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Abstract

Treatment of periodontitis has beneficial effects on systemic inflammation markers that

relate to progression of atherosclerosis. We aimed to investigate whether immunization with

A hemagglutinin domain (Rgp44) of Porphyromonas gingivalis (Pg), a major etiologic agent

of periodontitis, would lead to an antibody response cross-reacting with oxidized low-density

lipoprotein (OxLDL) and how it would affect the progression of atherosclerosis in low-density

lipoprotein receptor-deficient (LDLR-/-) mice. The data revealed a prominent IgM but not IgG

response to malondialdehyde-acetaldehyde modified LDL (MAA-LDL) after Rgp44 and Pg

immunizations, implying that Rgp44/Pg and MAA adducts may share cross-reactive epi-

topes that prompt IgM antibody production and consequently confer atheroprotection. A sig-

nificant negative association was observed between atherosclerotic lesion and plasma IgA

to Rgp44 in Rgp44 immunized mice, supporting further the anti-atherogenic effect of Rgp44

immunization. Plasma IgA levels to Rgp44 and to Pg in both Rgp44- and Pg-immunized

mice were significantly higher than those in saline control, suggesting that IgA to Rgp44

could be a surrogate marker of immunization in Pg-immunized mice. Distinct antibody

responses in plasma IgA levels to MAA-LDL, to Pg lipopolysaccharides (Pg-LPS), and to

phosphocholine (PCho) were observed after Rgp44 and Pg immunizations, indicating that

different immunogenic components between Rpg44 and Pg may behave differently in

regard of their roles in the development of atherosclerosis. Immunization with Rgp44 also

displayed atheroprotective features in modulation of plaque size through association with

plasma levels of IL-1αwhereas whole Pg bacteria achieved through regulation of anti-

inflammatory cytokine levels of IL-5 and IL-10. The present study may contribute to refining
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therapeutic approaches aiming to modulate immune responses and inflammatory/anti-

inflammatory processes in atherosclerosis.

Introduction

Atherosclerosis plays a major role in cardiovascular disease (CVD) and is the leading cause of

death worldwide [1]. It is considered a chronic inflammatory disease [2] whose recognized

risk factors include environmental, genetic, and inflammatory elements [1]. Low-density lipo-

protein (LDL) particles circulate in the blood and can accumulate in the arterial intima leading

to the formation of arterial plaques [3]. Oxidative modification of LDL, which creates oxidized

LDL particles (OxLDL) and formation of malondialdehyde-modified LDL (MDA-LDL), is the

first step in the development of atherosclerosis. MDA is unstable and can further react with

acetaldehyde to form malondialdehyde acetaldehyde-modified LDL (MAA-LDL) [4–6]. MAA

adduct has been proposed to be one of the main epitopes for the immune system after MDA

modification of proteins or lipids in atherosclerosis [4,5,7]. Phosphocholine (PCho) is another

common epitope of oxidized phospholipids in OxLDL. It is also exposed on some microorgan-

isms, e.g. Streptococcus pneumoniae, and on apoptotic cells. A well characterized natural IgM

antibody, T15/EO6, binds both microbial antigens and stress-induced self-antigens, such as

OxLDL, via the recognition of PCho [8]. Active immunization with PCho and passive immu-

nization with anti-PCho ameliorate the development of atherosclerosis in apolipoprotein E-

null mice [9].

Periodontitis is known to associate with an increased risk of atherosclerosis. It is a chronic

inflammatory disease affecting tooth-supporting tissue, and a mild form of the disease is pres-

ent in the majority of adult population. Treatment of periodontitis improves systemic inflam-

mation markers that also relate to development of atherosclerosis [10,11]. Porphyromonas
gingivalis (Pg) is one of the most important bacterial species in chronic periodontitis [12]. Pg
can be detected in arterial plaques [13] and can also invade endothelial cells in human coro-

nary arteries [14]. Pg lipopolysaccharide (Pg-LPS) is the major component of the outer mem-

brane of the bacteria that stimulates the innate immune system and is a key virulence factor

that has been shown to induce production of cytokines [15]. LPS works through Toll-like

receptor 4 (TLR4). Pg has also been show to act through TLR2 engagement, and TLR2-me-

diated effects are reported to be important in alveolar bone loss in periodontal disease and ath-

erosclerosis [16,17]. Although the exact mechanisms linking periodontitis to atherosclerosis

are still not defined, the association between the two conditions is partially explained by previ-

ous studies [10].

Compelling evidence links inflammation and immune response to all phases of atheroscle-

rotic lesion development [18]. It has been suggested that IgM autoantibodies are atheroprotec-

tive whereas IgG autoantibodies are much more heterogeneous, but in general, they directly

correlate with CVD manifestations in univariate analyses [5,18–20]. Little information is avail-

able about the role of IgA in atherosclerosis. There appears to be an association between high

serum IgA titers and advanced vascular disease and myocardial infarction [18].

A mouse monoclonal IgM antibody (MDmAb) against MDA-LDL has previously been

cloned in our lab [21]. The antibody recognized gingipain protease produced by Pg and bound

to recombinant gingipain including a hemagglutinin/adhesin domain (Rgp44 domain, amino

acids 717–1135) [21]. We have also previously immunized mice with Pg bacteria, which led to

production of IgM antibodies to MDA-LDL and diminished atherosclerosis [22]. In this study,
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we aimed to investigate whether immunization with gingipain A hemagglutinin domain

(Rgp44) would induce antibody responses to malondialdehyde acetaldehyde (MAA) adducts

in mice. Plasma antibodies to OxLDL, aortic atherosclerotic lesions, and inflammatory/anti-

inflammatory cytokines were examined and the association among these biomarkers was

explored.

Materials and methods

Mice immunization and diets

The study was approved by the National Animal Experimental Board of Finland (ESAVI/

6097/04.10.03/2011). Forty female LDLR-/- mice (about 8 week-old) were randomly divided

into three immunization groups: adhesin/hemagglutinin domain of RgpA of Porphyromonas
gingivalis (Rgp44, n = 13), Porphyromonas gingivalis (Pg, n = 13), and phosphate buffered

saline (Saline, n = 14). The length of the study was 40 weeks, and procedures were carried out

as shown in S1 Fig. Mice were first injected subcutaneously with 50 μg protein, followed by

intraperitoneal booster injections of 25 μg of protein every 2 weeks for five boosters and every

month for six boosters. No adjuvants were used in the study. The mice were on chow diet

(4.4% fat and 0.2% cholesterol) for 13 weeks, followed by high-fat diet (HFD; 21.2% fat and

0.2% cholesterol, Western Diet TD88137 Harlan Tekland) for 27 weeks. Blood samples were

taken from the hind leg before immunizations and before HFD, and from the vena cava at the

time of sacrifice. Mouse aortas were collected for en face analysis after sacrifice.

Bacteria

Porphyromonas gingivalis (Pg), serotype ATCC 33277, was cultured on Brucella agar plates

supplemented with 5% horse blood, 100 mg/mL vitamin K1, and 5 μg/mL hemin anaerobically

at 37˚C for 6 days. Culture purity was determined by gram-staining and colony morphology.

Heat-inactivated Pg was made by incubation of bacteria suspension in PBS at 60˚C for 1 h and

frozen at -80˚C in small aliquots until further use.

Production of recombinant Rgp44 protein

Escherichia coli BL21(DE3)was used to express recombinant protein of Pg arginine-specific

gingipain A adhesion/hemagglutinin domain (Rgp44). The polymerase chain reaction amplifi-

cation and ligation of Rgp44 to pET32 Xa LIC vector were performed as described previously

[21]. ProBond Purification protocols were used with slight modification for the production of

histidine-tagged recombinant protein (Invitrogen, Carlsbad, CA, USA). E.coli cells were har-

vested by centrifugation at 4,500 × g for 15 min and native lysis buffer (50 mM Tris, 25 mM

sodium chloride, 2.5 mM magnesium chloride, and 0.1 mM calcium chloride, pH 8.0) was

used to suspend the cell pellets. Lysozyme was added to 1 mg/mL and the sample was incu-

bated at 30˚C for 50 min. Sonication was performed at 50% amplitude for 4 × 10 sec on ice.

DNase I (4 U/mL, Fermentas) was added and the sample was incubated at 37˚C for 15 min.

Cellular debris was collected by centrifugation at 4,500 × g for 15 min. Rgp44 recombinant

protein was mainly expressed in insoluble form and accumulated in the inclusion bodies.

Rgp44 was purified from E.coli inclusion bodies by adding denaturing lysis buffer (6 M guadi-

nium hydrochloride in native lysis buffer) for 10 min. The cell lysate was homogenized and

agitated gently for 20 min at +4˚C. The lysate was centrifuged at 100,000 × g for 30 min at

+4˚C. Soluble proteins in the supernatant were bound to nickel chelation slurry. Protein puri-

fication was done according to the ProBond Purification protocol. Purity of the histidine-
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tagged Rgp44 recombinant protein was analyzed by sodium dodecyl sulfate polyacrylamide gel

electrophoresis (SDS-PAGE).

LDL isolation and modifications

Low-density lipoprotein (LDL) fraction (density 1.019–1.063 g/mL) was isolated from mouse

plasma by sequential density gradient centrifugation [23]. Malondialdehyde acetaldehyde-

modified LDL (MAA-LDL) and copper-oxidized LDL (CuOx-LDL) were prepared as

described [21]. The extent of lipoprotein modification in each sample was verified by fluores-

cence measurements (excitation 355 nm, emission 460 nm) and colorimetric measurements

with 2,4,6-trinitrobenzene sulfonic acid [24].

Chemiluminescence immunoassay

The amount of antibodies was determined by chemiluminescence immunoassay as described

elsewhere [21]. Rgp44, heat-inactivated Pg, MAA-LDL, CuOx-LDL, phosphocholine-conjugated

bovine serum albumin (PCho-BSA, Biosearch Technologies, Novato, CA, USA), BSA, Pg-LPS

(Invivogen, San Diego, CA, USA) were used as antigens. The antigens were coated (5 μg/mL) in

phosphate-buffered saline (PBS) with 0.27 mmol/L ethylenediaminetetraacetic acid (EDTA) at

4˚C overnight onto white MicroFluor plates (Thermo Scientific, Rockford, IL, USA). The plates

were washed with PBS-EDTA three times using an automated plate washer and blocked with

PBS-EDTA containing 0.5% fish gelatin at room temperature for 1 h. Plasma samples were

diluted and measured in triplicate. Antibody binding was detected with an appropriate alkaline

phosphatase-labeled goat anti-mouse secondary antibody [Sigma-Aldrich, goat anti-mouse IgM

(μ-chain specific)-alkaline phosphatase, goat anti-mouse IgG (Fc specific)-alkaline phosphatase,

and goat anti-mouse IgA (α-chain specific)-alkaline phosphatase]. Chemiluminescence was

detected using LumiPhos530 substrate (Lumigen Inc. Southfield, MI, USA) with Wallac Victor3

multilabel reader, and expressed as relative light units (RLU) measured in 100 milliseconds (ms).

Determination of mouse atherosclerosis

Mouse atherosclerosis was analyzed using ‘en face’ analysis of whole aortas. After sacrifice,

blood was first collected from vena cava and mice were perfused with PBS containing 1 μg/mL

butylated hydroxytoluene (BHT) through the left ventricle for 10 min and perfusion-fixed

with 10% formalin, 5% sucrose, 20 μmol/L BHT and 3 μmol/L EDTA, pH 7.4 for 10 min. Aor-

tas were cleaned, stained with Sudan IV, and pinned onto paraffin plates. The images were

acquired with a Nikon D90 camera and Tokina AT-X 100 PRO D macro lens. Stained aortic

plaque areas were analyzed using ImageJ 1.48v analysis software (https://imagej.net/ImageJ)

and expressed as percentage of plaque area per total area of aorta.

Determination of plasma cytokines

Cytokines were measured using mouse Th1/Th2/Th17/Th22 13plex assay (eBioscience,

Vienna, Austria). A mixture of coated beads for each analyte to be measured was incubated

with 25 μL of undiluted plasma samples or standard mixture. The biotin-conjugated secondary

antibody mixture was added to bind to the analytes captured by the first antibodies. Finally,

Streptavidin-Phycoerythrin bound to the biotin conjugate leading to the emission of fluores-

cent signals. The samples were analyzed with FACSCalibur flow cytometer and CellQuest soft-

ware (BD Biosciences, San Jose, CA) and calculated by FlowCytomix Pro 3.0 Software. In

mouse Th1/Th2/Th17/Th22 Flowcytomix 13plex assay the standard range is 27–20,000 pg/mL

(IFN-γ, IL-1α, IL-2, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, IL-21 and TNF-α), 2.7–2,000 pg/mL
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(IL-22) and 69–50,000 pg/mL (IL-27). The mean intra-assay coefficient of variation of three

independent assays with six replicates of four samples is less than 6.4% and the inter-assay

coefficient of variation less than 10.9% in all analyses.

Statistics

Statistical analyses were performed using IBM SPSS statistics version 22.0. Nonparametric

Mann-Whitney U test was used to detect differences between the variables in different treat-

ment groups and nonparametric Wilcoxon signed-rank test to analyze differences between the

variables within the same treatment groups. The associations were evaluated by Spearman’s

correlation coefficient (03C1).

Results

Prominent immune responses to Rgp44 and Pg bacteria

Female LDLR-/- mice (about 8 weeks old) were randomly divided into three immunization

groups (saline, Rgp44, and Pg). The experimental timeline is shown in S1 Fig. Recombinant

gingipain A hemagglutinin domain (Rgp44) and heat-inactivated whole Pg bacteria (Pg)

induced prominent immune responses in LDLR-/- mice. Plasma IgG and IgM (S2 Fig) anti-

body levels to both Rgp44 and Pg were significantly elevated in Rgp44- and Pg-immunized

mice when compared to the mice immunized with phosphate buffered saline (saline).

Plasma IgM antibody levels to MAA-LDL, CuOx-LDL, and PCho increased

significantly after Rgp44 and Pg immunizations

To investigate whether the immunizations induced the antibodies binding to oxidation-spe-

cific epitopes, plasma antibody levels against MAA-LDL, copper-oxidized LDL (CuOx-LDL),

and phosphocholine modified bovine serum albumin (PCho-BSA) were measured. Compared

to the control group, IgM antibodies to MAA-LDL (Fig 1) increased remarkably in both the

Rgp44 (p< 0.001) and Pg (p< 0.001) groups at the end of the study. IgM antibodies to CuOx-

LDL (Fig 2) increased significantly in the mice immunized with Rgp44 (p< 0.001) and Pg
(p< 0.001) showing no difference between the two immunizations. Substantial elevation of

IgM antibodies to PCho was also found in Rgp44- (p< 0.001) and Pg- (p< 0.001) immunized

mice when compared to controls (Fig 3).The IgM antibodies to PCho in the Rgp44 group were

even significantly higher than those of the Pg group (p = 0.023). Plasma IgG antibody levels to

MAA-LDL (Fig 1), CuOx-LDL (Fig 2), and PCho (Fig 3) did not increase and were similar in

all immunization groups during the study.

The IgA to OxLDL, PCho, and bacterial antigens were studied. Plasma IgA levels to

MAA-LDL were significantly elevated only in the Pg group (Fig 1). IgA levels to CuOx-LDL

remained similar in all immunization groups (Fig 2). Prominent plasma IgA responses to

Rgp44 (p< 0.001 in both Rgp44 and Pg immunizations) and to Pg bacteria (p< 0.05 in Rgp44

immunization and p< 0.001 in Pg immunization) were observed in both Rgp44- and Pg-

immunized mice (Fig 4). Plasma IgA antibody levels to PCho increased only in Rgp44-immu-

nized mice at the end of the study (Fig 4). Pg-immunized mice, but not Rgp44 or control mice,

had increased plasma IgA to Pg lipopolysaccharide (Pg-LPS) (Fig 4).

High plasma IgA levels to Rgp44 were associated with less atherosclerotic

lipid deposits in Rgp44-immunized mice

To investigate whether the immune responses to Rgp44 or Pg modulated the development of

atherosclerosis, atherosclerotic lipid deposition in aorta was stained with Sudan IV (S3 Fig).

Immune response to Rgp44 and Pg in low-density lipoprotein receptor-deficient mice
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Fig 1. Mouse plasma antibody levels to MAA-LDL before immunization (week 0) and at the end of the study

(week 39) in LDLR-/- mice immunized with saline, Rgp44, and heat-inactivated Pg. Each mouse plasma sample was

measured in triplicate using chemiluminescence immunoassay. The antibody binding is expressed as mean ± SD in

relative light units measured in 100 milliseconds (RLU/100ms). Plasma antibody levels as box-whisker plots represent

25%, 50% and 75% of the distribution, where the whiskers represent 10% and 90% distribution of the values and the

cross represents the maximum and minimum range. The solid diamonds are the mean values. P-values less than 0.05

are regarded as statistically significant (nonparametric Mann-Whitney U test). � p< 0.05, �� p< 0.01, ��� p< 0.001.

https://doi.org/10.1371/journal.pone.0191216.g001
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Fig 2. Mouse plasma antibody levels to CuOx-LDL before immunization (week 0) and at the end of the study

(week 39) in LDLR-/- mice immunized with saline, Rgp44, and heat-inactivated Pg. Each mouse plasma sample was

measured in triplicate using chemiluminescence immunoassay. The antibody binding is expressed as mean ± SD in

relative light units measured in 100 milliseconds (RLU/100ms). Plasma antibody levels as box-whisker plots represent

25%, 50% and 75% of the distribution, where the whiskers represent 10% and 90% distribution of the values and the

cross represents the maximum and minimum range. The solid diamonds are the mean values. P-values less than 0.05

are regarded as statistically significant (nonparametric Mann-Whitney U test). ��� p< 0.001.

https://doi.org/10.1371/journal.pone.0191216.g002
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The stained aortic plaque areas were measured and the results were expressed as percentage of

the plaque area per total area of aorta (en face analysis) (S3 Fig). The plaque size varied from

approximately 5 to 22% of the total aortic area. The mean values of the aortic lesion area were

12.89%, 10.86%, and 11.28% in the saline-, Rgp44- and Pg-immunized mice, respectively.

Although no significant differences were found between the three immunization groups, there

was less plaque area in Rgp44- and Pg-immunized mice (S3 Fig). More importantly,

Rgp44-immunized mice with high plasma IgA antibody levels to Rgp44 had less atheroscle-

rotic lipid deposits compared to those with low plasma IgA to Rgp44. There was a significant

negative association between the plaque area and plasma IgA levels to Rgp44 (ρ = - 0.713,

p = 0.009, Fig 5). In contrast, LDLR-/- mice immunized with the whole Pg bacteria having high

Fig 3. Mouse plasma antibody levels to PCho before immunization (week 0) and at the end of the study (week 39)

in LDLR-/- mice immunized with saline, Rgp44, and heat-inactivated Pg. Each mouse plasma sample was measured

in triplicate using chemiluminescence immunoassay. The antibody binding is expressed as mean ± SD in relative light

units measured in 100 milliseconds (RLU/100ms). Plasma antibody levels as box-whisker plots represent 25%, 50%

and 75% of the distribution, where the whiskers represent 10% and 90% distribution of the values and the cross

represents the maximum and minimum range. The solid diamonds are the mean values. P-values less than 0.05 are

regarded as statistically significant (nonparametric Mann-Whitney U test). � p< 0.05, ��� p< 0.001.

https://doi.org/10.1371/journal.pone.0191216.g003

Immune response to Rgp44 and Pg in low-density lipoprotein receptor-deficient mice
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plasma IgA levels to Rgp44 and high IgG levels to Pg-LPS had more atherosclerotic lipid

deposits compared to those with low antibody levels. There was a significant positive

Fig 4. Mouse plasma IgA levels to Rgp44, Pg, PCho, and Pg-LPS before immunization (week 0), before HFD

(week 13), and at the end of the study (week 39) in LDLR-/- mice immunized with saline, Rgp44, and heat-

inactivated Pg. Each mouse plasma sample was measured in triplicate using chemiluminescence immunoassay.

The IgA antibody binding is expressed as mean ± SD in relative light units measured in 100 milliseconds (RLU/

100ms). P-values less than 0.05 are regarded as statistically significant (nonparametric Mann-Whitney U test).
� p < 0.05, �� p < 0.01, ��� p < 0.001.

https://doi.org/10.1371/journal.pone.0191216.g004
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Fig 5. Association of mouse plasma IgA and IgG levels with atherosclerotic plaque area in LDLR-/- mice immunized

with saline, Rgp44, and heat-inactivated Pg. Plasma IgA and IgG to Rgp44 and Pg-LPS as well as plasma IgA to PCho

were determined in triplicate by chemiluminescence immunoassay. The antibody level is expressed as relative light units

measured in 100 milliseconds (RLU/100ms). Associations are determined using Spearman rank correlation coefficient

(ρ). P-values (p) less than 0.05 are regarded as statistically significant.

https://doi.org/10.1371/journal.pone.0191216.g005
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association between the plaque area and plasma IgA levels to Rgp44 (ρ = 0.764, p = 0.006, Fig

5) and plasma IgG levels to Pg-LPS (ρ = 0.773, p = 0.005, Fig 5) in Pg-immunized mice. Plasma

IgG and IgM levels to Rgp44, Pg-bacteria, PCho, and OxLDL were not associated with the ath-

erosclerotic lipid deposits in any of the groups (data not shown). In addition, plasma IgA levels

to Pg-LPS and PCho were not associated with the amount of atherosclerosis lipid deposits in

any of the groups (Fig 5).

Rgp44-immunized mice with lower plasma IL-1α levels had less

atherosclerotic lesions

To further investigate inflammatory responses to Rgp44 and Pg, plasma interleukin levels were

measured. Mouse plasma IL-5, IL-6, and IL-10 levels (pg/mL) at three different time points

were shown (Fig 6A, 6C and 6E). Plasma IL-5, IL-6, and IL-10 levels increased in all immuni-

zation groups. IL-5 and IL-10 levels were also significantly higher in the Pg group (Fig 6B and

6F) than in the Rgp44 and saline groups at the end of the study (week 39). In addition, IL-6

level in Pg-immunized mice was significantly higher than in Rgp44 mice (Fig 6D). No signifi-

cant difference in plasma interleukin levels was observed between the Rgp44 and saline immu-

nization groups.

LDLR-/- mice immunized with Rgp44 and with less atherosclerosis had lower IL-1α levels

than those with extensive atherosclerosis. There was a significant positive association between

plaque area and plasma IL-1α levels (ρ = 0.629, p = 0.028, Fig 7). The other measured plasma

interleukins (IL-2, IL-5, IL-6, IL-10, IL-13, IL-21, IL-22, IL-27, INF-γ or TNF-α) were all simi-

lar in Rgp44-immunized mice compared to the saline group. None of them associated with the

plaque area in Rgp44-immunized mice (Fig 7, S4 Fig). LDLR-/- mice immunized with Pg had

increased plasma IL-5, IL-10, IL-21, IL-22, INF-γ and TNF-α levels compared to the saline

control (Fig 7, S4 Fig). Pg-immunized mice with extensive atherosclerosis had lower IL-5, IL-

10 and IL-22 levels than those with less atherosclerosis. A significant negative association was

observed (Fig 7) between plaque area and IL-5 (ρ = - 0.609, p = 0.047), or IL-10 (ρ = - 0.636,

p = 0.035), or IL-22 (ρ = - 0.609, p = 0.047). None of the other measured interleukin levels (IL-

1α, IL-2, IL-6, IL-13, IL-21, IL-27, INF-γ or TNF-α) associated with the plaque area in Pg-

immunized mice (Fig 7, S4 Fig). Saline-immunized mice showed no association between the

atherosclerotic lipid deposits and any of the plasma interleukin levels tested (Fig 7, S4 Fig).

Discussion

The present study investigated in detail the immune responses to Rgp44, a gingipain A hemag-

glutinin domain of Porphyromonas gingivalis (Pg) which is one of the most important patho-

genic bacteria in chronic periodontitis. Immunization with Rgp44 led to IgM but not IgG

production against MAA-LDL, CuOx-LDL, and PCho. In other studies, these kinds of

humoral changes have previously been linked to atherosclerosis. A significant negative associa-

tion was observed between atherosclerotic lesion and plasma IgA to Rgp44 in Rgp44 immu-

nized mice, indicating further an anti-atherogenic effect of the immunization.

OxLDL contains various types of immunogenic epitopes derived from modified proteins

and lipids. In recent years, the MAA epitope has gained more attention because it is a closely

related structure to MDA and is proposed to be one of the main epitopes after MDA modifica-

tion [4–7]. MAA adduct is known to be a significant target for human natural antibodies in

newborns and premature babies [5]. MAA-specific Fab antibodies have been cloned from a

phage display library constructed from umbilical cord blood lymphocytes. They recognize

apoptotic cells and may play a role in immunomodulation of atherogenesis [5]. Furthermore,

saliva samples from healthy humans have recently been reported to contain IgA antibodies to
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MAA-LDL which cross-react with the periodontal pathogen Porphyromonas gingivalis (Pg)
[25], although the autoantibody levels to OxLDL in saliva are not associated with the autoanti-

body levels to OxLDL in plasma. More recently, an ELISA (enzyme-linked immunosorbent

assay) with purified MAA as antigen has been established, offering a specific and sensitive

detection of anti-MAA antibody titer at a very early stage of atherosclerosis [6].

The role of plasma autoantibodies to OxLDL in cardiovascular disease (CVD) remains

debated. Growing evidence indicates that high levels of IgM antibodies to OxLDL are inversely

associated with cardiovascular disease, suggesting a protective role for IgM antibodies [5,9,18–

Fig 6. Mouse plasma IL-5, IL-6, and IL-10 cytokine levels in LDLR-/- mice immunized with saline, Rgp44, and

heat-inactivated Pg. Mouse plasma cytokine levels were determined with cytometric bead assay (CBA) from each

mouse plasma sample and expressed as picograms per milliliter plasma (pg/mL). Samples at week 0 and week 13 were

pooled together within each immunization group. At week 39 the plasma samples were not pooled, but measured as

individuals. (A, C, E) Plasma cytokine levels at different time points within immunization groups (mean value). (B, D,

F) Plasma cytokine levels at the end of the study (week 39) as box-whisker plots represent 25%, 50% and 75% of the

distribution, where the whiskers represent 10% and 90% distribution of the values and the cross represents the

maximum and minimum range. The solid diamonds are the mean values. � p< 0.05, �� p< 0.01.

https://doi.org/10.1371/journal.pone.0191216.g006
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20]. It is not yet fully understood by which mechanisms the IgM antibodies confer atheropro-

tection. One explanation is that they bind to OxLDL and inhibit its uptake by macrophage

scavenger receptors [26]. In this study, significant elevation of plasma IgM antibody levels, but

not IgG levels, to MAA-LDL, CuOx-LDL, and PCho was observed in Rgp44- and Pg-immu-

nized mice. The results suggest that the induced IgM antibodies to OxLDL may attenuate the

proatherogenic effect of oxidative agents, advocating atheroprotective roles for both Rgp44

and Pg immunizations. It has not yet been fully understood whether the molecular mimicry

between the periodontal pathogens and the oxidation-specific epitopes is involved in the

Fig 7. Association of mouse plasma IL-1α, IL-5, IL-10, and IL-22 cytokine levels with atherosclerotic plaque area in

LDLR-/- mice immunized with saline, Rgp44, and heat-inactivated Pg. Mouse plasma cytokine levels were determined

with cytometric bead assay (CBA) from each mouse plasma sample. They are expressed as picograms per milliliter plasma

(pg/mL). Associations are determined using Spearman rank correlation coefficient (ρ). P-values (p) less than 0.05 are

regarded as statistically significant.

https://doi.org/10.1371/journal.pone.0191216.g007
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pathogenesis of atherosclerosis. It is widely accepted that the antibodies raised against one

antigen may cross-react with another if they share sufficiently similar structures. A natural

mouse monoclonal IgM antibody (Aa_Mab) cloned against MAA-LDL has been shown to rec-

ognize epitopes from chaperonin 60 (heat shock protein 60) of Aggregatibacter actinomycetem-
comitans (Aa), another key microbe in periodontitis [27,28]. Structural biology studies may

provide more direct evidence to confirm whether Pg arginine-specific gingipain A adhesion/

hemagglutinin domain (Rgp44) possesses a similar structure to MAA adducts. Our data sug-

gest that Rgp44/Pg bacteria and MAA adducts may share cross-reactive epitopes that induce

the IgM antibody production which in turn affect the progression of atherosclerosis.

Little is known about the role of IgA in atherosclerosis. IgA antibodies in cardiovascular

disease have been shown to represent a sign of recent or repeated or persistent infection; how-

ever, the significance is not yet known [29–32]. High IgA antibody level to Pg predicts myocar-

dial infarction and stroke independently of established CVD risk factors [29,33]. In the present

study, a significant negative association between the plaque area and plasma IgA to Rgp44 was

demonstrated, providing further evidence that IgA antibodies may play an important role in

atherogenesis and indicating that the immunization with Rgp44 may exert a protective effect

via regulation of plasma IgA antibody levels against the protease secreted by Pg. Plasma IgA

levels to PCho were considerably elevated in Rgp44-immunized mice; however, they were not

found to be associated with the size of atherosclerosis lipid deposits. In contrast to Rgp44

immunization, IgA levels to MAA-LDL and to Pg lipopolysaccharides (Pg-LPS) were increased

in Pg-immunized mice. Likewise, in this immunization group, a positive correlation was

observed between the plaque area and plasma IgA antibody levels to Rgp44, which implies that

different immunogenic molecules in Pg may act differently from Rgp44 in regard of their role

in the development of atherosclerosis. IgA titers to Rgp44 and to Pg in both Rgp44- and Pg-

immunized mice were significantly higher than those of saline control, suggesting that IgA to

Rgp44 could be a surrogate marker of immunization in Pg-immunized mice. The antibody

responses of Rgp44- and Pg-immunized groups resemble each other closely, providing clues

that the Rgp44 domain may be important for the atheroprotective effect of Pg immunization.

Further studies are needed to determine the possible correlation between IgA antibody and

atherosclerosis.

We and others have previously demonstrated that immunization with killed whole Pg is

atheroprotective in mouse models [21,34]. In this study, LDLR-/- mice immunized with Rgp44

or Pg did not have significantly less atherosclerosis than controls. However, the atherosclerotic

plaque areas in Rgp44- and Pg-immunized mice, but not in control mice, were associated with

several immune biomarkers, e.g. plasma IgA to Rgp44, plasma IgG to Pg-LPS, as well as plasma

IL-1α, IL-5, and IL-10 levels. We have previously immunized LDLR-/- mice with heat-inacti-

vated Pg and PBS [21]. In the current study, the same mouse strain was selected, but the dura-

tion of immunization and HFD was prolonged for 5 and 8 weeks, respectively. The area of

aortic plaque in the en face analysis of the current study was over two-fold more than in our

previous study [21]. Longer HFD may influence the progression of atherosclerosis and could

thus have affected the plaque formation, confounding the protective role of Rgp44 or Pg
immunization.

Different cytokines are expressed in atherosclerotic lesions. There is a balance between pro-

and anti-inflammatory cytokines and the balance is crucial for lesion development [35,36]. In

this study, positive association with atherosclerotic plaque area was only seen in IL-1α among

the cytokines measured in Rgp44-immunized mice. The phenomenon was not observed in

saline- and Pg-immunized mice, revealing a different orchestration action of cytokines

between Rgp44 and Pg immunizations. IL-1α mediates the early phases of sterile inflammation

by rapidly initiating a cascade of inflammatory cytokines and chemokines, which plays a

Immune response to Rgp44 and Pg in low-density lipoprotein receptor-deficient mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0191216 January 12, 2018 14 / 19

https://doi.org/10.1371/journal.pone.0191216


central role in the inflammation induced by apoptotic/necrotic cell death. However, the

amount of circulating IL-1α is generally very low, and rarely detected even in patients with

severe infections [37]. Reduced atherosclerosis has been reported in IL-1α-deficient mice [37].

Atherosclerotic lesions have long been associated with IL-1β [38]. The differential induction

and distinct roles of IL-1α and IL-1β in fat-induced vascular responses and atherosclerosis

have recently been highlighted [38]. Unexpectedly, the fatty acids elicit release of IL-1α but not

IL-1β, revealing a selective IL-1α-persistent pathway of vascular inflammation and pathology,

and suggesting a role of IL-1α in atherosclerosis. IL-5 has been suggested to play a role in pro-

tection against atherosclerosis in humans due to the stimulation of B1 cells and the production

of IgM antibodies to OxLDL [39–41]. IL-10 is an anti-inflammatory cytokine mainly produced

in macrophages in local atherosclerotic plaques [42]. Lack of IL-10 impacts on the develop-

ment of atherosclerosis in mice [43]. IL-10 also suppresses Pg-driven inflammatory responses

of mucosal macrophages and may be a key mediator of endotoxin tolerance [44]. IL-22, a

member of the IL-10 cytokine family, has been demonstrated to play an important role in

mucosal immunity in protecting bacterial infections and regulating microbiota in the gut [45].

In our study, Pg-immunized mice had significantly higher IL-5, IL-10, and IL-22 titers than

the Rgp44- and saline-immunized mice. These cytokines also had a significant negative corre-

lation to the area of atherosclerotic plaque in Pg-immunized mice, in line with our previous

findings [21,22] and demonstrating an atheroprotective effect of the anti-inflammatory cyto-

kines. However, the atherogenic properties of IL-6 are controversial. The recombinant IL-6

aggravates atherosclerosis in apoE-/- mice [46] and inhibition of IL-6 trans-signaling reduces

atherosclerosis [47] whereas other studies show atheroprotective properties of IL-6 [48,49]. In

our study, Pg-immunized mice had the highest concentration of IL-6 when compared to the

other immunization groups. Atheroprotective properties of IL-6 were not observed and there

was no correlation between IL-6 and total plaque area in any of the immunization groups.

Overall, it is intriguing that IL-1α may exert effect on progression of atherosclerosis in

Rgp44-immunized mice whereas the anti-inflammatory cytokines IL-5 and IL-10 are crucial

for possible atheroprotection in Pg-immunized mice. Pg immunization seems to play a more

potent role in mediating and regulating cellular inflammatory responses.

Taken together, our data suggest an atheroprotective effect for Rgp44 and Pg immuniza-

tions. Rgp44/Pg and OxLDL, especially MAA adducts, may share cross-reactive epitopes

which allow a prompt IgM antibody response leading to reduced risk of atherosclerosis. Both

Rgp44 and Pg immunizations may also provide atheroprotection via modulation of pro- and

anti-inflammatory cytokines levels. This immunization study promotes our understanding of

the immune responses related to the development of atherosclerosis, and may also contribute

to refining the current approaches aiming to regulate immune responses and inflammatory/

anti-inflammatory processes in the disease.

Supporting information

S1 Fig. Experimental timeline for immunizations, blood sample collections, and diet

changes. LDLR-/- mice were immunized with phosphate buffered saline (Saline, n = 14), or

Porphyhromonas gingivalis arginine-specific gingipain A adhesion/hemagglutinin domain

(Rgp44, n = 13), or heat-inactivated whole Pg bacteria (Pg, n = 13). No adjuvants were used

with the immunogens. Mice were fed normal chow diet for 13 weeks followed by HFD for 27

weeks. At the end of the study, the mice were sacrificed and atherosclerosis was quantified by

en face analysis.

(TIF)
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S2 Fig. Mouse plasma IgG and IgM antibody levels to Rgp44 and to heat-inactivated whole

Pg bacteria before immunization (week 0) and at the end of the study (week 39). Each

mouse plasma sample was measured in triplicate using chemiluminescence immunoassay. The

antibody binding is expressed as mean ± SD in relative light units measured in 100 millisec-

onds (RLU/100ms). Plasma antibody levels as box-whisker plots represent 25%, 50% and 75%

of the distribution, where the whiskers represent 10% and 90% distribution of the values and

the cross represents the maximum and minimum range. The solid diamonds are the mean val-

ues. P-values less than 0.05 are regarded as statistically significant (nonparametric Mann-

Whitney U test). � p< 0.05, �� p< 0.01, ��� p< 0.001.

(TIF)

S3 Fig. Quantification of atherosclerosis in LDLR-/- mice immunized with saline, Rgp44,

and heat-inactivated Pg. A) The extent of atherosclerotic plaque development was determined

after HFD at the end of the study (week 39) by en face analysis of the aortas. Sudan IV-stained

aortic plaque areas were measured. Lesion sizes at the aortas are expressed as percentage of pla-

que area per total area of aorta. The aortic plaque areas as box-whisker plots represent 25%,

50% and 75% of the distribution, where the whiskers represent 10% and 90% distribution of

the values and the cross represents the maximum and minimum range. The solid diamonds

are the mean values. P-values less than 0.05 are regarded as statistically significant (nonpara-

metric Mann-Whitney U test). ns: not significant. B) Representative pictures of the stained

aortas are shown for each group.

(TIF)

S4 Fig. Association of mouse plasma IL-2, IL-6, IL-13, IL-21, IL-27, INF-γ, and TNF-α
cytokine levels with atherosclerotic plaque area in LDLR-/- mice immunized with saline,

Rgp44, and heat-inactivated Pg. Mouse plasma cytokine levels were determined with cyto-

metric bead assay (CBA) from each mouse plasma sample. They are expressed as picograms

per milliliter plasma (pg/mL). Associations are determined using Spearman rank correlation

coefficient (ρ). P-values (p) less than 0.05 are regarded as statistically significant.

(TIF)
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References
1. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart Disease and Stroke Sta-

tistics-2017 Update: A Report From the American Heart Association. Circulation. 2017; 135: e146–

e603. https://doi.org/10.1161/CIR.0000000000000485 PMID: 28122885

2. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999; 340: 115–126. https://doi.org/

10.1056/NEJM199901143400207 PMID: 9887164
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