisely control the end effector, the child was able to

successfully perform these tasks, indicating that the small head movements performed did not

interfere greatly with the use of visual feedback.

Our work also extends prior work on using head gestures to control a robot. In one study

[18], adult participants (able-bodied adults and tetraplegics) used a similar head-mounted

IMU to control a 7 DOF robotic arm to accomplish pick and place tasks, but focused only on a

single session of practice. Similarly, a second study [19] evaluated the use of IMUs for the con-

trol of a robot arm, and showed similar performance in a single session in able-bodied adults.

Our results add to these prior findings by demonstrating that (i) these interfaces are well-

suited for children, and (ii) the improvement in performance over multiple practice sessions is

substantial (up to 40–50% reduction in movement times). The child’s performance for the

tasks was found to be comparable to that of an adult control participant using a manual joy-

stick. However, given that we only had data from a single child and a single adult, additional

studies are needed for assessing the generality of these findings.

In addition to head control methods discussed here, several alternate control interfaces to

manual joysticks have been developed for individuals with severe movement impairments.

These include sip-and-puff systems, voice control [24], gaze control [25] and tongue control

[26]. These interfaces typically involve some tradeoff between (i) the number of control

dimensions (e.g., a device that only allows control of 1 or 2 dimensions would require frequent

‘switching’ to control a high DOF robotic arm), (ii) the type of control (e.g., discrete controls

are possible using voice commands but are less intuitive and precise relative to continuous

control like a joystick), and (iii) the ‘invasiveness’ of the device both in terms of its physical

attributes (e.g., whether it is easily wearable, wireless etc.) but also how it affects other activities

such as communication (e.g., gaze or voice based controls may interfere with natural day-to-

day behavior). Ultimately, the choice of the interface will depend both on existing movement

abilities for the individual and the number of degrees of freedom to be controlled.

In terms of further improvements to our design, we wish to highlight two issues. First, a

limitation of our approach is that the ‘burden of learning’ is all on the user. This may be espe-

cially challenging for children, who show deficits relative to adults in learning such interfaces

[21, 27]. One way to improve this is to use either an adaptive interface that adjusts to the user

[28, 29], or use a shared control framework so that the autonomy of control can be shared

between the human and the machine [30]. Second, for the sake of simplicity, we relied only on
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head movements (i.e. kinematics) to control the device. However, in the control of other neu-

roprosthetics, electromyographic signals from different muscles is often used to augment the

movement repertoire by providing distinct control signals for the control of the external device

[31–33]. Therefore, a hybrid combination of IMU signals along with electromyography may

further facilitate the user for efficient control of high DOFs [34]. Addressing these limitations

could increase the potential of this approach to deal with real-life situations which require

both speed and accuracy.

In conclusion, we showed that for a child with congenital limb absence, a head-joystick is a

viable means for controlling a robotic arm to perform complex tasks of daily living. Develop-

ing efficient, non-invasive techniques with intuitive control of high DOFs, and quantifying

their performance in a larger sample is a key challenge that needs to be addressed in future

studies.

Supporting information

S1 Video. Example drinking task for main participant. In this trial, the main participant

conducts a complete drinking task. The robotic arm is initialized to the starting position after

which the participant commands it to move towards the cup, grasp the cup, and then move

and orient the cup such that he is able to drink from the straw.

(MP4)

S2 Video. Example stacking task for main participant. In this trial, the main participant con-

ducts a complete stacking task. The robotic arm is initialized to the starting position after

which the participant commands it to approach, grasp, orient, and place each block on the pre-

ceding block or on the table in the case of the first block.

(MP4)

S1 Data. Data from participant trials as used for analysis. Included are the movement times

and dimensionless jerk values for each of the main and control participants’ drinking and

stacking trials.

(XLSX)
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15. Rudigkeit N, Gebhard M, Gräser A. Evaluation of control modes for head motion-based control with

motion sensors. 2015 IEEE International Symposium on Medical Measurements and Applications

(MeMeA) Proceedings. 2015. pp. 135–140.

16. Gomes D, Fernandes F, Castro E, Pires G. Head-movement interface for wheelchair driving based on

inertial sensors*. 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG). 2019. pp. 1–4.

17. Chen Y-L, Chen S-C, Chen W-L, Lin J-F. A head orientated wheelchair for people with disabilities.

Disabil Rehabil. 2003; 25: 249–253. https://doi.org/10.1080/0963828021000024979 PMID:

12623613

18. Jackowski A, Gebhard M, Thietje R. Head Motion and Head Gesture-Based Robot Control: A Usability

Study. IEEE Trans Neural Syst Rehabil Eng. 2018; 26: 161–170. https://doi.org/10.1109/TNSRE.2017.

2765362 PMID: 29324407

19. Fall CL, Turgeon P, Campeau-Lecours A, Maheu V, Boukadoum M, Roy S, et al. Intuitive wireless con-

trol of a robotic arm for people living with an upper body disability. 2015 37th Annual International Con-

ference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2015. pp. 4399–4402.

PLOS ONE Controlling a robotic arm for functional tasks using a wireless head-joystick

PLOS ONE | https://doi.org/10.1371/journal.pone.0226052 August 5, 2020 16 / 17

https://doi.org/10.1080/J003v16n04_03
http://www.ncbi.nlm.nih.gov/pubmed/23930706
http://www.ncbi.nlm.nih.gov/pubmed/10917267
https://doi.org/10.1016/S0140-6736(12)61816-9
https://doi.org/10.1016/S0140-6736(12)61816-9
http://www.ncbi.nlm.nih.gov/pubmed/23253623
https://doi.org/10.1038/nature04970
https://doi.org/10.1038/nature04970
http://www.ncbi.nlm.nih.gov/pubmed/16838014
https://doi.org/10.1038/nature11076
https://doi.org/10.1038/nature11076
http://www.ncbi.nlm.nih.gov/pubmed/22596161
https://doi.org/10.1177/1545968317693111
https://doi.org/10.1177/1545968317693111
http://www.ncbi.nlm.nih.gov/pubmed/28413945
https://doi.org/10.1007/s00221-010-2427-8
https://doi.org/10.1007/s00221-010-2427-8
http://www.ncbi.nlm.nih.gov/pubmed/20972779
https://doi.org/10.1109/TNSRE.2015.2439240
http://www.ncbi.nlm.nih.gov/pubmed/26054071
https://doi.org/10.3171/2009.4.FOCUS0987
http://www.ncbi.nlm.nih.gov/pubmed/19569893
https://doi.org/10.1016/B978-0-12-404706-8.00008-5
https://doi.org/10.1080/17483100802613701
https://doi.org/10.1080/17483100802613701
http://www.ncbi.nlm.nih.gov/pubmed/19253098
https://doi.org/10.1177/026921559601000202
https://doi.org/10.1080/0963828021000024979
http://www.ncbi.nlm.nih.gov/pubmed/12623613
https://doi.org/10.1109/TNSRE.2017.2765362
https://doi.org/10.1109/TNSRE.2017.2765362
http://www.ncbi.nlm.nih.gov/pubmed/29324407
https://doi.org/10.1371/journal.pone.0226052


20. Lee M-H, Ranganathan R, Kagerer FA, Mukherjee R. Body-machine interface for control of a screen

cursor for a child with congenital absence of upper and lower limbs: a case report. J Neuroeng Rehabil.

2016; 13: 34. https://doi.org/10.1186/s12984-016-0139-4 PMID: 27009334

21. Ranganathan R, Lee M-H, Padmanabhan MR, Aspelund S, Kagerer FA, Mukherjee R. Age-dependent

differences in learning to control a robot arm using a body-machine interface. Sci Rep. 2019; 9: 1960.

https://doi.org/10.1038/s41598-018-38092-3 PMID: 30760779

22. Hogan N, Sternad D. Sensitivity of smoothness measures to movement duration, amplitude, and

arrests. J Mot Behav. 2009; 41: 529–534. https://doi.org/10.3200/35-09-004-RC PMID: 19892658

23. Chau S, Aspelund S, Mukherjee R, Lee MH, Ranganathan R, Kagerer F. A five degree-of-freedom

body-machine interface for children with severe motor impairments. 2017 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS). 2017. pp. 3877–3882.

24. Masato Nishimori, Takeshi Saitoh, Ryosuke Konishi. Voice Controlled Intelligent Wheelchair. SICE

Annual Conference 2007. 2007. pp. 336–340.

25. Dziemian S, Abbott WW, Faisal AA. Gaze-based teleprosthetic enables intuitive continuous control of

complex robot arm use: Writing drawing. 2016 6th IEEE International Conference on Biomedical Robot-

ics and Biomechatronics (BioRob). 2016. pp. 1277–1282.

26. Kim J, Park H, Bruce J, Sutton E, Rowles D, Pucci D, et al. The Tongue Enables Computer and Wheel-

chair Control for People with Spinal Cord Injury. Sci Transl Med. 2013; 5: 213ra166. https://doi.org/10.

1126/scitranslmed.3006296 PMID: 24285485

27. Lee M-H, Farshchiansadegh A, Ranganathan R. Children show limited movement repertoire when

learning a novel motor skill. Dev Sci. 2017; e12614. https://doi.org/10.1111/desc.12614 PMID:

28952183

28. Danziger Z, Fishbach A, Mussa-Ivaldi FA. Learning Algorithms for Human–Machine Interfaces. IEEE

Trans Biomed Eng. 2009; 56: 1502–1511. https://doi.org/10.1109/TBME.2009.2013822 PMID:

19203886

29. De Santis D, Dzialecka P, Mussa-Ivaldi FA. Unsupervised Coadaptation of an Assistive Interface to

Facilitate Sensorimotor Learning of Redundant Control. 2018 7th IEEE International Conference on Bio-

medical Robotics and Biomechatronics (Biorob). 2018. pp. 801–806.

30. Jain S, Farshchiansadegh A, Broad A, Abdollahi F, Mussa-Ivaldi F, Argall B. Assistive Robotic Manipu-

lation through Shared Autonomy and a Body-Machine Interface. IEEE Int Conf Rehabil Robot Proc.

2015; 2015: 526–531. https://doi.org/10.1109/ICORR.2015.7281253 PMID: 26855690

31. Roche AD, Rehbaum H, Farina D, Aszmann OC. Prosthetic Myoelectric Control Strategies: A Clinical

Perspective. Curr Surg Rep. 2014; 2: 44. https://doi.org/10.1007/s40137-013-0044-8

32. Kuiken TA, Li G, Lock BA, Lipschutz RD, Miller LA, Stubblefield KA, et al. Targeted Muscle Reinnerva-

tion for Real-time Myoelectric Control of Multifunction Artificial Arms. JAMA. 2009; 301: 619–628.

https://doi.org/10.1001/jama.2009.116 PMID: 19211469

33. Englehart K, Hudgins B. A robust, real-time control scheme for multifunction myoelectric control. IEEE

Trans Biomed Eng. 2003; 50: 848–854. https://doi.org/10.1109/TBME.2003.813539 PMID: 12848352

34. Bennett DA, Goldfarb M. IMU-Based Wrist Rotation Control of a Transradial Myoelectric Prosthesis.

IEEE Trans Neural Syst Rehabil Eng Publ IEEE Eng Med Biol Soc. 2018; 26: 419–427. https://doi.org/

10.1109/TNSRE.2017.2682642 PMID: 28320673

PLOS ONE Controlling a robotic arm for functional tasks using a wireless head-joystick

PLOS ONE | https://doi.org/10.1371/journal.pone.0226052 August 5, 2020 17 / 17

https://doi.org/10.1186/s12984-016-0139-4
http://www.ncbi.nlm.nih.gov/pubmed/27009334
https://doi.org/10.1038/s41598-018-38092-3
http://www.ncbi.nlm.nih.gov/pubmed/30760779
https://doi.org/10.3200/35-09-004-RC
http://www.ncbi.nlm.nih.gov/pubmed/19892658
https://doi.org/10.1126/scitranslmed.3006296
https://doi.org/10.1126/scitranslmed.3006296
http://www.ncbi.nlm.nih.gov/pubmed/24285485
https://doi.org/10.1111/desc.12614
http://www.ncbi.nlm.nih.gov/pubmed/28952183
https://doi.org/10.1109/TBME.2009.2013822
http://www.ncbi.nlm.nih.gov/pubmed/19203886
https://doi.org/10.1109/ICORR.2015.7281253
http://www.ncbi.nlm.nih.gov/pubmed/26855690
https://doi.org/10.1007/s40137-013-0044-8
https://doi.org/10.1001/jama.2009.116
http://www.ncbi.nlm.nih.gov/pubmed/19211469
https://doi.org/10.1109/TBME.2003.813539
http://www.ncbi.nlm.nih.gov/pubmed/12848352
https://doi.org/10.1109/TNSRE.2017.2682642
https://doi.org/10.1109/TNSRE.2017.2682642
http://www.ncbi.nlm.nih.gov/pubmed/28320673
https://doi.org/10.1371/journal.pone.0226052

