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Abstract

The understanding of selective constraints affecting genes is a major issue in biology. It is well established that gene
expression level is a major determinant of the rate of protein evolution, but the reasons for this relationship remain highly
debated. Here we demonstrate that gene expression is also a major determinant of the evolution of gene dosage: the rate
of gene losses after whole genome duplications in the Paramecium lineage is negatively correlated to the level of gene
expression, and this relationship is not a byproduct of other factors known to affect the fate of gene duplicates. This
indicates that changes in gene dosage are generally more deleterious for highly expressed genes. This rule also holds for
other taxa: in yeast, we find a clear relationship between gene expression level and the fitness impact of reduction in gene
dosage. To explain these observations, we propose a model based on the fact that the optimal expression level of a gene
corresponds to a trade-off between the benefit and cost of its expression. This COSTEX model predicts that selective
pressure against mutations changing gene expression level or affecting the encoded protein should on average be stronger
in highly expressed genes and hence that both the frequency of gene loss and the rate of protein evolution should correlate
negatively with gene expression. Thus, the COSTEX model provides a simple and common explanation for the general
relationship observed between the level of gene expression and the different facets of gene evolution.
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Introduction

Mutations can affect the phenotype either by modifying the

sequences of proteins or by changing their pattern of expression.

Whereas the evolutionary constraints acting on protein-coding

sequences are relatively well characterized, those driving the

evolution of gene expression have been much less studied.

Modifications in gene expression can result from mutations in

regulatory elements or through changes in the number of gene

copies in the genome (i.e. gene dosage) by gene duplications or

gene losses. The phenotypic impact of changes in gene dosage is

clearly illustrated by the deleterious effects caused by chromosome

aneuploidy [1]. The necessity of an X-chromosome inactivation

mechanism to compensate for dosage imbalance between males

and females in mammals [2] is another example of the importance

of having the correct dosage of genes. Within populations,

polymorphism in copy number of genes (Copy Number Varia-

tions: CNVs) significantly contributes to variations in transcript

abundance [3]. Moreover, some CNVs were shown to be driven

by positive selection for increased expression of the corresponding

genes [4–6], highlighting the fact that gene dosage modifications

can be targeted by selection. However, the evolutionary

constraints that apply on gene dosage remain poorly understood.

Whole-genome duplications (WGDs) represent interesting cases

to study the evolutionary constraints on gene dosage. Immediately

after a WGD event, all genes are present in two copies; these

paralogs that result from WGD are termed ohnologs, in reference

to the pioneering ideas of Susumu Ohno on the role of WGDs in

genome evolution [7,8]. However progressive changes in gene

dosage do occur: most ohnologs are lost, while only a subset is

retained over long evolutionary times [9,10]. Different (non-

exclusive) models have been proposed to explain the retention of

gene duplicates after a genome duplication. First, some ohnologs

are retained because one or both copies evolved toward a different

function, either by gain of a new function (neo-functionalization

[7,11]) or through partition of ancestral functions [12,13 for

review]. The over-retention of some functional categories suggests

that WGDs might have played a role in some important

evolutionary transitions by providing opportunities for functional

innovations [14,15]. Second, some ohnologs appear to be retained

because of constraints on relative gene dosage (the ‘dosage

balance’ hypothesis). For example, the loss of ohnologs encoding

subunits of protein complexes is counter-selected because it affects

the stoichiometry of complexes [16–18].

In yeast, it has been noticed that genes that have been

maintained in two copies after WGD tend to be highly expressed

[19]. However, the interpretation of this observation remained

unclear: does it simply reflect an indirect effect of other

parameters (e.g. differences in functional categories between

highly and weakly expressed genes) or is there a direct

relationship between expression and the probability of retention

of ohnologs? The genome of Paramecium tetraurelia, which contains
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almost 40,000 protein-coding genes, provides a perfect configu-

ration to investigate this issue. Indeed, 3 WGDs occurred during

the evolution of the Paramecium lineage [17]. The genome

contains about 12,000 pairs of ohnologs resulting from the most

recent WGD, compared to less than 600 in yeast [20]. This

corresponds to a frequency of gene loss of 49% since the last

WGD (frequencies of gene loss after the intermediary and the old

WGD are respectively 76% and 92%) [17]. Thus, the Paramecium

genome allows the investigation of the fate of gene duplicates over

different evolutionary scales.

The analysis of EST abundances suggested that in Paramecium,

as in yeast, highly expressed genes tend to be more retained [17].

To investigate in detail the relation between gene expression and

gene retention following WGD we measured genome-wide

expression patterns in different culture conditions and at different

stages of Paramecium life cycle. We show that retention rate is

positively correlated with the level of gene expression. This

observation does not appear to be due to indirect effects of other

parameters known to affect gene retention. To explain these

observations we propose a model based on the assumption that

gene expression levels before WGD are close to an optimum,

which corresponds to a trade-off between the benefit and cost of

their expression. This simple COSTEX model provides a general

explanation for the relationships between gene expression and

gene evolution, not only in terms of gene dosage but also in terms

of evolution of the encoded proteins.

Results

Expression level influences gene retention after WGD
We measured the expression level of Paramecium genes in 58

different experiments, spanning different stages of its life cycle,

using a DNA microarray covering the 39,642 protein-coding genes

annotated in the genome. We define here the expression level of a

gene as the median value of its expression across all 58 different

experiments. We name ‘ohnologon’ a set of ohnologous genes

related by a given WGD event. Since the Paramecium lineage

encountered 3 successive WGDs, ohnologons may contain from 1

up to 2, 4 or 8 genes for the recent, intermediary or old WGD

respectively.

Ideally, to investigate the relationship between gene expression and

retention, one would have to measure the rate of gene loss per

elementary time unit in each ohnologon. However, with only one

genome sequenced in the Paramecium clade, it is not possible to

quantify this rate for each individual ohnologon. We therefore

investigated the relationship between gene expression and retention

by grouping ohnologons into bins defined by fixed intervals of

expression level (see Materials and Methods). For the recent WGD,

there is a striking positive relationship between the frequency of gene

retention in each bin and their average expression level (Figure 1).

The frequency of gene retention increased 2-fold between the 10%

least expressed genes and the 10% most highly expressed genes (0.32

and 0.67 respectively, P,10216). We observed the same trend for the

intermediary and the old WGD (frequency of retention = 0.17 vs.

0.31, P,10216 and 0.04 vs. 0.10, P = 2.961026 when comparing the

10% extreme genes respectively for the intermediary and old WGD).

We also found a similar relationship between gene retention in the

Paramecium lineage and the expression level of their orthologs in

Tetrahymena thermophila (Figure S1). The divergence between T.

thermophila and P. tetraurelia lineages occurred before the last two

WGDs [17]. Hence, the observed correlation between expression

level in T. thermophila and retention rate in Paramecium directly

demonstrates that there is a relationship between the expression level

of genes – before WGD – and their probability of retention after the

WGD event. In other words, the selective pressure against gene losses

is positively correlated to the pre-WGD expression level.

Other factors contributing to gene retention
It has been shown that various parameters affect the fate of

duplicated genes after WGD. Notably, some functional gene

categories are more retained than others, possibly because they

Figure 1. Relationship between gene expression level and the
frequency of gene retention after WGDs. Ohnologons were
binned according to their expression level, and for each bin, we
computed the frequency of ohnologons having retained both copies
since the WGD (see Materials and Methods). Circles: recent WGD (23,404
ohnologons); crosses: intermediary WGD (16,464 ohnologons); dia-
monds: old WGD (9,050 ohnologons). The histogram in the background
represents the distribution of expression level for all genes in
Paramecium. For each WGD the locally-weighted polynomial regression
(lowess, as implemented in the R software [52]) is displayed as a solid
line for visual aid.
doi:10.1371/journal.pgen.1000944.g001

Author Summary

The analysis of gene evolution is a powerful approach to
recognize the genetic features that contribute to the
fitness of organisms. It was shown previously that selective
constraints on protein sequences increase with expression
level. This observation was surprising because there is a
priori no reason why lowly expressed genes should be less
important than highly expressed genes for the proper
function of an organism. Here we show that selective
pressure on the evolution of gene dosage, which is
another important aspect of gene evolution, is also directly
dependent on gene expression level. To explain these
observations, we propose a model based on the fact that
gene expression is a costly process (notably protein
synthesis), so that there is an optimal expression level for
each gene corresponding to a trade-off between the
benefit and the cost of its expression. This model predicts
that selective pressure on gene expression level or on the
encoded protein should on average be stronger in highly
expressed genes, providing a simple and common
explanation for the general relationship observed between
gene expression and the different facets of gene evolution.

The Impact of Gene Expression on Gene Evolution
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contributed to adaptation by functional innovation [11], or

because of dosage balance constraints [16–18]. We analyzed each

of the known factors in order to investigate whether the observed

relationship between gene retention and expression could be

explained by these other parameters.

Gene retention versus phylogenetic distribution
It is expected that widely conserved genes and lineage-specific

genes undergo different selective pressures [21,22]. To investigate

the relationship between retention rate and phylogenetic distribu-

tion, we classified genes into 3 groups: Paramecium-specific genes

(n = 17,896), ciliate-specific genes (n = 4,135) and ancient eukary-

otic genes (n = 8,846) (see Materials and Methods). We found that

eukaryotic and ciliate-specific genes are more retained than

average following the recent WGD (both P,10216) while

Paramecium specific genes were more frequently lost (P,10216).

Therefore, genes that are conserved across large evolutionary time

scales are more prone to retention following WGD than genes that

evolved quickly or were innovated in the Paramecium lineage.

However, all 3 gene categories show a relationship between gene

expression and gene retention similar to what we observed on the

whole set of Paramecium genes (Figure S2), indicating that this

relationship pertains independently of age or level of gene

conservation.

Gene retention versus functional categories
We classified Paramecium genes according to their functional

category based on the Gene Ontology (GO) [23]. We computed

the average retention rate for each functional category represented

by more than 400 genes in the Paramecium genome. On average,

genes that have a GO assignment are more retained than other

genes (0.57 vs. 0.48, P,10216). This result simply reflects the

previous observation: given that functional category assignment is

based on homology with genes in other species and that genes

conserved across species are preferentially retained following

WGD, genes with GO assignment tend to be more retained than

the average. However, a few (3/23) functional categories were

significantly under-retained (Table S1). Among them, ‘integral to

membrane’ is the category with the lowest retention rate, reflecting

differences in post-WGD selective pressure on genes encoding

membrane proteins (see discussion).

We analyzed the relation between gene expression and gene

retention across the different functional categories by dividing

genes into 4 quartiles according to their expression level (Figure

S3). As expected, functional categories show differences both in

average expression levels and retention rates. For the same level

of expression, different GO categories show different retention

rates, which shows an effect of functional categories indepen-

dently of gene expression. Nevertheless highly expressed genes (in

the upper quartile) are more retained than lowly expressed ones

(in the lower quartile) for all the 23 functional categories

analyzed, indicating that the relationship between gene expres-

sion and retention is not caused by some specific functional

categories (Figure S3 and Table S1).

Gene retention versus dosage balance constraints
Aury et al. [17] showed that genes encoding subunits of protein

complexes are over-retained after the recent WGD in Paramecium.

We used the same data to investigate the relation between

expression level and retention rate separately for genes predicted

to encode part of protein complexes (n = 1,236) and for other genes

(n = 7,025) (see Materials and Methods). We find that genes coding

for subunits of protein complexes are over-retained, even when

expression is controlled for (Figure 2), confirming the impact of

dosage-balance constraints on the fate of genes following WGD.

However, both genes encoding protein-complex subunits and

other genes show a similar relationship between expression level

and retention rate (Figure 2). Hence, expression level appears to

influence the retention of genes following WGD, independently of

dosage balance constraints.

Highly expressed genes show no evidence of a higher
tendency for change of function

Some duplicate genes are retained because they evolved toward

different functions (by neo- or sub-functionalization) [11,12]. One

possible hypothesis to explain the higher retention of highly

expressed genes is that they might be more prone to functional

changes, either via changes in the encoded protein or via changes

in expression patterns. To test this hypothesis, we first investigated

the relation between gene expression and coding sequence

divergence, measured by the rate of non-synonymous changes

(Ka) between ohnologs of the recent WGD. We found a negative

correlation (r = 20.31, P,10216; Figure S4), indicating that the

evolutionary rate of coding sequences is lower in highly expressed

genes.

We also investigated the relation between gene expression and

the rate of evolution of expression patterns between ohnologs of

the recent WGD. For this we used two different measures of

expression divergence. The first is the Pearson correlation

coefficient between ohnologs on the 58 different experiments.

The second measure is an Euclidean distance between expression

levels of ohnologous genes across the 58 different arrays. Both

measures show a negative correlation between gene expression

and divergence of expression patterns (r = 20.23 and r = 20.13

respectively, both P,10216): highly expressed genes have more

conserved expression patterns.

Figure 2. Relationship between gene expression and retention
for subunits of protein complexes and for other genes.
Retention rates were computed for bins of expression level for genes
that are predicted to be involved in protein complexes by homology
with yeast proteins (crosses) and for other genes having homologs in
yeast (circles). The two sets contain respectively 590 and 4,384
ohnologons, grouped into 10 and 17 bins. The solid lines correspond
to locally-weighted polynomial regression (lowess, as implemented in
the R software [52]).
doi:10.1371/journal.pgen.1000944.g002

The Impact of Gene Expression on Gene Evolution
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Thus, highly expressed genes evolve more slowly than weakly

expressed genes, both in terms of protein sequence and in terms of

expression pattern. These two observations are consistent with the

model we propose (see discussion) but are in contradiction with the

hypothesis that highly expressed genes undergo functional

innovation more frequently than weakly expressed genes. We

admit however that this latter hypothesis cannot be formally

rejected. Indeed, it can be argued that functional innovations do

not necessarily imply a noticeable increase in evolutionary rate (e.g.

a very limited number of amino-acid changes might be sufficient to

change the function of a protein), and the negative correlations

reported above might reflect other evolutionary processes (e.g.

selective constraints on amino-acid sequences to avoid protein

folding errors [24]). The minimal conclusion is therefore that we

found no evidence of a higher propensity for functional innovation

among highly expressed genes.

Discussion

Gene expression and dosage sensitivity in Paramecium,
yeast, and animals

We studied the constraints acting on the evolution of gene

dosage by analyzing the fate of duplicated genes after WGDs.

We show that the frequency of gene retention following the

recent WGD in Paramecium is positively correlated to gene

expression level, which reveals a selective pressure against the

loss of highly expressed duplicated genes. Various factors are

known to contribute to the retention of gene duplicates, such as

a functional shift by neo or sub-functionalization, or selection

for dosage balance in protein complexes. However, these

factors do not appear to explain the observed relationship

between retention rate and gene expression. Highly expressed

genes do not show evidence of a higher propensity to evolve

toward new functions after a duplication. Moreover, the

relationship between retention rate and gene expression holds

for most functional categories, independently of their involve-

ment in protein complexes. Hence, the most parsimonious

explanation for our observations is that there is a direct link

between the expression level of genes and the fitness impact of

changes in gene dosage.

To test this hypothesis, we analyzed data from systematic gene

knock-out (KO) experiments in the yeast Saccharomyces cerevisiae,

where the fitness of heterozygous strains (i.e. carrying one KO

allele and one wild-type allele) was measured by competition

experiments [25], and for which expression data were available

from [26]. We found a negative correlation between the fitness of

heterozygotes and the expression level of the corresponding genes

(r = 20.13, P,10216). The mean loss of fitness increased 2-fold

between the 10% least expressed genes and the 10% most highly

expressed genes (0.027 and 0.053 respectively, P = 10210; Figure 3)

which indicates a higher selective pressure against reduction of

gene dosage for highly expressed genes. Several observations

suggest that this rule holds also for multicellular eukaryotes. First,

Drosophila and mouse genes with copy number variation (CNVs),

tend to be lowly expressed and/or have a narrow tissue

distribution [27,28]. Second, it is known that the small subset of

genes on the human Y chromosome that have retained a homolog

on the X chromosome is strongly biased toward highly expressed

genes [29]. Both observations are consistent with the hypothesis

that changes in gene dosage are more deleterious for highly

expressed genes.

The strong correlation between gene expression and retention

in Paramecium that is apparent in Figure 1 should not be interpreted

as evidence that expression is the unique determinant of the

variance in the rate of gene loss. Indeed, to analyze the relation

between the frequency of gene loss in Paramecium and gene

expression, we had to bin the data into groups of expression level.

This binning tends to underestimate the variance between

individual genes that is caused by other factors (e.g. see [30]).

Thus, the strong correlations observed with binned data simply

indicate that on average – everything else being equal – the fitness

impact of gene loss is correlated with expression level, which does

not exclude that other factors contribute to variations in retention

rate.

The COSTEX model: trade-off between benefit and cost
of gene expression

It is clearly established that expression of a gene is a costly

process, both because it requires energy (particularly for protein

synthesis) and because it mobilizes cellular resources (e.g. the

translational machinery), thus competing with the expression of

other genes (see [31,32] for a recent appraisal). Hence natural

selection is expected to drive gene expression towards an optimum

level at which the cost of increased expression is balanced by the

resulting benefit on fitness. In some cases it has been possible to

directly measure the cost of gene expression. For instance Dekel

and Alon [32] measured the cost of gratuitous induction of the lac

operon in Escherichia coli. They could also measure the fitness gain

associated with lac induction as a function of available lactose

concentration. Moreover, they showed by in-lab evolution

experiments that optimal lac expression could be reached in just

a few hundred generations, demonstrating the strength of selection

for optimal gene expression. The selective pressure to optimize

gene expression levels is expected to be particularly strong in

microorganisms because of their large effective population sizes

[31], but there is clear evidence for such selective pressures in

animals too [33].

Figure 3. Relationship between gene expression level and loss
of fitness associated to heterozygous KO in yeast. The fitness
after deletion of one allele in yeast was taken as the minimal fitness
measured across all conditions given in [25]. Genes were binned
according to their expression level (expression data from [26], see
Materials and Methods) and the average fitness computed for each bin.
The 18 bins analyzed contained a total of 5,030 genes. Error bars
correspond to the 95% confidence interval.
doi:10.1371/journal.pgen.1000944.g003

The Impact of Gene Expression on Gene Evolution
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We now show that this selective pressure can explain the

observed relationship between gene expression level and the fitness

impact of changes in gene dosage. Our model is based on a simple

cost function for gene expression in the presence of limiting

resources that has been proposed by Dekel and Alon [32] on the

basis of the Monod equation and that matched their data

particularly well:

C(X )~
kX

M{X
ð1Þ

where X is the gene expression level, M is the maximal capacity for

expression of a gene, given the cellular resources that can be used

for its expression and k is a scaling factor expressing the fitness cost

of resource usage. Let X0 be the optimal expression level of a gene,

i.e. the level that maximizes fitness. We use the relative expression

level x of this gene with respect to its optimal expression level:

x~
X

X0
. It should be noted that the optimal expression level of a

given gene depends on resources available and therefore depends

on the expression of all the other genes. Hence, X0 for a given gene

may change as the expression of other genes evolves. However, at

equilibrium, selection should drive the evolution of expression

levels of each gene close to a value that maximizes fitness (that is,

x = 1). We express fitness w(x), a function of the relative gene

expression level, as the difference between a benefit function B(x)

and the cost function C(X0x):

w(x)~B(x){
kX0x

M{X0x
ð2Þ

Note that fitness is expressed relatively to the fitness of the optimal

genotype (i.e. X = X0). Hence, fitness is equal to 1 for x = 1:

w(1)~B(1){
kX0

M{X0

~1 ð3Þ

For x = 1 the fitness function is also at an optimum, hence:

Lw

Lx
(1)~

dB

dx
(1){

kMX0

(M{X0)2
~0 ð4Þ

so that
dB

dx
(1)~

kMX0

(M{X0)2
is necessarily positive at optimal

expression. Therefore w(x) can be approximated by a second order

Taylor expansion:

w(x)&1z
1

2

L2w

Lx2
(1)(x{1)2 ð5Þ

Therefore the selective pressure on changes in relative expression

level x can be quantified by the magnitude of the second order

derivative:

L2w

Lx2
(1)~

d2B

dx2
(1){

2kMX0
2

(M{X0)3
ð6Þ

which must be negative at maximal fitness. Therefore, everything

else being equal, the selective pressure on relative gene expression

level is predicted to increase with the optimal expression level X0.

This is illustrated on Figure 4 showing the fitness function w(x) for

various values of X0 assuming an affine benefit function B(x). The

higher the optimal expression level X0, the sharper the fitness

function is in the vicinity of this optimum – equation (6) – resulting

in increased selective pressure on gene expression.

As a first approximation, the loss of a gene copy after WGD is

expected to decrease by 50% the level of gene expression. Under

the assumption that most genes were close to their optimal

expression at the time of WGD, we can estimate the selection

coefficient s associated with the drop in expression following the

loss of an ohnolog by setting x~
1

2
in equations (5) and (6):

s&
1

8

d2B

dx2
(1){

kMX0
2

4(M{X0)3
v0 ð7Þ

This approximation by Taylor expansion is all the more accurate

as X0 is low compared to M. This relationship predicts that the

strength of selection against gene loss increases with gene

expression, as observed very clearly in the present work for the

recent Paramecium WGD (Figure 1). On longer time scales, other

processes such as neo- or sub-functionalization are expected to

contribute to gene retention, which may explain why the

relationship between retention rate and expression level is weaker

for the intermediary and old WGDs (Figure 1).

The COSTEX model and the evolutionary path to
pseudogenization

On shorter time scales, an additional phenomenon may

contribute to the selective pressure against loss of highly expressed

genes. Indeed, gene losses are usually caused by the accumulation

of small-scale mutational events [17], transiently resulting in the

expression of a non-functional peptide. Disabling mutations that

disrupt the function of the protein but do not change its expression

level clearly bear a cost with no benefit. The corresponding

selection coefficient sy can be derived from equations (2) and (4) at

1st order approximation:

Figure 4. Fitness functions predicted by the COSTEX model for
different values of optimal expression levels. These plots
represent the fitness function w(x) for several values of X0. They were
generated assuming an affine benefit function B(x) in equation (2) for
increasing optimal expression levels X0: dotted, dashed and continuous
lines for low, medium and high X0, respectively.
doi:10.1371/journal.pgen.1000944.g004

The Impact of Gene Expression on Gene Evolution
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sy~B(
1

2
){B(1)&{

1

2

dB

dx
(1)~

{kMX0

2(M{X0)2
ð8Þ

This cost may even be higher if the non-functional peptide

interacts with other proteins and perturbs their functions in a

dominant-negative fashion, so that DsyDwDsD is a lower bound for

the selection coefficient. Therefore the COSTEX model predicts

that gene expression strongly influences the pseudogenization path

to gene loss because the probability of fixation of disabling

mutations decreases with increasing gene expression level.

Moreover this model predicts that once a disabling mutation has

been fixed, there should be a selective pressure to decrease the

expression level of the pseudogene up to its total silencing, all the

stronger as gene expression is high.

The COSTEX model: gene-specific parameters
Gene expression level is obviously not the unique determinant

of gene evolution. As shown in equation 6, there are several other

parameters that determine the selective pressure against changes

in gene dosage. First, parameters M and k of the cost function are

expected to vary from one gene to another, according to the length

of encoded proteins and their amino-acid composition. Moreover,

the amount of resources available for gene expression depends on

the physiological state of the cell, and hence these parameters

should also depend on the time at which genes are expressed.

Second, the selective pressure against changes in gene expression

also depends on the second derivative of the benefit function B(x)

(see equations 5–7). Little is known about the shape of the benefit

function – except that this function must be increasing in the

vicinity of the optimal expression level (see equation 4). It is

however clear that B(x) certainly varies widely among genes.

Indeed, it is well known that there are some weakly expressed

genes that are essential for cell functioning (e.g. transcription

factors). In other words, the fact that the optimal expression of a

gene is low does not necessarily imply that the fitness impact of

mutations affecting its expression is low.

Thus, the selection coefficient against changes in gene

expression s is expected to vary according to gene-specific

parameters
d2B

dx2
, k and M. We observed indeed that for a same

expression level, the frequency of gene retention among Paramecium

ohnologs varies strongly according to functional GO categories

(Figure S3). In absence of knowledge about these parameters it is

difficult to predict s for any given gene. However, under the

assumption that the distribution of these parameters is similar

among genes of different expression levels, the COSTEX model

predicts that, on average, selective constraints on gene dosage

increase with expression level.

Gene expression optimality after WGD
The COSTEX model can explain the observed relationship

between gene retention rate and expression level, under the

assumption that most genes were close to their optimal expression

level right after WGD. This hypothesis is difficult to test but

deserves to be discussed because it is a major assumption of the

model. In the absence of major changes such as WGDs, most

genomes are expected to tend toward this evolutionary equilib-

rium at which most genes are expressed close to their optimum

level [33]. Therefore, the ancestral pre-duplication species in the

Paramecium lineage was probably in this situation. The question

now turns into: how did the WGD affect this equilibrium? A first

point to note is that in-lab polyploidisation experiments in plants

and yeast indicate that changing the ploidy from 2n to 4n has very

little influence per se on the relative expression level of genes

[34–36]. Such experiments showed that allopolyploidization (i.e.

WGD resulting from inter-species hybridization) affects the

expression of many more genes than autopolyploidization, and

that these changes can have very important phenotypic conse-

quences [37]. However, even in the case of allopolyploidization, a

large majority of genes do not show substantial changes of

expression level relative to the parental species (e.g. in Arabidopsis

allotetraploids, less than 10% of genes show a 1.5-fold difference in

gene expression [35]). Second, the relative dosage between genes

remains unchanged until gene losses start to accumulate. Third, it

has been observed, both in plants and in yeasts, that cell size

increases with the level of ploidy [34,38,39]. These three points

suggest that a WGD event does not necessarily result in a change

in the concentration of cytoplasmic proteins. It should be noted

however that, when the volume of a cell increases, the surface of its

membrane should increase in a lower proportion, and hence the

surface concentration of membrane proteins might be too high

immediately after WGD. This could explain our observation that

genes encoding membrane proteins are under-retained. However,

in the specific case of Paramecium, the relation between ploidy and

cell volume is unclear because of nuclear dimorphism. Paramecium,

like other ciliates, separates germline and somatic functions into

two distinct nuclei (named respectively micronucleus and macro-

nucleus). The transcriptionally silent micronucleus is diploid while

the expressed macronucleus is highly polyploid (,800 n). WGDs

resulted in a temporary tetraploidization of the micronucleus but

one can only speculate about the consequences on macronucleus

ploidy. Indeed, it has been shown that the macronucleus DNA

content is regulated after amitotic divisions [40], leaving open the

possibility that micronucleus tetraploidization did not change the

total amount of DNA in the macronucleus.

Although we can only speculate on the immediate consequences

of WGD in Paramecium, it can be argued that the fixation of a

WGD in the population of ancestral species would be highly

unlikely if it resulted in a strong decrease in fitness. This is

particularly true in microorganisms such as Paramecium for which

selection against fixation of deleterious mutations is strong because

of their high effective population size [41]. Therefore, assuming

that expression level of most genes was close to their optimum

immediately after WGD appears to be a reasonable assumption.

The trade-off between cost and benefit of gene
expression constrains evolutionary rates of coding
sequences

One additional prediction of the COSTEX model is that the

selective constraints on coding sequences should vary with gene

expression level. Indeed, missense mutations in a coding sequence

do not change expression level (and therefore do not change the

cost of expression), but they generally yield a decrease of the

benefit function. Hence, the fitness function for a mutant allele

becomes (see equation 2):

w0(x)~(1{a)B(x){
kX0x

M{X0x
ð9Þ

where a denotes the decrease of the benefit function caused by this

particular allele, and x and X0 correspond to the expression

parameters of the wild-type allele. Therefore the effect of the

missense mutation on fitness is:

s(a)~w0(x){w(x)~{aB(x) ð10Þ
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If the wild-type gene was at its optimal expression level (x = 1), B(1)

can be inferred from equation (3), which leads to:

s(a)~{a 1z
kX0

M{X0

� �
ð11Þ

which indicates that the loss of fitness is an increasing function of gene

expression. Hence mutations with an equivalent effect on protein

function are predicted to have a stronger impact on fitness for highly

expressed genes because of the higher cost incurred for their

expression, a price the organism had to ‘pay’ for their function. Note

that this relationship also applies for potentially suboptimal expression

X=X0. Note also that the distribution of a for the different mutations

that may affect a gene probably differs widely from gene to gene. In

other words, there are some genes for which, on average, mutations

have a stronger impact on their benefit function than others. Hence,

the mean fitness impact of mutations depends not only on X0, but also

on the distribution of a, which is gene-specific. Therefore this model

does not contradict the observation that some lowly expressed

proteins may also be under strong selective constraints. Nevertheless,

under the null hypothesis that the distribution of a is independent of

the level of gene expression, the COSTEX model predicts that, on

average, the selective constraints on coding sequences are higher in

highly expressed genes.

Conclusion
It is well established that the expression pattern of genes is an

important determinant of the rate of evolution of the encoded

proteins [42,43], although the reasons for this observation are still

debated (for review, see [44]). Here we show that gene expression is

also a major determinant of the evolution of gene dosage. Thus, many

aspects of gene evolution appear to be driven by constraints on gene

expression. To explain the observed relationship between gene

expression level and the fitness impact of both changes in gene

expression and changes in the encoded protein, we propose a model,

based on the simple assumption that gene expression levels reflect a

trade-off between cost and benefit of gene expression. This model is

directly inspired by the work by Dekel and Alon who demonstrated

and quantified experimentally the cost of gene expression in vivo [32].

Put in a simple verbal formulation, the COSTEX model states that

because of the non-linearity of the cost function, gene evolution (in

terms of gene expression, gene dosage or encoded proteins) is all the

more constrained as optimal gene expression is high. Thus this model

can explain simultaneously three observations in Paramecium: i) highly

expressed genes are more frequently retained as duplicates after a

WGD, ii) they evolve more slowly than other genes in terms of protein

divergence and iii) they evolve more slowly than other genes in terms

of expression pattern. Note that the COSTEX model does not imply

that gene expression is the unique determinant of gene evolution.

Selective constraints notably depend on the shape of the benefit

function, which certainly varies widely among genes. However, the

COSTEX model can explain why, on average, highly expressed

genes are more constrained than others.

Several other hypotheses have been proposed to explain the

relationship between gene expression and the rate of protein

evolution [44]. According to a popular model, this relationship

reflects a selective pressure on protein sequences to prevent folding

errors [24]. Indeed, misfolded proteins can affect fitness, either

directly (they can be toxic for the cell) or indirectly (they represent

a waste of resources). In both cases the impact on fitness is

dependent on gene expression level, and hence this model predicts

a stronger selective pressure on highly expressed protein-coding

sequences. Translational errors represent one important cause of

protein misfolding [45]. Thus, one interesting feature of this model

is that it provides an explanation for the covariation between

codon usage (under selection to optimize translation accuracy) and

non-synonymous substitution rate [24]. The ‘misfolding hypoth-

esis’ and the COSTEX model are not mutually exclusive. In fact,

the waste of resources linked to the production and degradation of

misfolded proteins can be considered as one component of the cost

of gene expression. But the COSTEX model predicts that even in

absence of folding errors, the rate of protein evolution should be

negatively correlated to the expression level. One other interesting

aspect of the COSTEX model is that it also provides an

explanation for the relationship between gene expression and

the evolution of gene dosage or gene expression, an aspect of gene

evolution that is not predicted by the ‘misfolding hypothesis’.

Thus, the COSTEX model provides a simple and common

explanation for the general relationship observed between the level

of gene expression and the different facets of gene evolution.

Materials and Methods

Expression data
Expression data for P. tetraurelia were obtained from single

channel NimbleGen arrays with six different 50-mer probes per

gene. We analyzed data from a total of 58 different hybridizations,

corresponding to six independent series of experiments (raw data

are deposited in the Gene Expression Omnibus database [46],

under accession numbers GSE18002, GSE17998, GSE17997,

GSE17996, GSE17930, GSE14631 and GSE12620). Signals from

the 58 arrays were simultaneously normalized using the normal-

izeBetweenArrays function from the Limma package [47]. The

expression of each gene in each condition was taken as the median

of the six individual 50-mer signals. We calculated expression level

of each gene as the log2 of the median value across all 58 arrays.

Expression levels of ohnologons were taken as that of a randomly

chosen gene within each ohnologon [17,48].

Ohnologons were sorted according to their expression level and

grouped into bins defined by fixed intervals of expression level.

Depending on the size of the dataset, this interval was set to 0.2 or

to 1. Bins containing less than 30 ohnologons were excluded from

the analysis. Retention rate was calculated in each bin as the

frequency of ohnologons having retained both gene copies.

Microarray data for T. thermophila [49] were downloaded from

the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/

geo/), a public repository of expression data [46]. We normalized

data across all 50 available arrays (GEO series: GSE11300) and

computed expression level of each gene as the median value across

all 50 arrays. Orthology relationships between P. tetraurelia and T.

thermophila were taken from [17].

Functional categories
Functional categories were downloaded from parameciumDB

(http://paramecium.cgm.cnrs-gif.fr/download/analysis/InterproScan_

results_August_2008.txt) and only categories with more than 400

genes were retained. We eliminated redundancy among functional

categories by searching for categories for which both gene lists

overlapped by more than 90%. In these cases the category with the

higher number of assigned genes was retained. This led to the

elimination of three functional categories: protein kinase activity

(GO:4672), protein serine/threonine kinase activity (GO:4674) and

ribosome (GO:5840), that overlapped protein amino acid phos-

phorylation (GO:6468), protein kinase activity (GO:4672) and

structural constituent of ribosome (GO:3735), respectively. Each

functional category was divided into 4 bins of equal size according to

gene expression level and we computed average retention rates for

each quartile.
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Phylogenetic distribution
Lists of orthologous genes were obtained through the BioMart

interface of parameciumDB [50]. For Paramecium specific genes we

queried the BioMart interface for all Paramecium genes with no

ortholog in any other species available. Ciliate-specific genes were

obtained by querying for genes with an ortholog in T. thermophila

only and ancient eukaryotic genes by querying for genes with an

ortholog in H. sapiens.

Proteins involved in complexes
Paramecium genes encoding subunits of protein complexes were

predicted by Aury and colleagues [17] by homology with yeast

proteins annotated in the MIPS database (http://mips.gsf.de/) or in

[51]. The rate of retention is also correlated to the level of

conservation of genes across the eukaryote phylogeny (see text). In

order to investigate the impact of protein complexes on the rate of

gene retention independently of their phylogenetic distribution, we

selected a set of Paramecium genes having an homolog in yeast (defined

as genes having at least one BLASTP hit in the yeast proteome with

P,161023 and alignment covering .70% of the Paramecium protein)

and compared retention rates for genes involved in protein complexes

(n = 615 ohnologons) and for other genes (n = 4,331 ohnologons).

Yeast KO data
We defined the fitness associated to a heterozygous KO as the

minimal fitness across the different culture conditions tested in

[25]. Expression level for each gene corresponds to the log2-

transformed value of mRNA abundance per cell given by [26].

Supporting Information

Figure S1 Relationship between the rate of gene retention in the

Paramecium lineage and the expression level of their orthologs in T.

thermophila. Ohnologons were binned according to expression levels of

their orthologs in T. thermophila, and for each bin, we computed the

frequency of ohnologons having retained both copies since the WGD.

Circles: recent WGD (3,601 ohnologons); crosses: intermediary

WGD (2,998 ohnologons); diamonds: old WGD (1,589 ohnologons).

The histogram in the background represents the distribution of

expression levels in Tetrahymena for genes that have an ortholog in

Paramecium. For each WGD the locally-weighted polynomial

regression (lowess, as implemented in R [52]) is displayed as a solid

line for visual aid. For the recent and the intermediary WGDs the

frequency of gene retention significantly increased between the 10%

least expressed genes and the 10% most highly expressed genes (0.49

vs. 0.84, P,10216 for the recent WGD and 0.24 vs. 0.48

P = 2.6610210 for the intermediary WGD) while it was not

significant for the ancient WGD (0.16 vs. 0.19, P = 0.37).

Found at: doi:10.1371/journal.pgen.1000944.s001 (2.68 MB TIF)

Figure S2 Relationship between gene expression and gene

retention for genes with different phylogenetic distributions.

Retention rates after the recent WGD were computed for bins

of expression level for genes that are Paramecium-specific

(n = 10,861 ohnologons), ciliate-specific (n = 2,417 ohnologons) or

ancient eukaryotic genes (n = 5,048 ohnologons) (see Materials and

Methods). The horizontal dashed line represents the average

retention rate following the recent WGD. The solid lines

correspond to locally-weighted polynomial regression (lowess, as

implemented in the R software [52]).

Found at: doi:10.1371/journal.pgen.1000944.s002 (6.34 MB TIF)

Figure S3 Relationship between gene expression and gene

retention across different functional categories. Functional categories

were taken from the Gene Ontology classification [53] as indicated in

each panel. For each category, ohnologons were grouped into four

quartiles of expression level and the average retention rate was

computed as the frequency of ohnologons having retained both

copies since the recent WGD. The dotted line corresponds to the

average retention rate of all genes with a GO classification.

Found at: doi:10.1371/journal.pgen.1000944.s003 (3.15 MB TIF)

Figure S4 Relationship between non-synonymous substitution

rates and expression level. Values of non-synonymous divergence

(Ka) between ohnologs from the recent WGD were taken from

[17]. The solid red line shows the linear regression between Ka

and expression level.

Found at: doi:10.1371/journal.pgen.1000944.s004 (2.56 MB TIF)

Table S1 Detailed analysis of functional categories. For each

functional category, the indications given by the table are: go: GO

number of the functional category. name: name of the functional

category. type: type of functional category (‘Molecular function’,

‘Biological process’ or ‘Molecular function’). nbg: the number of genes

within a given functional category. retention: the average retention rate

among genes belonging to the functional category. retention_others : the

average retention of genes not belonging to the given GO

category. pval_retentions: p-value associated to the comparison of the 2

retention rates by a Chi2 test (bold when ,0.05; grey background when

retention rate is lower than other genes). avg_xp: average expression

level of genes belonging to the functional category. avg_xp_others:

average expression level of genes not belonging to the functional

category. pval_xp: p-value associated to the comparison of the 2 average

expression levels by a student t-test (bold when P,0.05; grey

background when average expression level is lower than other

genes). retention_quartile#1–4: average retention rate among genes from

each quartile of expression level (quartile#1 = low expression level;

quartile#4 = high expression level). avg_xp_quartile#1–4: average

expression level in each quartile.

Found at: doi:10.1371/journal.pgen.1000944.s005 (0.01 MB PDF)
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