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16S rRNA community profiling continues to be a useful tool to study microbiome
composition and dynamics, in part due to advances in next generation sequencing
technology that translate into reductions in cost. Reliable taxonomic identification to the
species-level, however, remains difficult, especially for short-read sequencing platforms,
due to incomplete coverage of the 16S rRNA gene. This is especially true for Salmonella
enterica, which is often found as a low abundant member of the microbial community,
and is often found in combination with several other closely related enteric species. Here,
we report on the evaluation and application of Resphera Insight, an ultra-high resolution
taxonomic assignment algorithm for 16S rRNA sequences to the species level. The
analytical pipeline achieved 99.7% sensitivity to correctly identify S. enterica from
WGS datasets extracted from the FDA GenomeTrakr Bioproject, while demonstrating
99.9% specificity over other Enterobacteriaceae members. From low-diversity and
low-complexity samples, namely ice cream, the algorithm achieved 100% specificity and
sensitivity for Salmonella detection. As demonstrated using cilantro and chili powder,
for highly complex and diverse samples, especially those that contain closely related
species, the detection threshold will likely have to be adjusted higher to account for
misidentifications. We also demonstrate the utility of this approach to detect Salmonella
in the clinical setting, in this case, bloodborne infections.
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INTRODUCTION

Salmonella infection is a common bacterial disease throughout the developed and developing
world, causing considerable morbidity and mortality. Salmonellosis can be categorized into
two disease manifestations, a more common, and usually self-limiting, gastroenteritis due to
non-typhoidal salmonellae (NTS) and the rarer, more severe, typhoid fever. Worldwide, it is
estimated that NTS cause 94 million cases of gastroenteritis and 155,000 deaths per year (Majowicz
et al., 2010), and in the United States, NTS are estimated to cause one million cases, 19,000
hospitalizations, and 380 deaths, annually (Dvir et al., 2014). The majority of non-typhoidal
Salmonella cases are due to the consumption of contaminated food and water, and as such, this
group of organisms is considered a major foodborne pathogen, occurring in almost all types of
foods. Additionally, transmission of the organism can occur due to the handling of contaminated
farm animals or reptiles.
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It is of paramount importance to rapidly and accurately
identify foods that are contaminated with foodborne pathogens,
such as Salmonella, as well as possible sources of contamination,
to minimize public health burden. There are numerous
culture-based detection and isolation protocols to detect
foodborne pathogens, many of which are dependent on
pathogen-commodity pairings, such as those in the Food and
Drug Administration (FDA) Bacteriological Analytical Manual
(BAM) and the United States Department of Agriculture (USDA)
Microbiological Laboratory Guidebook (MLG). These methods
rely on an array of selective and differential culture media
to isolate colonies of the target pathogen, which are used
for further characterization, such as sub-typing, serotyping,
antibiotic susceptibility testing, and whole genome sequencing
(WGS) (Humphries and Linscott, 2015). For example, detection
of Salmonella generally involves an overnight non-selective
enrichment, followed by an overnight selective enrichment
in Rappaport Vassiliadis (RV) and Tetrathionate (TT) broths,
followed by plating on selective media, such as Xylose lysine
deoxycholate (XLD) or Xylose-Lysine-Tergitol 4 (XLT4) agar
plates (Andrews et al., 2016). Suspect colonies are confirmed and
then further characterized.

Although culture methods are the gold standard in
microbiology due to their high sensitivity, current and
emerging molecular methods, most notably, PCR, have greatly
improved the time to detection for target microorganisms. Mass
spectrometry-based methods, such as MALDI-TOF, have also
shown great promise in detection and identification of bacterial
pathogens. The use of WGS and the application of metagenomics
have rapidly increased due to technological advances and
cost-reduction in high-throughput next-generation sequencing
(Kuczynski et al., 2011a). This technology has in turn become
more accessible, and its application allows the characterization
of an entire microbial community, in addition to multiple target
pathogens (Jarvis et al., 2015; Ottesen et al., 2016).

Utilizing shotgun metagenomics and 16S rRNA gene
sequencing is advantageous for microbiome profiling as well as
targeted detection assays, because it is culture-independent and
relatively unbiased compared to traditional culture methods that
rely on highly selective media. While shotgun metagenomics
can provide a better understanding of dominant microbial
community members, such as identification to the species level,
sub-typing and resistome characterization, this method is more
expensive due to the requirement of deeper sequencing for
higher genome coverage. Microbiome profiling through 16S
rRNA gene sequencing provides an economical approach to
analyze microbial communities’ dynamics, from a taxonomic
perspective; tracking and identifying changes in that population
structure in response to experimental variables. While this
method is reliable for higher taxonomic levels, species-level
inference with 16S rRNA gene sequencing has remained a
significant challenge, particularly for accurate identification of
Salmonella enterica and other enteric pathogens. Previously, we
evaluated the performance of Resphera Insight, a high-resolution
16S rRNA sequence analysis pipeline, for identification of Listeria
monocytogenes from naturally contaminated ice cream samples
(Ottesen et al., 2016). We also recently applied this tool for

tracking of S. enterica in a modified US FDA BAM protocol for
detection of Salmonella through reduced enrichment (Daquigan
et al., 2016). In this study, we performed an expanded evaluation
of this algorithm for detection of S. enterica and evaluated factors
affecting the identification of this pathogen in food and clinical
samples.

MATERIALS AND METHODS

Diagnostic True Positive Rate for
S. enterica Detection
To perform an evaluation of the species-level accuracy for
S. enterica, 512 randomly selected S. enterica whole-genome
shotgun sequencing datasets from the FDA GenomeTrakr
Project (NCBI Project ID PRJNA183844) were obtained from
the NCBI Sequence Read Archive (Supplementary Table S1).
Paired-end MiSeq fastq sequences were first filtered based
on quality (Q20) and length (150 bp), and then overlapping
sequences were merged using FLASH (Magoc and Salzberg,
2011). Merged reads and any unmerged Read 1 sequences
were then screened for 16S rRNA fragments using Bowtie2
(Langmead and Salzberg, 2012) against a broad database of 16S
rRNA sequences. An additional layer of BLAST-based filtering
was used to confirm location-specific query matches to the
S. enterica subsp. enterica serovar Typhimurium strain LT2
16S rRNA gene (NCBI accession NR_074910.1). Valid, filtered
sequences were submitted to Resphera Insight (Baltimore, MD,
United States1) for high-resolution taxonomic identification.
Briefly, the tool relies on a manually curated 16S rRNA database
of 11,000 species with a re-structured bacterial taxonomy and
a hybrid global-local alignment strategy to assign sequences a
high-resolution taxonomic lineage. The approach attempts to
achieve species-level resolution when possible, but when the
underlying statistical model indicates uncertainty in final species
membership, the tool minimizes false positives by providing
“ambiguous assignments” i.e., a list of species reflecting the
uncertainty. For example, if a 16S fragment is ambiguous
between S. enterica and S. bongori, the algorithm will provide the
assignment: “Salmonella_bongori:Salmonella_enterica.”

Here, our statistic of performance sensitivity is the Diagnostic
True Positive rate (DTP), defined as the percentage of 16S rRNA
sequences that were correctly and unambiguously assigned to
S. enterica. For comparison, we evaluated diagnostic performance
for the RDP classifier and UCLUST-REF algorithms implemented
within QIIME (Kuczynski et al., 2012; Navas-Molina et al.,
2013), using default parameter settings. We also sought to apply
the standard taxonomic characterization tools utilized by the
MOTHUR (v1.35) and DADA2 (v1.0) packages (Schloss et al.,
2009; Callahan et al., 2016); however, by default, these tools
do not make species-level assignments. Therefore, they were
excluded. The expanded validation of the Insight method was
then performed on all available S. enterica isolates annotated
in GenomeTrakr at the time of the study (n = 12,090,
Supplementary Table S2). Of this expanded validation dataset,

1www.respherabio.com
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93 SRA datasets from GenomeTrakr were determined to be
mis-annotated as Salmonella or reflected mixtures of microbial
species based on WGS analysis using MetaPhlAn (Data not
shown). To provide an unbiased evaluation of all three
algorithms, four different size classes of sequencing read lengths
were evaluated for the effect of this parameter on DTP. Further,
DTP rates were determined for each position of the 16S rRNA
gene, from nucleotide positions 25 to 1,000. This approach was
used to account for difference in 16S rRNA amplification and
sequencing strategies.

Evaluation of S. enterica False Positive
Rate
An evaluation of the false positive rate of Resphera Insight to
accurately detect S. enterica was performed using 16S rRNA
amplicon datasets reflecting raw milk cheese samples spiked
with variable levels of Escherichia coli (O157:H7 or O103). In
silico simulations for related Enterobacteriaceae were performed
by first aligning primer sequences (V1–V3 or V3–V4 region)
to corresponding reference 16S rRNA genes to determine
exact coordinates of the expected amplicon sequences, and
subsequently generating sequences from those coordinates using
a random nucleotide error rate of 0.5% (10,000 sequences per
species for both regions).

Bacterial Strains for Inoculation
Cilantro was spiked with Salmonella Newport, S. Tennessee, or
S. Thompson. Ice cream samples were spiked with S. Enteritidis
or S. Typhimurium. Chili powder samples were spiked with
S. Montevideo. Frozen stocks of S. enterica were streaked onto
Trypticase Soy Agar plates (DifcoTM, Sparks, MD, United States)
and incubated at 35◦C overnight. Bacterial cell suspensions
were prepared in 0.85% sterile saline to approximately 0.5
McFarland turbidity units, equivalent to 1 × 108 CFU/mL, and
serially diluted to approximately 28 CFU/mL for inoculation.
Biosafety Level 2 practices, containment equipment, and facilities
were employed for all experiments involving Biosafety Level 2
pathogens. All sample manipulations were performed within
a certified Class II biological safety cabinet (BSC). Standard
personnel protective equipment (PPE) was used, such as
disposable gloves, laboratory coats, and eye protection.

Preparation of Inoculated Food Matrices
Cilantro was purchased from a local grocery store or provided
by the Department of Agriculture and Rural Development in
Lansing, Michigan, and then stored at 4◦C until used. Ice cream,
naturally contaminated with L. monocytogenes, was stored at
−20◦C until used. Chili powder samples were supplied by the
FDA Northeast Regional Laboratory. To prepare samples, 25 g of
cilantro or chili powder, and 150 g of ice cream were aseptically
portioned into sterile Whirlpak bags (Nasco; Fort Atkinson,
WI, United States) and inoculated with Salmonella at a ratio of
1–2 CFU per gram for cilantro and ice cream and at four levels for
chili powder, ultra-low (0.5 CFU/gm), low (5 CFU/gm), medium
(51 CFU/gm), and high (512 CFU/gm). Cilantro samples were
also “aged” at 4◦C for 48–72 h to simulate natural contamination.

Salmonella Enrichment from Food
Following the FDA BAM method for Salmonella detection
(Andrews et al., 2016), chili powder and aged cilantro samples
were pre-enriched in a non-selective broth for 24 h (24-h
samples), and then aliquots were transferred to selective RV and
TT broths for a secondary 24 h enrichment (48-h samples). Ice
cream samples were enriched for 48 h following the FDA BAM
method for Listeria but without acriflavin, cycloheximide, and
nalidixic acid (Hitchins et al., 2016). For all foods, a 10 µL aliquot
was streaked onto XLT4 (Becton, Dickinson and Company,
Sparks, MD, United States) agar plates at two time points, 24
and 48 h, and plates were incubated for 24 h at 35◦C. Suspect
black colonies observed on XLT4 agar plates were confirmed
as Salmonella using the VITEK 2 system (BioMérieux, France).
Only samples with confirmed Salmonella were considered
culture-positive. Microbiome cell pellets were also collected at
each 0, 24, and 48-h time point, centrifuged at 7,100 × g for
30 min, and stored at−20◦C until extracted from cell pellets. For
chili powder, metagenomic samples were first vigorously mixed,
passaged through Miracloth filter membrane (EMD Millipore,
Billerica, MA, United States), and then sedimented at 200 × g
for 3 min, to remove chili powder from bacterial cells, prior to
harvesting the cell pellets by centrifugation, as described above.

Sequencing of Microbiome Samples
from Food
Genomic DNA from cilantro microbiome samples was extracted
and 16S rRNA amplicon libraries were produced and sequenced
as described in Daquigan et al. (2016). Genomic DNA from the
ice cream microbiome samples was extracted and 16S rRNA
amplicon libraries were produced and sequenced as described in
Ottesen et al. (2016). Genomic DNA from chili powder samples
was extracted using the DNeasy Blood and Tissue kit (Qiagen,
Germantown, MD, United States). 16S rRNA community profile
sequencing of chili powder microbiome samples was performed
as described by Ottesen et al. (2016). Raw sequencing reads were
subjected to preprocessing, as described in Section “Diagnostic
True Positive Rate for S. enterica Detection,” and submitted for
high-resolution taxonomic identification.

Analysis of Bacterial Blood Stream
Infection 16S rRNA Dataset
16S rRNA sequence data generated on the Illumina MiSeq
platform utilizing paired-end sequencing were processed as
follows: Raw overlapping paired-end reads were merged into
consensus fragments by FLASH (Magoc and Salzberg, 2011)
requiring a minimum 20 bp overlap with 5% maximum mismatch
density, and subsequently filtered for quality (targeting error
rates < 1%) and length (minimum 200 bp) using Trimmomatic
(Bolger et al., 2014) and QIIME (Caporaso et al., 2010a;
Kuczynski et al., 2011b). Spurious hits to the PhiX control
genome were identified using BLASTN and removed. Sequences
were then trimmed of their associated primers, evaluated for
chimeras with UCLUST (de novo mode) (Edgar et al., 2011),
and screened for human-associated contaminant using Bowtie2
(Langmead and Salzberg, 2012) searches of NCBI Homo sapiens
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Annotation Release 106. Mitochondrial contaminants were
detected and filtered using the RDP classifier (Wang et al., 2007)
with a confidence threshold of 50%, and passing high-quality
16S sequences were assigned to a high-resolution taxonomic
lineage using the Insight method. Species level assignments
that were present with at least 10 reads in at least two
negative control samples were designated as contaminants and
removed from downstream analysis. Patients with fewer than
500 final sequences per duplicate MiSeq run were removed from
analysis.

RESULTS

Accuracy for S. enterica Identification
We assessed how performance of three 16S rRNA signature
identification algorithms, Insight, RDP, and UCLUST, changed
according to changing sequencing read length and 16S rRNA
gene position. Overall, across the V1–V3 region (16S rRNA gene
positions 27–534), Resphera Insight achieved DTP rates up to
99.7%, with improved accuracy correlated with increased read
length (Figure 1A). For sequences less than 300 bp, sensitivity
was significantly reduced. Among positions in the same region,
RDP and UCLUST were unable to achieve a DTP above 11% for
reads greater than 300 bp. Interestingly, the UCLUST method
had improved sensitivity with shorter read lengths, though
performance remained generally poor with a maximum DTP of
31.1% (Figure 1A). It should be noted that the DTP rates for all
methods evaluated tended to dip in value across the 16S rRNA
sequence that corresponds to the 3′ end of the V3 region, and
this reduction in diagnostic capability was more pronounced for
shorter read lengths (Figure 1A).

As the Insight method had the highest DTP rates, an
expanded evaluation was then performed on all S. enterica
isolates annotated in GenomeTrakr available at the time
(n = 12,090, Supplementary Table S2). In this larger evaluation,
we observed a very consistent detection profile, nearly identical
to that seen for the 512 random subset dataset (Figure 1A),
including high accuracy within the first 250 bp of the 16S
rRNA gene for sequences that are at least 300 bp in length
(Figure 1B).

False Positive Rates for S. enterica
Detection
In addition to assessing the accuracy to detect Salmonella, we also
sought to define the Type I error, or false positive rate, associated
with detection of S. enterica; i.e., cases in which the algorithm
incorrectly assigned a sequence to S. enterica. As S. enterica is
closely related to E. coli, a false positive rate assessment was
performed, utilizing 36 raw milk cheese samples spiked and
selectively enriched with variable levels of E. coli, to establish how
frequently an E. coli fragment would be incorrectly assigned to
the target organism, Salmonella. Relative abundance estimates of
Escherichia/Shigella ranged from 0.02 to 68.8% across the sample
set, and we found a significant positive association between
Escherichia/Shigella abundance and false positive assignments to
S. enterica (R2

= 0.83, F-test P < 1e−4; Figure 2). Simply stated,

the more Escherichia/Shigella 16S rRNA sequences contained in
the microbiome sample, in terms of relative abundance, the more
likely it was to produce a Salmonella false positive. However,
using linear regression, the maximum predicted false positive
rate was only 0.11%, given a completely homogenous community
comprised entirely of E. coli (Figure 2).

Moreover, in silico simulations in which sequencing reads
are composed entirely of Enterobacteriaceae 16S rRNA gene
sequences and no background flora, utilizing artificial reads
from two amplicon regions, V1 – V3 and V3 – V4, of the 16S
rRNA gene from pure isolates of 15 different Enterobacteriaceae
members, indicate that false positive rates for Salmonella
detection approach 0.2%, when closely related members, such
as Citrobacter and Enterobacter spp., are dominant members in
a microbial community (Table 1). Interestingly, false positive
rates were only observed for those Enterobacteriaceae species
that are phylogenetically close to Salmonella, with, on average,
slightly higher false positive rates observed for the V3 – V4 region
(Table 1).

Identification of S. enterica in Food
Samples
To demonstrate and evaluate the utility of Resphera Insight to
detect S. enterica and characterize overall microbial community
composition, we performed 16S rRNA community profiling on
microbial enrichment samples of (i) ice cream, (ii) cilantro,
and (iii) chili powder. All three datasets included samples that
were spiked with S. enterica and samples that were unspiked.
Aliquots for 16S rRNA community profiling and metagenomics
were taken at procedural time points in the enrichment protocols,
namely 0 h (unenriched, for all three samples), 24 h (following
non-selective enrichment for cilantro and chili powder and
midpoint of non-selective enrichment for ice cream), and 48 h
(following non-selective enrichment for ice cream samples and
following selective RV and TT enrichment for cilantro samples).
Due to the low inoculation level used in the cilantro and ice
cream experiments, Salmonella could not be detected in any of
the 0-h (un-enriched) samples, at the sequencing depth utilized
(data not shown). Accordingly, 0-h chili powder samples were
also excluded from the analyses.

Salmonella enterica relative abundances in ice cream
enrichments ranged as follows: 0.000 to 0.004% (24 h,
culture-negative); 0.000 to 0.008% (48 h, culture-negative);
7.018 to 26.742% (24 h, culture-positive); and 13.272 to 30.842%
(48 h, culture-positive) (Figure 3A and Supplementary Table
S3). Ice cream samples showed low overall bacterial diversity and
low initial bacterial load, approximately 200 CFUs per gram. The
dominant organisms, during and following enrichment, were
Lactococcus lactis, Bacillus spp., Enterococcus hermanniensis, and
if spiked, S. enterica.

Among cilantro samples, S. enterica relative abundances
ranged as follows: 0.000 to 0.140% (24 h, culture-negative);
0.000 to 0.500% (48 h, culture-negative); 0.024 to 58.568% (24 h,
positive); and 2.757 to 96.936% (48 h, positive) (Figure 3B
and Supplementary Table S3). The un-enriched microbiomes
from cilantro samples had considerably higher bacterial loads,
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FIGURE 1 | Salmonella enterica Diagnostic True Positive Rate of Resphera Insight and 2 other taxonomy assignment tools. (A). Performance of the Insight method
and other tools on 512 isolates of S. enterica. (B). Expanded validation of Resphera Insight on 12,090 isolates of S. enterica. Y-axis shows the Diagnostic True
Positive Rate (DTP), i.e., the percentage of sequences assigned unambiguously to S. enterica. Lines display the average DTP for all reads covering each gene
position for a given read length range. DTP rates are improved for Resphera Insight with longer sequences that cover the first 250 bp of the 16S rRNA gene. ∗The
default versions of Mothur and DADA2 do not generate species level assignments.

2 × 107 CFU per gram on average, and higher diversity
than ice cream (Figures 3A,B). In addition to Salmonella,
the non-selective enrichment also enriched several other
Enterobacteriaceae species, including Enterobacter cloacae,
E. ludwigii, Morganella morganii, Pantoea spp., Erwinia spp.
and Serratia spp. The relative abundance of several other taxa
also increased from un-enriched to enriched time point samples,
including Aeromonas, Lysinibacillus, and several Clostridium
species, such as Clostridium perfringens and C. bifermentans.
Pseudomonas was commonly found to be the dominant
member of un-enriched cilantro samples (data not shown),

and it persisted in the enriched samples, although its relative
abundance decreased (Figure 3B).

For chili powder, S. enterica relative abundances ranged as
follows: 0.010 to 0.226% in 24 h culture-negative samples and
7.392 to 79.920% in 24 h culture-positive samples (Figure 3C
and Supplementary Table S3). The un-enriched microbiomes
from chili powder samples were similar in terms of diversity
to those of cilantro, but less abundant, 5 × 105 CFU per
gram on average. Similar to results from cilantro samples,
the non-selective enrichment step not only enriched for
S. enterica, but also enriched several other Enterobacteriaceae
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FIGURE 2 | False positive assignments to Salmonella for Resphera Insight.
Sequencing of spiked samples of raw cheese milk demonstrates a positive
correlation between Escherichia/Shigella abundance and false positives
assignments to S. enterica. Linear regression (dashed line) estimates a
maximum predicted S. enterica false positive rate of 0.11%.

species, in this case, Cronobacter, Enterobacter, Klebsiella, and
Escherichia/Shigella. Many of these taxa were dominant members
of the un-enriched microbiome, and they persisted through
the non-selective enrichment step (Figure 3C). The relative
abundance of Enterococcus and Pediococcus also significantly
increased from un-enriched to enriched time point samples
(Figure 3C).

TABLE 1 | Salmonella enterica false positive rates for V1–V3 and V3–V4 16S
rRNA amplicon regions.

S. enterica % false positives

Species V1–V3 V3–V4

Enterobacter cloacae 0.030 0.200

Leclercia adecarboxylata 0.000 0.090

Enterobacter aerogenes 0.000 0.061

Citrobacter amalonaticus 0.040 0.040

Enterobacter cancerogenus 0.010 0.022

Klebsiella pneumoniae 0.000 0.021

Enterobacter hormaechei 0.040 0.020

Escherichia coli 0.020 0.010

Citrobacter freundii 0.000 0.010

Proteus mirabilis 0.000 0.000

Serratia marcescens 0.000 0.000

Yersinia enterocolitica 0.000 0.000

Klebsiella oxytoca 0.000 0.000

Proteus mirabilis 0.000 0.000

Serratia marcescens 0.000 0.000

Due to the intrinsic “noise” of 16S rRNA-based community
profiling, investigators are forced to choose a minimum
abundance threshold, defined as the percentage of reads assigned
to S. enterica in a sample, to determine the outcome of a
diagnostic assignment (presence/absence). Salmonella detection
was evaluated using inoculated cilantro, chili powder and ice
cream enrichments at four minimum abundance thresholds
(0.01, 0.10, 0.20, and 0.25%) and compared to culture results.
Sensitivity and specificity was 100% in all ice cream samples
regardless of the Salmonella threshold utilized for analysis
(Tables 2, 3). Using a 0.10% relative abundance threshold, the
algorithm gave a 98% correct classification rate, or sensitivity,
across all three commodities for Salmonella-positive (n = 174)
samples (Table 2). A 96% true negative rate was observed for
Salmonella-negative (n = 120) samples using this threshold
(Table 3), indicating the tool was both specific and sensitive for
detecting Salmonella from food samples.

We observed low specificity to detect S. enterica in cilantro and
chili powder samples when using the lower minimum abundance
thresholds. For example, lowering this Salmonella threshold from
0.10 to 0.01% increased the sensitivity to 100% for all Salmonella-
positive cilantro enrichments, but lowered the specificity to
38 and 33% in Salmonella-negative 24 and 48 h enrichments,
respectively (Table 3). Conversely, compared to the 0.10%
threshold, a 0.20% threshold increased the specificity to 100%, but
decreased the sensitivity to 93% for 24 h cilantro enrichments.
Similarly, increasing the threshold to 0.25% increased the
specificity to 100% but also decreased the sensitivity to 91%
(Table 3).

In Salmonella-negative 48-h enrichments from cilantro
samples, the 89% specificity was consistent for the 0.10, 0.20,
and 0.25% thresholds. One Salmonella-negative cilantro sample
(48 h, RV enrichment) resulted in an unusually high S. enterica
mis-assignment rate of 0.5%; however, we did not observe a
similar effect in its treatment pair (48 h TT broth). Further
inspection of these pairs revealed that the false positive RV
sample harbored a higher abundance of Enterobacter species
(e.g., E. ludwigii, E. cloacae) compared to its TT pair (36.5 vs.
14.8%). This excess diversity of closely related species may have
resulted in low frequency chimera formation during PCR not
easily identified during preprocessing, which may be assigned to
Salmonella.

A similar pattern was observed for the chili powder samples,
even though the number of Salmonella-positive and -negative
samples were low. This commodity also had a high number of
other Enterobacteriaceae members, which may have resulted in
chimeras not removed from the dataset during preprocessing,
and contributed to a higher rate of misidentifications as
S. enterica. This situation would also likely lead to a slight over-
representation of the target organism, S. enterica in positive
samples, as well.

Application to Diagnosis of Bacterial
Bloodstream Infection
In addition to detection of S. enterica in food-associated
microbial communities, we sought to apply this approach to
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FIGURE 3 | Microbiome profiles for (A) ice cream and (B) cilantro samples after 24 and 48 h enrichments, and (C) chili powder samples after 24 h enrichments,
sorted by Salmonella culture status (±). We detect S. enterica with at least 0.1% abundance in 98% of Salmonella culture-positive samples. Ice cream samples are
dominated by Lactococcus lactis, while cilantro- and chili powder-associated communities harbor increased overall diversity including members of Clostridia and
Enterobacter.
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a recent study of children with severe febrile illness, reported
by Decuypere et al. (2016). This study included confirmed
culture positive cases of S. enterica bloodstream infections in
a subset of children. We obtained and reprocessed the original
16S rRNA amplicon sequences from two replicate MiSeq runs
(Run1 and Run2), requiring that passing samples have at least
500 high-quality 16S rRNA sequences in both runs after removal
of bacterial contaminants identified in negative controls (see
Materials and Methods). This resulted in a final dataset of 26
pediatric patients, three of whom were blood culture positive for
S. enterica (two for S. enterica serovar Enteritidis and one for
S. enterica serovar Typhimurium).

All three patients positive for S. enterica were correctly
identified in both MiSeq runs, all with S. enterica abundances
greater than 6% (Figure 4 and Supplementary Table S4).
S. enterica sequences were also detected in three additional
patients that were concordant across both replicate runs,
however, each of these samples harbored less than 0.5% of the
organism. Salmonella sequences were identified in the original
study at a low level in the majority of samples, suggesting a
contaminant background of Salmonella that would explain these
culture negative findings.

DISCUSSION

Overall, these data provide a comprehensive assessment of the
ability to detect S. enterica with high specificity and sensitivity
using Resphera Insight high-resolution microbiome profiling.

TABLE 2 | Salmonella enterica sensitivity rates by limit of detection threshold
(0.01, 0.10, 0.20, and 0.25%).

Sample Culture Enrichment Sensitivity rate

type result time by threshold

0.01% 0.10% 0.20% 0.25%

Cilantro Positive 24 h (n = 104) 100% 97% 93% 91%

48 h (n = 18) 100% 100% 100% 100%

Ice cream Positive 24 h (n = 29) 100% 100% 100% 100%

48 h (n = 12) 100% 100% 100% 100%

Chili powder Positive 24 h (n = 11) 100% 100% 100% 100%

Total (n = 174) 100% 98% 96% 95%

TABLE 3 | Salmonella enterica specificity rates by limit of detection threshold
(0.01, 0.10, 0.20, and 0.25%).

Specificity rate by threshold

0.01% 0.10% 0.20% 0.25%

Cilantro Negative 24 h (n = 61) 38% 98% 100% 100%

48 h (n = 9) 33% 89% 89% 89%

Ice cream Negative 24 h (n = 30) 100% 100% 100% 100%

48 h (n = 12) 100% 100% 100% 100%

Chili powder Negative 24 h (n = 8) 12.5% 62.5% 87.5% 100%

Total (n = 120) 58% 96% 98% 99%

FIGURE 4 | 16S rRNA profiling of blood samples are consistent with
Salmonella culture results. Y-axis displays percentage of total sequences
assigned to S. enterica.

When compared against two commonly used algorithms for
assigning taxonomy within QIIME (Caporaso et al., 2010b), the
tool performed significantly better in terms of Diagnostic True
Positive rate, which translates into a higher proportion of true
S. enterica sequences being assigned correctly to this species.
Unclassified assignments with existing tools continue to be an
area of concern even though the amount of 16S rRNA sequences
grows exponentially in this WGS era, highlighting the need for
tools such as this high-resolution microbiome profiling algorithm
and database to help accurately classify, or assign taxonomy, to
large microbiome datasets.

We observed a similarly high specificity for S. enterica,
or true negative rate. Using in silico simulations of other
Enterobacteriaceae and raw milk cheese spiked with E. coli, we
demonstrated that the diagnostic false positive rate for S. enterica
was never above 0.11%. This high specificity was confirmed with
low-diversity ice cream samples that were culture-negative for
Salmonella. However, when microbiome samples, such as cilantro
and chili powder, contained a more complex microbiome,
including several closely related enteric species, the specificity
of the tool fell dramatically at the lowest minimum abundance
detection threshold tested. In terms of bacterial biomass, it is
notable that the 24-h Salmonella positive cilantro samples had
levels of Salmonella ranging from 7.44 to 8.74 log MPN -g cilantro
with corresponding background bacterial concentrations of 9 to
10 log CFU -g (Daquigan et al., 2016). In comparison, the 24-h ice
cream samples with less diverse microbiomes, harbored bacterial
concentrations of approximately 6.43 log MPN -g and 10.54
log CFU -g for Salmonella and background microorganisms,
respectively. This further demonstrates the higher impact of
microbiome diversity on specificity even when concentrations
of cultured background microorganisms and Salmonella were
similar. We suspect that the presence of closely related species
impacts the specificity of the algorithm through more false
positives to Salmonella due to “noisy” low frequency sequences
that are mis-identified and a higher formation of chimeras
during PCR that may not be adequately filtered by preprocessing.
However, it should be mentioned that these challenges are a
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characteristic of the dataset and would apply to all analytical tools
used.

The decrease in specificity could be resolved, by moving the
minimum abundance threshold higher. However, this resulted
in a loss of sensitivity with samples in which the relative
abundance was below the minimum abundance threshold.
Fortunately, 16S rRNA metagenomics gives a complete picture
of the microbial community sequenced, so that the detection
threshold can be adjusted accordingly based on the microbial
composition. Based on this study, a 0.20% relative abundance
threshold for S. enterica was established with an overall sensitivity
of 96% and specificity of 98%. When this 0.20% threshold
was used to detect Salmonella from bloodstream samples,
all three culture-positive patients were identified, supporting
the notion that accurate identification of Salmonella can be
performed in clinically relevant scenarios, as well as food safety
surveillance.

Given the increasing level of interest in microbiome analysis
by food safety stakeholders, this study suggests that microbiome
sequencing diagnostic tools to identify pathogens need to be
carefully designed and implemented, with rigorous evaluations
to determine sensitivity and specificity, as demonstrated here. In
addition to downstream analytical tool choice, all other aspects
of this workflow, such as sample collection and DNA extraction,
16S rRNA amplification and sequencing strategy, must also be
evaluated. For example, as demonstrated in this study with
Salmonella and, in a previous study of Listeria, targeting the
V1 to V3 region of the 16S rRNA gene improves sensitivity
and specificity of detection of these pathogens (Ottesen et al.,
2016). However, this may not be the case with all organisms; for
example, Bacillus anthracis can be distinguished from members
of the B. cereus group by targeting the V6 region (Chakravorty
et al., 2007).

Due to intrinsic noise in 16S rRNA community profiling,
even tools such as Resphera Insight, which demonstrated high

specificity and sensitivity, show limitations and challenges in
their usage. As shown in this study, detection of S. enterica will
depend not only on its absolute abundance, but also its relative
abundance compared to the background microbial population
and the complexity of that population. False positive assignments,
though infrequent, do occur suggesting that identification of
S. enterica below 0.20% abundance may be challenging for
some samples in which other closely related Enterobacteriaceae
members dominate a community. However, for microbiological
research, the ability to characterize the microbial population
and its changes can be beneficial for studying how experimental
parameters and sample sources, such as different food matrices,
affect target recovery.
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