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ABSTRACT

Purpose We developed and tested a novel Quantitative
Structure-Activity Relationship (QSAR) model to better
understand the physicochemical drivers of pulmonary ab-
sorption, and to facilitate compound design through im-
proved prediction of absorption. The model was tested
using a large array of both existing and newly designed
compounds.

Methods Pulmonary absorption data was generated using
the isolated perfused respiring rat lung (IPRLu) model for 82
drug discovery compounds and 17 marketed drugs. This
dataset was used to build a novel QSAR model based on
calculated physicochemical properties. A further 9 com-
pounds were used to test the model’s predictive capability.
Results The OQSAR model performed well on the 9 com-
pounds in the “Test set” with a predicted versus observed
correlation of R? =0.85, and >65% of compounds correctly
categorised. Calculated descriptors associated with permeabil-
ity and hydrophobicity positively correlated with pulmonary
absorption, whereas those associated with charge, ionisation
and size negatively correlated.

Conclusions The novel QSAR model described here can re-
place routine generation of IPRLu model data for ranking
and classifying compounds prior to synthesis. It will also pro-
vide scientists working in the field of inhaled drug discovery
with a deeper understanding of the physicochemical drivers of
pulmonary absorption based on a relevant respiratory com-
pound dataset.
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ABBREVIATIONS
ADME Absorption, distribution, metabolism

and excretion

ADMET Absorption, distribution, metabolism,
excretion and toxicology

BSA Bovine serum albumin

cD Caesarian derived

FB Free base

GSK GlaxoSmithKline

HCl Hydrochloride salt

HNA Hydroxynapthoate

HPLC High pressure liquid chromatography

HPLC-MS/MS  High pressure liquid chromatography
tandem mass spectrometry

IPRLu Isolated perfused respiring rat lung

MDCK Madine Darby canine kidney

OPLS Orthogonal partial least squares

QSAR Quantitative structure-activity relationship

SDiP Solubilised dose in perfusate at 20mins

TDiP Total dose in perfusate at 20mins

INTRODUCTION

Reducing compound attrition is a highly desirable goal in
drug discovery. This aim has been facilitated by the emer-
gence of physicochemical property-based guidelines such as
the Lipinski Rule of 5 (1), simple ADMET rules of thumb
(2—4) and rules for reducing receptor promiscuity (5-7).
Hughes et al. (5) showed for example that targeting lower li-
pophilicity (cLogP <3) and greater polarity (polar surface area
>75) could help reduce toxicity-based attrition. The
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physicochemical properties of medicines delivered via the oral
route are generally well understood because this area has been
the focus of numerous analyses on preclinical and clinical
datasets (8—11).

Conversely, there is relatively little information in the liter-
ature on the optimal physicochemical properties of inhaled
drugs. It can be highly advantageous for certain medicines
to specifically target an organ rather than the systemic com-
partment, for example in respiratory diseases where the dis-
ease 1s occurring in the lung. There are also several examples,
extensively reviewed by Patton and Byron (12,13), where pul-
monary delivery has been selected as a way of delivering sys-
temically acting drugs. Further literature concerning the in-
haled route of administration mostly describes non-drug like
molecules, and is therefore not very informative for small mol-
ecule drug discovery (14-17).

To aid design of small molecule inhaled drugs, a similar
set of guidelines to those described for oral drugs would be
advantageous. Colleagues at GSK have published a physi-
cochemical analysis of 29 inhaled/intranasal and 52 oral
marketed respiratory drugs (18), concluding that com-
pounds administered vza the inhaled/intranasal routes have
a higher polar surface area, a higher molecular weight, and
a trend towards lower lipophilicity, when compared with
their orally administered counterparts. Of the 29 inhaled/
intranasal drugs, 69% were either glucocorticoids, f2 ago-
nists, or muscarinic antagonists, reflecting the dominance of
these medicines as current standard of care for respiratory
diseases.

The 1solated perfused rat lung (IPRLu) model is an ex vwo
tool for investigating rate and extent of compound absorption
through the lung following intratracheal instillation in rats. It
has been extensively used to compare lung retention and ab-
sorption rates between compounds (19-23). Ventilation of the
lungs ensures physiological relevance whilst the intact vascu-
lature of the IPRLu model allows evaluation of the fate of
drugs without the influence of extra-pulmonary factors such
as hepatic clearance.

Studies comparing the IPRLu model with  vwo models
report good consistency across the data and suggest the
IPRLu model is a suitable tool for investigating lung
absorption. Tronde (24) reported that the absorption half-
life obtained with the IPRLu model correlated with the
observed n viwvo lung absorption half-life based on a total
of 5 compounds in rats. Comparable data have also been
reported between an IPRLu model and an & viwo model
following administration of fluticasone furoate as a dry
powder (25).

Tronde (24) also published a Partial Least Squares (PLS)
model predicting absorption rate in the IPRLu model from
measured LogP,,,, and the descriptors %PSA and cLogD7 4.
This study however, was based on a limited dataset of 10
compounds of which only 3 were inhaled drugs.

Given the current limited characterization of inhaled drugs
in physicochemical space, we sought to use data generated in
our laboratory with the IPRLu model to produce a computa-
tional model able to predict pulmonary absorption, thus ob-
viating the need to use ex viwo or i vivo models. This in silico
analysis would improve characterisation of existing inhaled
drugs and facilitate the design of novel drugs.

Here we present a novel in silico model that we constructed
using the largest and most relevant data set available so far,
comprising both marketed inhaled drugs with well known
mechanisms of action, and novel inhaled compounds with
thus far less established mechanisms of action. We subsequent-
ly validated our in silico model using a compound “Test set”,
which generated robust prospective predictions, confirming
the applicability of our model.

MATERIALS AND METHODS
Isolated Perfused Rat Lung Model

All animal studies were ethically reviewed and carried out in
accordance with the Animals (Scientific Procedures) Act 1986
and the GSK Policy on the Care, Welfare and Treatment of
Animals.

Male CD rats (275300 g) were obtained from Charles
River (Margate, Kent, UK) and housed under standard con-
ditions. The IPRLu model, including surgery, dosing and
sample collection, was performed by the Laboratory Animal
Sciences department at GSK. Methodology was based on that
described by Tronde et al. (23;24) but with lungs remaining in
situ and intratracheal instillation as the dosing technique. Prior
to surgery male CD rats were anaesthetised with intraperito-
neal ketamine and medetomidine (Dormitor' ™) at 75 ml/kg
and 0.5 ml/kg respectively. In addition, 50U of heparin was
administered intravenously via a tail vein. Following confirma-
tion of anaesthesia, the front of the rib cage was removed to
access heart and lungs, and the trachea cannulated and se-
cured with a ligature. Respiration was transferred to a positive
pressure small animal ventilator (Harvard Apparatus Ltd,
Edenbridge, Kent, UK) and maintained at 40 breaths per
minute with a tidal volume of 1.8 ml. Following exsanguina-
tion, the pulmonary artery and vein were cannulated through
incisions in the right and left ventricles in order to isolate the
blood pulmonary circulatory system. The rat was then raised
and maintained at an angle of 45° using a custom made ele-
vating chamber similar to that described by Brain e al. (26).
Perfusion of the 1solated lung vasculature was performed with
Krebs-Ringer bicarbonate buffer (3% bovine serum albumin
(BSA), pH7.4, 37°C), pumped at 10 ml/min (27) using a
Harvard rodent blood pump (Model 1407, Harvard
Apparatus, Holliston, MA, USA). After an initial first pass to
flush blood from the lung vasculature, the perfusion buffer was
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then recirculated for approximately 10 minutes to equilibrate
and attain the required flow rate. Lungs were visually
inspected for leaks and signs of oedema (27). Compounds were
administered either discretely or co-formulated (2—4 com-
pounds) and experiments were carried out in duplicate.
Doses (100 pnL) were administered to the trachea slightly
above the bifurcation point by introduction of a 50 mm needle
Hamilton syringe into the tracheal cannula followed by 3 x
1 ml of air. The tracheal cannula was then reattached to the
ventilator and total perfusate was collected over 1 min inter-
vals for 20 mins. Perfusate aliquots (1 ml) were frozen (-20°C)
along with terminal lung samples prior to analysis.

Homogenised lung and perfusate samples underwent pro-
tein precipitation by addition of a 3-fold excess of acetonitrile
containing an internal standard. Following either filtration or
centrifugation the resulting filtrate or supernatant was typical-
ly dried down under a nitrogen stream and then reconstituted
in the mobile phase used for separation by HPLC. Following
sample preparation lung and perfusate samples, along with
residual dose formulations (pre- and post-centrifugation) were
analysed by HPLC tandem mass spectrometry (LC-MS/MS),
typically using a generic reverse phase chromatography gra-
dient method with separation on a C18 column (50 x 2.1 mm,
3 um) and an acidified mobile phase.

Compounds

All 108 compounds used in our experiments were either from
inhaled respiratory drug discovery programmes (91) or
marketed drugs (17), synthesized or purchased by
GlaxoSmithKline and dosed between 7 and 40 pg. The
“Training set” contained 98 compounds of which 82 were
discovery compounds and 16 were marketed compounds.
The “Test set” consisted of 9 discovery compounds. Of the
17 marketed compounds all were included in the “Training
set” with the exception of Tiotropium for which solubility had
not been measured, therefore a value for % solubilised dose in
perfusate (%SDiP) was not available.

All compounds were formulated in an aqueous vehicle, the
majority (79%) containing 0.2% Tween 80 in either water or
saline. Due to the diverse nature of the molecules investigated,
formulations were a mix of solutions and suspensions ranging
from <1 to 100% compound in solution. Compound solubil-
ity effects were investigated using a tool compound available
in three micronised salt forms with varying solubilities. The
free base (FB), hydroxynapthoate (HNA) and hydrochloride
(HCI) forms were each administered to the IPRLu model at a
dose equivalent to 15 pg free base.

Data Handling

The cumulative amount of parent compound crossing the
lung into the perfusate by the end of the 20 minute experiment
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was expressed as % of the total dose or as % of the dose
originally in solution (solubilised dose). The relative rate of
absorption across the lungs was also calculated, the percentage
of the administered dose remaining in the lungs was plotted
semilogarithimically against time and the initial rate of ab-
sorption expressed as a half-life.

Development of QSAR Model

To determine the main drivers of absorption of com-
pounds in the IPRLu model, multivariate analysis was
carried out on the IPRLu model output together with
calculated physicochemical parameters. The statistical
method used to build the QSAR model was an orthogo-
nal partial least squares (OPLS) regression based model-
ling approach (28,29) using SIMCA-P+ software
(Umetrics, Umea, Sweden).

The molecular structure of each compound in the dataset
was used to calculate 39 two-dimensional physicochemical
descriptors that generally describe lipophilicity, hydrogen-
bonding, size, shape, charge and atom composition, and in-
cluded descriptors calculated using ACD/Labs software
(Toronto, Ontario, Canada) and Abraham’s molecular de-
scriptors (30). These properties were then combined with a
set of in silico ADME related endpoints (gastro-intestinal ab-
sorption, Lipinski’s Rule of 5 (1), extent of protein or tissue
binding, substrate for active efflux transporter P-glycoprotein,
volume of distribution, solubility and permeability) to form
the x-block variables used for modelling purposes.

Data from the 98 compounds in the “Iraining set”
consisted of a total of 107 observations of which 9 were repeat
compounds with data generated across the IPRLu model
timeframe, their inclusion helped assess variability in the mod-
el. Using this data OPLS models were generated using the x
block variables to model the log transformed y variables (i.e.
model output): Log% solubilised dose in perfusate at 20 mins
(Log®%SDiP), Log% total dose in perfusate at 20 mins
(Log®%TDiP), and lung absorption half-life. A model
predicting Log%SDiP was taken forward and from the orig-
inal set of 49 x variables, a single round of feature selection was
carried out based on the variable importance plot from the
initial OPLS model to generate a more parsimonious model
comprising of 20 descriptors and 6 ADME model outputs.
The number of components was determined automatically
within SIMCA-P+ using a “leave many out” cross validation
procedure to assess their individual significance. To test the
robustness of the model, a randomisation test was performed
20 times using the “Validate” function within SIMCA-P+ on
the y dataset.

A further 9 compounds for which IPRLu model data was
generated (z.e. not included in the “Training set”) were used as
a “Test set” to assess the predictivity of the QSAR model.
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RESULTS

Diversity in Pulmonary Absorption Across 17 Marketed
Compounds Using the IPRLu Model

The rate and extent of lung absorption of 17 marketed drugs
along with 82 discovery compounds were measured in the
IPRLu model and used to build an in silico model to predict
pulmonary absorption.

Data generated with the IPRLu model on 17 marketed
drugs (14 out of 17 designed for inhaled delivery) are
shown in Table I. All the compounds display a moderate
to high extent of total dose in the perfusate at 20 minutes
(10-100%), in keeping with the in-house observation that
compounds displaying < <10% carry a high risk of accu-
mulation in the lung upon repeat dosing, which can lead
to developability issues and high attrition rates. The
marketed compound set can be classified into two groups
according to their solubility. The first group are reason-
ably soluble in the dose formulation (>80% of the parent
compound in solution, determined by dose analysis pre-

Table |
Range Quoted in Brackets

and post-centrifugation) and display similar values for
%SDiP and %TDiP. The second group are only partially
soluble in the dose formulation (<80% of the parent com-
pound in solution) and therefore display greater values for
%SDiP compared to % TDiP.

The marketed compounds could also be differentiated
based on the mean lipophiciity of the two groups. LogP
was calculated using Chemaxon v5.4.1.1 (http://www.
chemaxon.com/) and the difference between the 2
groups was deemed significant using a non-paired f-test
assuming equal variance. For the first group, where the
dose 1s mainly in solution (r.e. 0SDiP = %TDiP) the com-
pounds display a mean LogP value of -0.3 and include:
indacaterol, ambroxol, formoterol fumerate, ipratropium
bromide, amiloride, lidocaine and zanamivir. The second
group (%SDiP > %TDiP) of compounds display a mean
LogP value of 3.6 and include: flunisolide, montelukast,
fluticasone propionate, fluticasone furoate, nedocromil,
tacrolimus, budesonide, salmeterol and salbutamol.
Tiotropium bromide was not included in this analysis as
a %SDiP was not available.

Data for Marketed Drugs Generated in the IPRLu Model and Included in the OPLS Model “Training set”, Mean (n = 2) Data are Displayed with the

Drug %TDiP %SDiP 9% Dose in solution  Lung T1/2 (mins)  Recovery of total dose (%)*  Calculated LogP®
Indacaterol F1(10,11) 12(12) 88 273 (255-291) 91 (77-104) 3.03
Ambroxol 38 (14-61) 41 (18-64) 95 39 (14-64) 70 (66-74) 2.65
Formoterol Fumerate 47 (42-52) 47 (42-52) 100 24 (22-26) 73 (70-76) 0.83
Ipratropium Bromide 49 (34-64) 50° 100 23 (14-32) -1.82
Tiotropium Bromide® 61 (59-62) 16 (15,16) -1.76
Amiloride 62 (61-62) 62 (61-62) 100 8 (7-10) 81 (76-85) -0.5
Lidocaine® 75 (64-82) 75¢ 100 4(4,5) 1.54
Zanamivir’ 100 (100-100) 100 100 7(5-8) 104 (100-107) —-6.54
Flunisolide 41 (28-53) 96 (66—126) 42 I5(7-22) 139 (135-142) 1.56
Montelukast 67 (57-78) 92 (78-106) 73 42 (23-60) 77 (70-85) 8.49
Fluticasone Propionate 10 (10) 2000¢ 0.5 [15(98-131) 3.72
Fluticasone Furoate 10 (7-12) 300° 32 153 (112-194) 4.13
Nedocromil 32 (23-40) 125 (83-166) 24 32 (24-40) 85 (79-90) 2.5
Tacrolimus (prograf) 38 (38) 178 (176-180) 21 28 (27,28) 5.59
Budesonide 77 (76-79) 551 (540-561) 14 3334 84 (82-87) 2.73
Salmeterol 15 (6-24) 41 (16-66) 36 146 (59-233) 69 (61-76) 3.59
Salbutamol 42 (33-51) 77 (60-93) 55 21 (13-28) 78 (75-81) 0.32

#Data only available for compounds where lung analysis was carried out to confirm recovery
® Calculated using Chemaxon v5.4. 1.1 (http:/fwww.chemaxon.com/)
Solubility in dose vehicle was determined post study on a discrete weighing of the compound

9 Solubility of Tiotropium was not measured in the IPRLu model experiment, therefore it was not included in the “Training set”. Safety data sheet quotes solubility
to be ~5 mg/mlin PBS (pH 7.2) https://ww.caymanchem.com/msdss/| 5773m.pdf

¢ Lidocaine data is from n = 4
f Zanamivir dose analysis failed, expected to be fully solubilised in the dose vehicle (250 tig/ml 0.2% Tween 80 in saline) due to its zwitterionic nature. Merck Index
states solubility of zanamivir to be 18 mg/ml in water
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Importance of solubility as a driver of pulmonary
absorption

The importance of solubility as a key determinant of pul-
monary absorption was highlighted with a tool discovery
compound which displayed a range of IPRLu model pro-
files driven by differences in solubility of the specific
micronised salt form administered (Fig. 1). Pulmonary ab-
sorption, expressed as % TDIiP, correlated with the extent
of parent compound in solution in the dose vehicle: 18, 47
and 73% for the HNA, IB and HCI salt forms respective-
ly. Furthermore when the IPRLu model data were nor-
malized to the amount of the administered dose in solu-
tion (%SDiP), the parent compound profiles were similar
regardless of the salt form administered, confirming that
similar proportions of the parent compound in solution
crossed the lungs into the perfusate.

Development of QSAR model to predict pulmonary
absorption

By applying multivariate analysis on a “Training set” of 98
compounds we have identified a comprehensive series of phys-
icochemical descriptors that correlate with pulmonary absorp-
tion in the IPRLu model.

The “Training set” comprised of a physicochemically di-
verse set of 98 compounds consisting of 7 zwitterions, 8 acids,
31 bases and 52 neutral compounds, with cLogP values rang-
ing from -3.7 to 9.1 and cLogDpH?7.4 values ranging from -
4.4 to 6.5. Total polar surface area (tPSA) values ranged from
24 to 198 and molecular weight values ranged from 177 to
842 (see Table II).

The diverse nature of the compound set resulted in a
broad range of values for each of the IPRLu model end-
points with %TDiP values ranging from 0.1 to 100,
%SDiP values ranging from 0.1 to 2400 and lung absorp-
tion half-life values ranging from 3.3 to 5210 minutes (see
Table II). Initially, QSAR models were generated on the

)

=O=HCI Rat 1
=O=HCI Rat 2
=O=FB Rat 1
=0=FB Rat 2
=0O=FB Rat 3
=0—HNA Rat 1
—=8—HNA Rat 2

% total dose in perfusate

0 5 10 15 20 25
Time (min)

log transformed data for each of the three endpoint pa-
rameters from the IPRLu model. We then selected the
best performing QSAR model based on the R? value,
which was an OPLS model predicting Log%SDiP.
Having already established the importance of solubility
as a driver of pulmonary absorption, we then focused on
the extent of solubilised dose in perfusate which enabled
investigation into the inherent drivers of pulmonary
permeability.

The distribution of the 98 compound “Training set” is
shown in Fig. 2 and reflects a normal distribution of
Log%SDiP data. The associated scores plot of the resulting
OPLS model is displayed in Fig. 3. The scores plot displays
the relationships between different compounds; the x var-
1ables in this model are condensed into the 2 principal
components plotted and describe the physicochemical
space. Adjacent compounds in the scores plot have similar
physicochemical properties. A consequence of using OPLS
is that all the attributed variability in the y data variable
Log%SDiP is described by principal component 1. As a
result this leads to the differentiation in the size of the
response correlating from left to right along principal com-
ponent 1. The contribution of each of the 20 descriptors
and 6 ADME model outputs of the x variable block are
shown in the regression coefficients plot in Fig. 4.
Descriptors that positively correlate with Log%SDIiP include:
extent of absorption in the rat following oral administration
(FA rat vl.logFA score), permeability
(perm_chrom_p.perm_score, MDCK2.Perm_pH74 nm_sec,
MDCK2.Perm pH64 nm sec), substrates of the active efflux
transporter Pgp (Pgp_v31.Pgp_Score), hydrophobicity (Chrom
LogD_v3.value, logd pH55 acd, logd pH65 acd), and extent
of compound residing in the neutral or unionised form
(neutral ionised form). These positive correlating descrip-
tors and model outputs are mainly associated with perme-
ability and hydrophobicity. Descriptors that negatively
correlate with Log%SDiP include: Bpkal,
basic_ionised form, abe, cmr, mw, tpsa, hbd, pos, rb,

60
Q
5
3 50 ~O=HCl Rat 1
g =O=HCl Rat 2
c 40
. —o—FBRat 1
73
8 30 —0o—FBRat 2
T
2 20 —o—FBRat 3
= —e—HNA Rat 1
=3
o 10 —e—HNA Rat 2
2

0 5 10 15 20 25
Time (min)

Fig. I IPRLumodel profiles for different salt forms of the same parent drug discovery compound expressed as (@) % dose in perfusate, where a 6 fold difference
is noted between salt forms at 20 mins and (b) %SDiP i.e. normalised for the amount of dose in solution, where profiles are comparable.

HNA = hydroxynapthoate, FB = free base, HCl = hydrochloride salt.
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Table Il Range of Physicochemical

Properties and IPRLu Model Physicochemical property IPRLu model endpoint Mean Lower range Upper range
Endpoints Across the 98
Compounds (7 Zwitterions, 8 clogP 32 =37 9.1
Acids, 31 Bases and 52 Neutral) in clogD pH7.4 2.1 —4.4 6.5
the “Training Set” MW 507 177 842
tPSA 105 24 198

%TDIP 32 0.1 100

%SDiP 164 0.1 2400

Lung absorption half-life (mins) 212 33 5210

lonisation classes were predicted and cLogP/cLogD values calculated using the ACDIabs software ACD v |: Advanced
Chemistry Development, Inc. 8 King Street East, Suite 107, Toronto, Ontario, Canada M5C |B5. tPSA = total Polar

Surface Area

flex, alpha, betah, pi, vx, total HB, total charge and
nonPSA. These negative correlating descriptors are mainly
associated with charge, ionisation and size. More details of
the different in-house QSAR models and descriptors used
to build this OPLS model are shown in Table III.

The statistical output from the OPLS model is shown
in Table IV and displays a R? of 0.621 and a Q? (i..
predictivity) of 0.491. The authors recognise that these
statistics are not representative of a highly predictive re-
gression model, but feel that they are sufficient for a semi-
quantitative ranking and classification based predictive
assessment. Moreover, the statistics obtained are typical
for an ADME model where the output, Log®%SDiP, like
other ADME endpoints has an inherent variability and
multiple factors influencing it.

Output from the OPLS model showing the correlation
between predicted and observed Log%SDiP is shown in

Fig. 2 Distribution of data in 40
training dataset “Log%SDiP”

35
30
25

20

Count(Primary ID)

o .
-05 0.0 05 1.0 15 2.0 25 3.0 35

-1.0

Fig. 5; the compounds circled suggest that the model under-
predicts the actual value for observations of approximately
>300%SDi1P (~2.5 on the log scale), but correctly assigns
them as being in the high (>100%) category.

Validation of the QSAR model with a “Test set” of 9
compounds

Having built a computational model which can predict pul-
monary absorption in the IPRLu model for inhaled com-
pounds based on calculated physicochemical descriptors we
then evaluated the performance of the model using an addi-
tional 9 test compounds which had not been included in the
Training set.

The observed IPRLu data with the 9 “Test set” com-
pounds are compared to the QSAR model predictions in
Table V. Overall the QSAR model performed well, especially

Log(% Solubilised Dose in Perfusate) (10 bins)

@ Springer



2610

Edwards, Luscombe, Eddershaw and Hessel

Fig. 3 The scores plot from the

resulting 2 component OPLS

model generated within SIMCA-

P+ on the 98 compounds where 4
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when predicting the classification of each compound. 67%
(6/9) of the “Test set” were categorised correctly based on a
comparison of the predicted %SDiP with the observed mean
data. This increased to 89% (8/9) when comparing to the
observed range rather than the mean. Although an absolute
%SDiP value could not be determined for GSK_A due to the
limit of detection of the HPLC-MS/MS assay, <13%SDiP

Fig.4 OPLS model coefficient plot
displaying the contribution of each
descriptor to the model
components and whether each
descriptor correlates positively or
negatively with Log%SDIP
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indicates negligible pulmonary absorption, supported by com-
plete recovery of the dose from the lungs at the end of the
experiment, this is in keeping with the prediction that GSK_A
would be in the “Low” category. For the remaining “Test set”
compounds mean observed values of %SDiP were predicted
within 2-fold of the observed mean for 63% (5/8) of the com-
pounds. A comparison of the observed versus predicted % SDiP
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Table Il Information Around the in-House QSAR Models and Descriptors used to Build the Log%SDiP OPLS Model

QSAR model / Descriptor

Details

Coefficients with regards
to IPRLu QSAR model

FA rat_vl.logFA score

Perm_chrom_p.perm_score

MDCK2.Perm pH74 nm_sec
MDCK2.Perm pH6é64 nm sec

Pgp v31.Pgp Score

Chrom LogD_v3.value

neutral_ionised form

logd pHS55 acd
logd pH65 acd
Bpka|_modified
basic_ionised_form

abe
cmr
mw
tpsa
hbd
pos
rb

flex
alpha
betah

pi
VX

total HB
total charge

nonPSA

Output from an inhouse QSAR model that predicts fraction absorbed in the rat,
this model was built on a GSK rat oral bicavailability dataset with total clearance
values of less than 10 ml/min/kg and therefore minimal first pass effect.

An inhouse PLS-Discriminant analysis model which predicts permeability and
oral absorption of compounds.

Inhouse QSAR models which predict passive permeability across a madine darby
canine kidney (MDCK) cell monolayer (3 |) with donor solutions buffered at
pH7.4 and pHé6.4.

An inhouse PLS-Discriminant analysis model which predicts the likelihood of a
compound being a substrate for the ABC active efflux transporter
P-glycoprotein.

An inhouse OPLS QSAR model that predicts hydrophobicity, the model was
built on a GSK dataset of chromatographic hydrophobicity index (CHI)
measurements (32) which are converted to a chromlLogD value (4).

% of the molecule in the neutral form at pH7.4. pKa's calculated using the
ACDlabs software® ACD vl 1.

Calculated logD value from the ACDlabs software at pH5.5

Calculated logD value from the ACDlabs software at pH6.5

The most basic pka value calculated using ACDlabs software ACD vl |

% of the molecule in the acidic form at pH7.4 pKa’s calculated using the
ACDIabs software ACD vl I.

Andrews Binding energy (33).

Calculated molar refraction

Average molecular weight of parent

Polar surface area calculated by the method of Ertl (34).

Count of the number of hydrogen bond acceptors in a molecule.

The count of the number of positively ionisable/charged groups in a molecule.

count of the number of rotatable bonds in a molecule.

related to the ratio of the number of rotatable bonds to total
bonds = int(| 00*rotatable bonds/total bonds)

An Abraham'’s molecular descriptor relating to Hydrogen Bond Acidity (hydrogen
bond donors) (30).

An Abraham'’s molecular descriptor relating to Hydrogen Bond Basicity (hydrogen

bond acceptors) (30).
An Abraham'’s molecular descriptor relating to the dipolarity/dipolarizability (30).

An Abraham'’s molecular descriptor relating to McGowan characteristic volume
(size) (30).

Sum of hydrogen bond donors and acceptors
(physchem_desc.hba + physchem desc.hbd)

Sum of positive and negative charges
(physchem desc.neg + physchem desc.pos)

Approximation of total surface area - polar surface area.

+

¢ ACDlabs software: Advanced Chemistry Development, Inc. 8 King Street East, Suite 107, Toronto, Ontario, Canada M5C |B5

for the “Test set” compounds (Fig. 6) displayed an R of 0.85.
GSK I was excluded from this analysis because, although
categorised correctly, its observed value of >350%SDiP falls
within the circled area in Fig. 5 and therefore places this com-
pound in a region where the model is known to under predict
the absolute value.

Opverall, based on the outcome of the model validation with
the compound “Test set” our data successfully validated the
QSAR model for prospective use.

DISCUSSION

One of the main challenges in inhaled drug discovery is
that, unlike oral drug discovery, many of the physical
properties governing the lung disposition of small mole-
cule inhaled drugs have not been clearly defined. Much of
the information in the literature concerning the inhaled
route of administration focuses on particulates, macro-
molecules or very water soluble molecules.

@ Springer
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Table IV Statistical Output from SIMCA for the Final OPLS Predictive Model for Log%SDiP OPLS Observations (N) = 107, Variables (K) = 27 (X = 26,
Y=1)

A R2X R2X(cum) Eigenvalues R2Y R2Y(cum) Q2 Limit Q2(cum) Significance
0 Cent. Cent.

I +0 0.462 0.462 6.26 0.34 0.34 0.322 0 0.322 RI
Rotation -0.221 0.241 0.621 0.491

[+ 1 0.26 0.26 6.77 0.0722 0.0722 0.038 0 0.038 Rl

| +2 0.143 0.403 3.71 0.119 0.192 0.0719 0 0.11 Rl

I +3 0.0884 0.492 2.3 0.0412 0.233 0.0403 0 0.15 Rl

| +4 0.0809 0.572 2.1 0.0328 0.266 0.0117 0 0.162 Rl

| +5 0.0549 0.627 1.43 0.0153 0.281 0.0074 0 0.169 RI

Sum 0.868 0.621 0.491

Consequently, characterization and optimization of mole-
cules for inhaled delivery rely largely on empirical testing
in ex viwo and/or in vivo pre-clinical models. Here we pres-
ent a novel in silico model constructed using the largest,
most diverse and relevant data set available to date, com-
bining both marketed inhaled drugs and novel inhaled
compounds with less established mechanisms of action.
We subsequently evaluated our in silico model using a
compound “Test set”, which generated robust prospective
predictions, confirming the applicability of our IPRLu
model in ranking compounds according to their lung
disposition.

Fig. 5 The output from the OPLS
model showing the correlation
between predicted Log%SDiP on
the x axis and observed Log%SDiP
on the y axis. The model output R
and Q7 values were 0.621 and
0.491 respectively. Circled area
highlights potential for model to
under-predict for some “high”
classification compounds
(>3009%SDiP).

Observed Log(%Solubilised Dose in Perfusate)

0.2
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In our current study, we used a dataset of 98 com-
pounds that were tested in an IPRLu model to build a
OSAR model in order to predict the %SDiP following
intratracheal administration as an aqueous solution/sus-
pension. Tronde (24) describes an alternate QSAR model,
however this was based on a smaller IPRLu model dataset
of 10 compounds, 3 of which were inhaled marketed
drugs. We have sought to extend this approach with a
dataset of over 100 compounds across our “Iraining
set” and “Test set”. As our dataset included marketed

inhaled drugs and novel inhaled drug discovery com-
pounds, our novel QSAR model enables drug discovery

04 06 08 1 12 14 16 18 2 22 24 26

Predicted Log(%Solubilised Dose in Perfusate)
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Table V' Comparison of

Observed and Predicted 9%SDiP Compound

Observed mean % [range] (category)

Predicted % (category)

Accuracy of prediction

Data for the 9 “Test Set”
Compounds GSK_A
GSK B
GSK C
GSK D
GSK_E
GSK_F
GSK G
GSK H
GSK_|

<13 (low/mod)

170 [169—170] (high)
19 [15-23] (mod)

23 [15-30] (mod)
44 [32-56] (mod)

23 [16-29] (mod)
94 [77-111] (mod)
100 [90-1 117 (mod)
352 [309-395] (high)

4 (low) Good Prediction

188 (high) Good Prediction

58 (mod) Same category but >2fold
26 (mod) Good Prediction

5 (low) Underestimate

14 (mod) Good Prediction

150 (high) Prediction within 2 fold
143 (high) Prediction within 2 fold
122 (high) Same category but >2fold

Observed data were generated by the IPRLu model and mean values are displayed along with the range (n = 2),
predicted values are the anti-Log of the output from the OPLS model

The values of %SDIiP were classified as Low (< 10%) i.e. compounds which did not cross into the perfusate to any great
extent, Moderate (10-100%) and High (>100%) indicting that absorption is not limited by solubility in the dose

formulation

programme teams to compare QSAR model predictions
for new chemical entities with similar data generated for
marketed inhaled compounds.

The marketed compound set can be placed into 2 distinct
groups based on the IPRLu model data and their physico-
chemical descriptors.

For the first group of compounds (%SDiP = %TDiP)
displaying a hydrophilic mean LogP of -0.3 and where the
dose 1s mainly in solution rather than a suspension, poor per-
meability and potentially tissue binding are likely factors lim-
iting passage across the IPRLu model rather than poor solu-
bility. This group includes indacaterol, ambroxol, formoterol
fumerate, ipratropium bromide, amiloride, lidocaine and
zanamivir. All display moderate %SDiP values ranging from
12% for indacaterol (with a lung absorption half-life of 273 mi-
nutes) to 100% for zanamivir (with a lung absorption half-life
of 7 minutes). These data show how readily even zwitterionic
compounds like zanamivir with low permeability can be
absorbed across the lung epithelium, when they would not
be absorbed across the GI tract (35).

250

200

Predicted
@
o

—_
o
o

(&)}
o

0 50 100 150 200 250
Observed
Fig. 6 Comparison between predicted and mean observed %SDiP for the

“Test set”. Dashed fine = unity. Solid = linear trendline with R? of 0.85 with
outlier removed.

The second group of compounds (%SDiP > %TDIiP) dis-
play a lipophilic mean LogP of 3.6 and include: flunisolide,
montelukast, fluticasone propionate, fluticasone furoate,
nedocromil, tacrolimus, budesonide, salmeterol and
salbutamol. For this group, which were dosed as suspensions
passage across the lung is likely to be mainly limited by solu-
bility and slow dissolution rate in the dose vehicle or lung
lining fluid. For instance, flunisolide and montelukast display
100% SDiP suggesting that no further dissolution of the drug
occurs once instilled in the lung but that the solubilised drug in
the dose formulation is permeable and crosses into the perfus-
ate. However, fluticasone propionate, fluticasone furoate,
nedocromil, tacrolimus and budesonide display >100%SDiP
indicating some dissolution of particulate drug during the
IPRLu model perfusion experiment and good permeability,
but with solubility limiting %TDIiP to <100%. Finally for
compounds displaying <100% SDiP, tissue binding and per-
meability may also contribute to limiting absorption across the
IPRLu model.

In this paper our observations show that the factors driving
pulmonary absorption are diverse and that this diversity is well
reflected in inhaled marketed compounds which were used to
construct our QSAR model.

Solubility is an important driving factor of pulmonary ab-
sorption. However differences in solubility between salt forms
and different physical forms of the same parent compound
cannot be predicted from parent compound structure. The
IPRLu model data in Fig. 1. showed that the solubility of
the salt form in the dose vehicle correlated with the %TDiP
but resulted in similar %SDiP. This finding confirmed that
solubility in the dose vehicle and consequently whether the
dose 1s administered as an aqueous solution or suspension, is
an important factor determining the profile of compounds in
the IPRLu model and underlines the importance of determin-
ing experimentally the % dose in solution. This finding also
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supports the building of a QSAR model on %SDIiP rather
than % TDiP, because the descriptors used to build the model
are calculated from the parent molecular structure and there-
fore would be unable to predict differences arising from
changes in salt form, physical form or particle size. This ap-
proach removes the inevitable sources of variability associated
with solubility of different batches, salt forms and dose
vehicles.

Our QSAR model is built on %SDiP and hence predicts
the inherent ability of the parent compound to cross the lungs
and appear in the perfusate once it is in solution.

The model also flags compounds (classified as Low) which
are more likely to accumulate in the lung upon repeat dosing
and therefore pose an increased risk of developability issues.
This 1s in keeping with IPRLu model data obtained with the
marketed compounds, as none of these display low absorption
(classified as <10% of the solubilised or total dose in the per-
fusate at 20 minutes).

In attempting to maximise the number of compounds in
any ADME dataset, there is an increased risk of introducing
noise and this IPRLu model dataset is no exception. Driven by
the speed and cost constraints of a drug discovery setting, the
majority of the data used to build this model was carried out in
duplicate and often administered as a cassette of up to 4 com-
pounds to reduce the number of animals used. Data in Table I
shows however that the majority of compounds display dupli-
cate % dose in perfusate values that are within 2 fold, suggest-
ing limited variability for most compounds. One of the advan-
tages of selecting an OPLS model is to separate out the addi-
tional sources of variability and focus the variance attributed
to the y data into principal component 1. As a result an ac-
ceptable model was built (R? 0.621, Q? 0.491) which proved
to be robust against the “Test set”.

As shown in Table III and TFig. 4, calculated descriptors
that positively correlate with Log%SDiP are mainly associated
with permeability and hydrophobicity whereas descriptors
that negatively correlate are mainly associated with charge,
ionisation and size. These observations are in keeping with
those reported by Tronde, ze. rate of absorption across the
IPRLu model positively correlating with hydrophobicity and
negatively correlating with %PSA (24). They are also in keep-
ing with earlier i viwo work in the rat reporting absorption
from the lung to correlate inversely with molecular weight
(15;16).

Log%SDiP also correlates with the predicted ADME end-
points of a number of inhouse QSAR models. For example
FA rat v1.logFA score which predicts fraction absorbed fol-
lowing oral administration in the rat and is also driven by
permeability and solubility. In addition Pgp_v31.Pgp_Score
predicts the likelihood of a compound being a substrate for the
ABC active efflux transporter P-glycoprotein. This does not
necessarily suggest that by being a substrate for Pgp the com-
pound is more likely to be transported across the lung into the

@ Springer

perfusate, just that similar calculated descriptors underpin
both the IPRLu QSAR model and the Pgp OQSAR model.
In this case hydrophobicity correlates with both models in
keeping with the general idea that Pgp acts as a transporter
for mainly hydrophobic substrates (36). As an endpoint
%SDiP also has the potential to differentiate between acidic,
basic and neutral compounds due to their different distribu-
tion characteristics. For example in the IPRLu QSAR model
“neutral ionised form” is a positive coeflicient contributing to
an increase in %SDIP whereas “basic ionised form” is a neg-
ative coeflicient contributing to a reduced %SDiP. This may
reflect the potential for basic molecules to distribute into lyso-
somal vesicles and bind more readily to acidic phospholipids.
When considering the endpoint % TDIiP, the correlation was
reversed with “basic” and “neutral ionised form” emerging as
positive and negative coefficients respectively. This observa-
tion is in keeping with solubility driving % TDiP as basic com-
pounds are generally more soluble than neutral compounds.
Interestingly this differentiation between basic and neutral
compounds was not evident when considering lung absorption
half-life as the endpoint. “Acidic ionised form™ did not emerge
as a significant coefficient in the QSAR model, possibly be-
cause there were only 8 acidic compounds in the “Training
set”. The %SDIiP also displayed trends with i vitro physico-
chemical measurements such as hydrophobicity, permeability
and protein binding which were in keeping with the calculated
descriptors. However, the QSAR model was built entirely
from in silico mputs to enable its application during com-
pound design.

The QSAR model described here offers benefits for appli-
cation in a drug discovery setting, particularly in reducing the
routine need for animal studies. The model can be used as
part of a strategy to reduce systemic exposure and increase
duration of action at the target site for respiratory indications.
Although not as appropriate for predicting clinical profiles as
the model described by Jones and Harrison (37), the QSAR
model is a valuable ranking tool which can direct inhaled drug
design, whilst the IPRLu model can be reserved for more
mechanistic type studies.

Topical delivery for respiratory diseases has the advantage
of delivering therapeutic levels of compound to the target
organ from a relatively low dose. Optimisation of inhaled
medicines often focuses on improving the therapeutic index
by limiting systemic exposure to avoid toxicity, or by increas-
ing the duration of action of compounds at the site of action.
Both of these can in principle be achieved by slowing the pas-
sage of drug across the lung barrier, and therefore retention of
compound in its soluble form at the target site is generally
considered to be a desirable property. The ultimate aim is to
increase the duration that compound is free to engage at the
target site. Examples include the glucocorticoid fluticasone
furoate which has shown high retention and activity in nasal
tissue ex vivo (38) and the muscarinic antagonist tiotropium
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bromide for which a slow receptor off-rate is proposed to pro-
vide a long duration of action (39).

It 1s of course difficult to compare the IPRLu model data
on the marketed compounds in Table I with any clinical data
because the latter is often generated following a low dose,
typically <1 mg administered as an inhaled dry powder.
Clinical plasma profiles, which are often not available follow-
ing such low doses, are dependent upon salt form, particle
size, device and plasma clearance, none of which feature in
this IPRLu model. For these reasons it is also unclear how to
scale the IPRLu model data to i vivo. However, consistencies
reported between the IPRLu model and i vivo models are
encouraging (24;25) and suggest that the IPRLu model and
the resulting QSAR model described here are useful ranking
tools. The advantage of using a QSAR model is that predic-
tions can be made very quickly on molecular structures prior
to synthesis. This reduces the number of animal studies by
selecting compounds with appropriate or diverse properties
based on the QSAR model predictions, enabling more rapid
investigation of the relationship between lung retention and
efficacy or toxicity in viwo.

The generation of data using the IPRLu model can then be
reserved for more mechanistic studies for example investigat-
ing links between different salt forms and dose vehicles with
efficacy in PD models, investigating the impact of active trans-
porters on the pulmonary disposition of drug substrates
(40—42), or in combination with PD endpoints from the same
model (43,44).

CONCLUSION

The novel QSAR model described here can replace routine
generation of IPRLu model data for ranking and classifying
compounds prior to synthesis. It will also provide scientists
working 1n the field of inhaled drug discovery with a deeper
understanding of the physicochemical drivers of pulmonary
absorption. These QSAR based predictions can help prioritise
compounds and aid in the interpretation of efficacy, lung ac-
cumulation or systemic toxicity endpoints across inhaled drug
discovery and development programmes.
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