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ABSTRACT With the growing global threat of antimicrobial resistance, novel strate-
gies are required for combatting resistant pathogens. Combination therapy, in which
multiple drugs are used to treat an infection, has proven highly successful in the
treatment of cancer and HIV. However, this practice has proven challenging for the
treatment of bacterial infections due to difficulties in selecting the correct combina-
tions and dosages. An additional challenge in infection treatment is the polymicro-
bial nature of many infections, which may respond to antibiotics differently than a
monoculture pathogen. This study tests whether patterns of antibiotic interactions
(synergy, antagonism, or independence/additivity) in monoculture can be used to
predict antibiotic interactions in an obligate cross-feeding coculture. Using our previ-
ously described weakest-link hypothesis, we hypothesized antibiotic interactions in
coculture based on the interactions we observed in monoculture. We then com-
pared our predictions to observed antibiotic interactions in coculture. We tested the
interactions between 10 previously identified antibiotic combinations using checker-
board assays. Although our antibiotic combinations interacted differently than pre-
dicted in our monocultures, our monoculture results were generally sufficient to pre-
dict coculture patterns based solely on the weakest-link hypothesis. These results
suggest that combination therapy for cross-feeding multispecies infections may be
successfully designed based on antibiotic interaction patterns for their component
species.
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Antibiotic resistance is a growing global threat. In the United States alone, an
estimated 2.8 million antibiotic-resistant infections occur every year (1). Many

previously treatable infections, such as tuberculosis (2), urinary tract infections (3), and
even Staphylococcus-mediated skin infections (4) now require higher doses of more
powerful antibiotics, and the development of novel antimicrobials is limited (5, 6). One
potential alternative treatment strategy is the use of drug combinations, which have
been used successfully in HIV treatment (7, 8) and cancer chemotherapy (9, 10). In cases
of bacterial infections, multidrug therapy has been adopted in only a few specific
infections, such as treatment for drug-sensitive tuberculosis (2) and use of
trimethoprim-sulfamethoxazole to treat skin and soft tissue infections (11). However,
clinical trials of combination therapy in the treatment of bacterial infections in patients
have been limited. Choosing the correct drug combination is difficult (12, 13), and
efficacy has been mixed (14, 15). A greater understanding of the mechanisms driving
effective combination therapy are therefore required for successful clinical implemen-
tation.

The success of combination therapy is affected by interactions between drugs, in
which the activity and effectiveness of one drug is impacted by the presence or
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absence of another (16) There are several mechanisms by which antibiotics may
synergize (work more effectively or at lower doses together than separately) or antag-
onize (work less effectively or at higher doses together than separately). While the
precise nature of these interactions depends on the drugs and the bacterial species
being targeted, some general mechanisms have been described for different classes of
antibiotics (17). Synergistic interactions tend to occur when one drug facilitates cellular
entry (18–20) or increased efficacy (21) of another, or when the drugs target similar
cellular processes (22, 23). Conversely, antagonism may occur when one antibiotic
induces tolerance or resistance to another (17, 24, 25), or when one drug corrects for
the physiological disruptions caused by another (26). These are general trends only,
however, and many species- and drug-specific exceptions apply, making it challenging
to predict drug interactions a priori in new systems.

It is increasingly appreciated that bacterial infections are often polymicrobial. Nu-
merous clinically relevant infections are now known to involve multiple species,
consisting of a single pathogen and various commensal partners, or several coinfecting
pathogens (27, 28). Polymicrobial infections have been observed to have worse clinical
outcomes in some cases (29–31), although these results are mixed (32, 33). The
metabolic interactions (both positive and negative) among these species have been
demonstrated to impact antibiotic response (34). One such positive interaction is
cross-feeding, in which one species produces an essential metabolite for another; this
also occurs in infection contexts (35). For example, in a cystic fibrosis model where the
pathogen Pseudomonas aeruginosa depends on the mucin degradation products sup-
plied by a community of anaerobic commensals, antibiotics specifically targeting the
anaerobes decreased P. aeruginosa abundance despite its intrinsic resistance to the
antibiotic (36). Treatment regimens might, therefore, be more effective if metabolic
interactions among species are taken into account; however, little research has been
done on how cross-feeding might impact combination therapy.

To this end, we aimed to test whether cross-feeding interactions in a model bacterial
community influence antibiotic interactions. We selected 10 combinations of six anti-
biotics; these were selected to incorporate a variety of predicted interaction types and
mechanisms of antibiotic activity. Three of the combinations we selected were pre-
dicted to synergize (greater antibiotic efficacy in combination than alone); three were
predicted to antagonize (lower antibiotic efficacy in combination than alone), and four
to interact additively or independently in Escherichia coli monoculture (16).

We tested the impact of antibiotic combinations in a previously described cross-
feeding model system involving E. coli and Salmonella enterica. In this system, an E. coli
methionine auxotroph produces acetate from lactose, and an S. enterica evolved
mutant consumes the acetate while producing methionine (36–38). We can force the
species to obligately cross-feed or grow independently by altering the growth medium.
Previously, we used this system to demonstrate that cross-feeding can alter the ability
of a resistant species to grow at high antibiotic concentrations; this effect is specific to
metabolically interdependent communities and did not occur when we supplied the
necessary nutrients for independent growth (36). We called this observation, that a
cross-feeding pair can be inhibited by the most antibiotic susceptible species, the
“weakest-link hypothesis” (36). Cross-feeding of both organic acids such as acetate and
amino acids such as methionine are common in natural microbial food webs (39–41),
making this a useful model system for testing general impacts of antibiotics on
cross-feeding bacteria.

We used fractional inhibitory concentration indices (FICIs) to identify interactions
between drug pairs. We first tested for antibiotic interactions in monocultures of E. coli
and S. enterica. We then used our weakest-link hypothesis to predict the growth
patterns of the coculture and the subsequent antibiotic interactions. It is worth
mentioning that this study is specifically testing phenotypic rather than genetic anti-
biotic resistance (42–44). We have previously shown that growth in a cross-feeding
community can change the ability of a given species to grow at high antibiotic
concentrations (36). We therefore use phenotypic antibiotic resistance to refer to the
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phenotypic ability of a species to grow in a given concentration of antibiotic in a given
growth/community condition.

In this study, we found that only three antibiotic combinations showed nonadditive
interactions; however, our weakest-link hypothesis successfully predicted coculture
growth and antibiotic interactions in these cases. Most importantly, we demonstrated
that cross-feeding interactions can change antibiotic interactions from either monocul-
ture. While more antibiotic combinations and a greater diversity of cross-feeding
partnerships should be explored, these results suggest that the responses of individual
community members to combination therapy might be sufficient to predict the anti-
biotic interactions in the larger microbial community.

RESULTS

Based on previous results in E. coli (16), we tested 10 combinations of six antibiotics
for synergy or antagonism in E. coli and S. enterica monocultures (Table 1). The
mechanism of action for each of these antibiotics can be found in Table S1 in the
supplemental material. We tested each combination in triplicate and calculated MICs,
fractional inhibitory concentrations (FICs), and fractional inhibitory concentration indi-
ces (FICIs) using Loewe additivity (5) after 48 h of growth at 30°C (Fig. 1; see Fig. S1 in
the supplemental material for additional detail on how the calculations were per-
formed). To avoid over- or underinterpretation of the antibiotic interactions, we used
the median FICI value for each plate and the mean value from each of the three
replicate plates for each antibiotic combination.

Antibiotic interactions in monoculture differ from literature predictions. We
first tested how the antibiotic combinations we selected would interact in our mon-
ocultures. We tested each antibiotic combination in triplicate for E. coli and S. enterica,
then calculated the median FICI value for each plate and combination (Fig. 2). Our
categories were designated as follows: an FICI value of �0.8 represents synergy, FICI
values between 0.8 and 1 represent additive interactions, FICI values between 1 and 2
represent independent interactions, and an FICI value of �2 represents antagonism.
These are less stringent than other FICI results because we chose median values to
minimize the impact of plate-to-plate variation, and medians tend to bias FICI results
away from detecting interactions. We also looked at isobolograms (Fig. 3) of each
antibiotic combination for each species, to get a more visual/qualitative examination of
interactions between antibiotics. Tables S2 and S3 in the supplemental material contain
raw median and minimum FICI data, respectively.

The antibiotic interactions that we observed in monocultures were mostly additive,
although we did see a few synergistic and antagonistic interactions. Our FICI (Fig. 2) and
isobologram data (Fig. 3 and Fig. S2 in the supplemental material) showed additive/
independent interactions for both species in nalidixic acid/bleomycin and streptomy-
cin/ciprofloxacin. Nalidixic acid and streptomycin did synergize in E. coli, but not in S.
enterica. Nalidixic acid/spectinomycin and nalidixic acid/doxycycline both showed ad-
ditive interactions in both species; only spectinomycin/streptomycin showed antago-
nistic interactions. Finally, we observed that ciprofloxacin/bleomycin synergized in E.
coli, and spectinomycin/doxycycline synergized in both species; however, this is more
evident in the FICI data than in the isobolograms. The isobolograms suggest that low
concentrations of doxycycline decrease the MIC of spectinomycin, but not vice versa;
that is, doxycycline synergizes with spectinomycin to increase the latter’s potency, but
spectinomycin does not change the effect of doxycycline. It is worth mentioning that

TABLE 1 Antibiotic combinations used in the study and their predicted interactions in E. colia

Interaction type Antibiotic combinations

Synergy Nalidixic acid and streptomycin, nalidixic acid and bleomycin, streptomycin and ciprofloxacin
Antagonism Nalidixic acid and spectinomycin, nalidixic acid and doxycycline
Additive Nalidixic acid and ciprofloxacin, ciprofloxacin and bleomycin, streptomycin and doxycycline, spectinomycin and doxycycline
aBased on Yeh et al. (16).
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these interactions differed from our predictions based on the literature (16); this likely
illustrates the importance of strain-specific and assay-specific measurements of phe-
notypic resistance in bacteria.

Antibiotic interactions in coculture match weakest-link predictions. Previous
work from our lab has shown that coculture growth in the presence of antibiotics is
dependent on weakest-link dynamics (36). The weakest-link hypothesis predicts that
the MIC of an obligately cross-feeding coculture is set by the MIC of the most
antibiotic-susceptible species in the community. This hypothesis allows us to predict
how antibiotics should interact in coculture based on how they interact in each
monoculture (Fig. 4). To generate these predictions, we examined the monoculture
growth patterns in each antibiotic combination (i.e., at which concentrations of each
antibiotic monoculture growth occurred). We then generated a predicted growth
pattern for the coculture in which growth would only occur at antibiotic concentrations
where both species could grow. From this predicted growth pattern, we calculated
FICIs and generated isobolograms; examples of these predictions these can be seen in
Fig. 5 and 6, respectively.

According to our predictions, if one species is the most susceptible in both antibi-
otics, the coculture interaction typically matched that of the most susceptible mon-
oculture. This is the case for nalidixic acid/bleomycin and nalidixic acid/ciprofloxacin
(where S. enterica is the most susceptible), and for streptomycin/ciprofloxacin, specti-
nomycin/streptomycin, streptomycin/doxycycline, and spectinomycin/doxycycline

FIG 1 Antibiotic interaction experimental setup and hypotheses. (A) The two-species obligate cross-
feeding system. When lactose is supplied, Escherichia coli uses it to produce acetate for Salmonella
enterica, which produces methionine for E. coli. Each species can be grown in coculture or monoculture,
depending on the metabolites supplied. (B) Setup for checkerboard assays. Seven antibiotic concentra-
tion wells plus one antibiotic-free well were developed for each antibiotic/species combination, with the
MIC approximately in the middle of the gradient. Mid-log-phase cells were inoculated into plates
containing species-specific growth medium and antibiotic at 2-fold dilutions. Cells were allowed to grow
for 48 h at 30°C with shaking, and a Tecan plate reader was used to measure growth at an optical density
of 600 nm (OD600). Growth was defined as an OD600 above 10% of the maximum OD600 obtained on each
plate. Three replicates of each antibiotic/culture condition were obtained.
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(where E. coli is the most susceptible). Coculture predictions were somewhat more
complicated for the other combinations (nalidixic acid/streptomycin, nalidixic acid/
spectinomycin, nalidixic acid/doxycycline, and ciprofloxacin/bleomycin), where each
species is the most susceptible to a different antibiotic. We were particularly interested
in nalidixic acid/streptomycin, as these antibiotics synergize in E. coli (most susceptible
to streptomycin) and interact independently in S. enterica (most susceptible to nalidixic
acid). Based on the differences in MIC in these species in each antibiotic (see Table S4
in the supplemental material), we predicted an independent interaction in coculture.
Similarly, in the ciprofloxacin/bleomycin combination, the antibiotics verged on antag-
onizing in E. coli and interacted independently in S. enterica; however, their MICs were
similar in both antibiotics. This provided an opportunity to examine interactions in
coculture where weakest-link dynamics might play less of a role.

After generating predicted FICIs based on our monoculture results and weakest-link
dynamics, we tested antibiotic interactions in coculture. We then compared our pre-
dicted FICIs to those observed experimentally for each antibiotic combination. Quali-
tatively, our predictions based on the weakest-link hypothesis were accurate—the
antibiotic interaction category (antagonism/synergy/additive) identified by predicted
FICIs matched the interaction category identified by the observed FICIs (Fig. 5; see also
Table S5 in the supplemental material for raw FICI data). This supports our hypothesis
that weakest-link dynamics can be used to predict antibiotic interaction categories in
coculture. The one exception to this was in the spectinomycin/streptomycin combina-
tion. While there was no statistical significance in this difference, (P � 0.37), we
predicted an independent interaction and observed an antagonistic interaction. Inter-
estingly, the isobologram suggested that antibiotics antagonized much more in cocul-
ture than we predicted. This suggests that weakest-link dynamics may not always
predict coculture outcomes and that some other factor may be determining antibiotic
interactions in this case. Quantitatively, our FICI predictions also matched that of our
observed data (see Table S6 in the supplemental material for all P values), with one
exception. The predicted FICI for the nalidixic acid/spectinomycin combination was
significantly higher than predicted (P � 0.037), but this difference still resulted in
independent interactions and so is likely not biologically significant. Overall, weakest-
link dynamics were generally sufficient to both qualitatively and quantitatively predict
antibiotic interactions in cocultures.

FIG 2 Fractional inhibitory concentration index (FICI) plots of E. coli and S. enterica monocultures across
10 antibiotic combinations. Each point represents the mean � standard error (SE) of three replicate FICI
values from three biological replicates. FICIs on each plate represent the median FICI value from the
plate. Nalx, nalidixic acid; Strep, streptomycin; Bleo, bleomycin; Cipro, ciprofloxacin; Spx, spectinomycin;
Doxy, doxycycline.
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FIG 3 Representative isobolograms of E. coli and S. enterica monoculture fractional inhibitory concentrations (FICs)
across 10 antibiotic combinations. FICs were calculated based on 48 h of 30°C growth, and growth was identified as

(Continued on next page)
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DISCUSSION

The goal of this work was to test whether cross-feeding altered the impact of
antibiotic combinations. We previously found that the antibiotic phenotypic resistance
of a mutualistic coculture is set by the most antibiotic-susceptible species, a pattern we

FIG 3 Legend (Continued)
any well which had an OD600 at least 10% of that of the highest-OD600 well on each plate. Each axis corresponds to
a fractional inhibitory concentration (FIC) for the antibiotic pair. The black 1-1 line represent a perfectly independent
interaction, a concave line toward the origin represents a synergistic interaction, and a convex line away from the
origin represents an antagonistic interaction.

FIG 4 Antibiotic interactions at the species level versus the coculture level. In the plate diagrams (simulated data), blue cells represent concentrations under
which only E. coli can grow; yellow cells represent concentrations under which only S. enterica can grow, and green cells represent concentrations under which
the coculture can grow (i.e., concentrations under which both monocultures can grow). Antibiotic A is on the y axis, and antibiotic B is on the x axis. Points
that fall below the red dotted line on FICI plots represent synergistic interactions; points that fall above the green dotted line represent antagonistic interactions.
FICI plots and isobolograms were calculated based on the simulated data in plate diagrams (see Materials and Methods). Concave isoboles represent synergy,
and convex isoboles represent antagonism.
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termed the weakest-link hypothesis. Here, we hypothesized that this effect could also
change drug interaction patterns in antibiotic combinations. We tested previously
identified antibiotic combinations in each of our monocultures and found that few of
the predicted interactions held in our system. However, with the drug interactions we
identified in monoculture, we used the weakest-link hypothesis to correctly predict the
type of antibiotic interaction in the community context. The one exception to this was
the spectinomycin/streptomycin combination, which antagonized more strongly in
coculture than we predicted from monoculture. Our results provide a foundation for
predicting the impact that ecological interactions have on pharmacological interac-
tions.

We found that the antibiotic interactions that we observed in our monocultures did
not match interactions that had previously been observed (16). In retrospect this is not
surprising, as we used a different genotype of E. coli than was used by Yeh et al., and
minimal rather than rich growth medium. Additionally, we used a yield-based check-
erboard assay, while they used the growth rate-based dose-response curve measure-
ment method (12). We elected to do a yield-based method because it allowed us to
more highly parallelize our experiments. Parallelizing decreases plate-to-plate variation
in cell density and growth phase, both of which are known to significantly impact
phenotypic antibiotic resistance (45–47). Although we chose antibiotic combinations
expected to evenly sample different types of interactions, under our conditions the
antibiotics largely interacted additively. In future experiments, we will directly test how
drug interactions in monocultures and cocultures change when using dose-response
curves. This is particularly relevant for cocultures, as cross-feeding is known to alter
growth rates of member species (48, 49). More broadly, the differences in observed and
expected drug interactions highlight challenges the field faces with predicting drug
interactions when they change with genotype, environment, and assay.

In spite of these challenges, we found that we were able to qualitatively predict the
nature of drug interactions in a community context. Our predictions were informed by
the weakest-link hypothesis, which posits that the most susceptible member of a
cross-feeding system sets the antibiotic sensitivity for all members. We show that
weakest-link dynamics should tend to ablate antagonistic/synergistic antibiotic inter-
actions (Fig. 4). In line with this expectation, the antibiotic interaction for E. coli changed

FIG 5 Fractional inhibitory concentration index (FICI) plots of predicted and actual cocultures across 10
antibiotic combinations. Each point represents the mean � SE of three replicate FICI values from three
biological replicates. FICIs on each plate represent the median FICI value from the plate. Asterisks
represent a P value of �0.05 for predicted versus observed E. coli-S. enterica (ES) coculture; FICs were
compared with a Mann-Whitney U test. P values can be found in Table S6 in the supplemental material.
N, nalidixic acid; Strep, streptomycin; Bleo, bleomycin; Cipro, ciprofloxacin; Spx, spectinomycin; Doxy,
doxycycline.
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FIG 6 Representative isobolograms of predicted and observed coculture fractional inhibitory concentrations (FICs)
across 10 antibiotic combinations. Predicted FICs were determined based on monoculture FICs and hypothesized

(Continued on next page)
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from synergistic in monoculture to additive in coculture for both nalidixic acid/
streptomycin and ciprofloxacin/bleomycin. The union of antibiotic concentrations
where the growth of both monocultures is permitted (i.e., the weakest-link predicted
coculture growth pattern) will not always lead to additive drug interactions, however.
We saw this in the difference between predicted and observed results for the interac-
tion between spectinomycin and doxycycline in coculture. Most other drug combina-
tions were additive in each monoculture and therefore remained additive in coculture.
Further tests of the weakest-link hypothesis for drug combinations with nonadditive
interactions are certainly warranted to further verify our results. However, our results
provide broad support for the utility of the weakest-link hypothesis as at least a null
model when predicting drug interactions in cross-feeding systems.

Our weakest-link predictions were not universally accurate in our experiments,
however. Given that E. coli was the most susceptible to both streptomycin and
spectinomycin, we predicted that the drug interaction in coculture would match the
interaction in E. coli monoculture. Instead, the degree of antagonism increased in
coculture. These particular antibiotics, which disrupt protein biosynthesis (50), may
have sufficiently disrupted metabolism such that cross-feeding no longer occurred.
That antibiotics can arrest growth rate (51, 52) and change the metabolic profile (53, 54)
of cells is well known; therefore, further testing of antibiotics which target specific
metabolic activity is needed. Additionally, while we were relatively successful in pre-
dicting coculture FICIs from monoculture data, we were much less successful in
predicting qualitative antibiotic interactions from isobolograms. The isobologram of
nalidixic acid/bleomycin in Fig. 6 provides a good example of this. The predicted
coculture isobole showed additive-synergistic interactions; however, the observed
coculture isobole showed synergistic interactions at low bleomycin FIC values. A similar
pattern is seen with ciprofloxacin/bleomycin in the same figure. As polymicrobial
infections are increasingly appreciated in clinical settings, it will be critical to develop
new hypotheses and assays to further investigate antibiotic interactions in multispecies
settings.

An outstanding challenge is how to translate our results to a clinical setting. As
alluded to previously, the weakest-link hypothesis was developed in our E. coli/S.
enterica model system but accurately predicts dynamics in a system relevant for disease
in the lungs of cystic fibrosis patients (36). Drug-resistant Pseudomonas aeruginosa
bacteria were inhibited by low antibiotic concentrations that directly inhibited anaer-
obes from which the pathogen cross-fed. This suggests that results from our system are
likely to be generally predictive for cross-feeding bacteria; however, tests in additional
cross-feeding systems are essential. Additionally, only a subset of infections are likely to
involve cross-feeding. More broadly, our results argue for the importance of incorpo-
rating ecological interactions into treatment decisions. Weakest-link dynamics are just
one of a growing list of ways that microbial interactions have been shown to alter the
impact of antibiotics (55–57). Intriguing recent work suggests that drug effects in
patients may be more accurately predicted by simply testing resistance profiles of
mixed communities rather than monocultures (58).

Antibiotic cocktails have the potential to be powerful tools for precision medicine.
However, for drug combinations to be employed effectively, we will need to overcome
a range of challenges. For example, it will be critical to understand how differences in
drug half-life and bioavailability impact effective dosages in vivo. Additionally, the
dynamics of resistance evolution are likely to change in the face of multiple antibiotic
pressure. Some research suggests that antibiotics which synergize in the short term
may actually facilitate the evolution of resistance, while antagonistic interactions
suppress resistance evolution (5, 59, 60). Our work suggests that ecological interactions

FIG 6 Legend (Continued)
weakest-link dynamics (i.e., coculture growth could only occur at concentrations of both antibiotics where both
species could grow alone). Observed coculture FICs were calculated based on 48 h of 30°C growth, and growth was
identified as any well which had an OD600 at least 10% that of the highest-OD600 well on each plate.
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can shape pharmacological interactions, so it will also be critical to better understand
the variety of mechanisms through which this can happen and the variety of ways in
which microbes interact in infection contexts. Despite these challenges, however, our
work suggests that accurate prediction of drug interaction in cocultures is possible.

MATERIALS AND METHODS
Our model microbial community has been previously described (37). Briefly, our system consists of

an E. coli methionine auxotroph and an S. enterica strain which has been evolved to secrete excess
methionine. In a lactose environment, E. coli metabolizes lactose to produce acetate for S. enterica, which
in turn supplies methionine for E. coli. Each species can also be grown in monoculture by supplying E.
coli with methionine and lactose and S. enterica with acetate.

We performed checkerboard assays (described below) with six antibiotics in 10 different combina-
tions predicted to synergize (three combinations), antagonize (three combinations), or not interact (four
combinations); see Table 1 for these combinations. For each drug combination, we tested E. coli and S.
enterica in monocultures and the two-species obligate coculture. Each antibiotic combination/culture
type was tested in triplicate. Seven 2-fold dilutions of each antibiotic, along with an antibiotic-free
control for each, were used in orthogonal gradients on a 96-well plate such that the antibiotic
concentrations increased from left to right and top to bottom. To avoid edge effects caused by
evaporation, we did not use edge wells (these contained water and were not measured). Additionally, we
placed permeable membranes on top of our plates to avoid evaporation and kept our incubator
humidified. The first row and column of each plate were antibiotic-free wells for the vertically and
horizontally distributed antibiotics, respectively. The MICs for each antibiotic were determined in the
absence of the other antibiotic. Mid-log-phase cells (optical density [OD], �0.4) were grown up on the
day of the experiment in species-specific Hypho growth medium (36) and 2 �l was inoculated into 194
�l fresh species-specific Hypho. For cooperative cocultures, 1 �l of each species was inoculated to
establish a 1:1 species ratio. This allowed us to ensure that the same number of cells (�5 � 105 cells total
per well) was inoculated in each well; this avoids density-dependent confounding effects on phenotypic
antibiotic resistance. Antibiotic stocks were prepared within 2 days of the experiment such that 2 �l of
stock could be added to each well to achieve the desired gradient concentrations. Plates were then
incubated at 30°C with shaking for 48 h. A Tecan plate reader was then used to measure the OD at 600
nm (OD600) and species-specific fluorescence (cyan fluorescent protein [CFP] for E. coli and yellow
fluorescent protein [YFP] for S. enterica). The MIC90 was then used to establish which wells showed
growth. Any well that had an OD600 or fluorescent protein value above 10% of the highest plate value
was considered growth. We used the highest plate value rather than the antibiotic-free well because we
consistently saw a slight increase in OD600 in the cocultures at sublethal concentrations, possibly due to
a low level of cell lysis and a subsequent boost for the cross-feeding partner (61, 62).

We used the Loewe additivity method to identify the nature of our antibiotic interactions as
previously described (5). Briefly, we calculated the fractional inhibitory concentration (FIC) for antibiotics
A and B as follows: FICA � (MICA in combination/MICA alone) and FICB � (MICB in combination/MICB alone). FIC
values were obtained for each well at the edge of growth, as shown in Fig. 1 and Fig. S1 in the
supplemental material. The FICI is the sum of FICA and FICB (63). As there are multiple FICI values per
plate, we chose to report the median FICI value as the plate value. We did not use the minimum or
maximum FICI value so that we would not overinterpret synergy or antagonism results, respectively (64).
Minimum FICI values can be found in Table S3 in the supplemental material. Our cutoff values were
designed as follows: an FICI value of �0.8 represents synergy, FICI values between 0.8 and 2 represent
additive interactions, FICI values between 1 and 2 represent independent interactions, and an FICI value
of �2 represents antagonism (63–66). Isobolograms were generated by plotting the FICA and FICB values
as x, y coordinates. A straight line connecting the FIC values represents additive interactions, a concave
line represents synergy, and a convex line represents antagonism.

Based on observed monoculture growth patterns (MICs and FICs in each antibiotic combination), we
predicted coculture growth patterns assuming weakest-link dynamics; that is, cocultures should only
grow at concentrations of both antibiotics where both species are able to grow in monoculture. These
predictions are outlined in Fig. 4. In brief, the coculture is predicted to grow only where both species can
grow individually (see plate diagrams). The impact of weakest-link dynamics on antibiotic interactions
depends on whether the most susceptible species is the same or different in both antibiotics, and how
the antibiotics interact with each species. In scenario 1, the most susceptible species differs in each
antibiotic, but in both species the antibiotic effects are independent of each other; therefore, the
antibiotics should also be independent in coculture. This is seen in the FICI plots (where the median FICI
is around 1) and in the isobolograms (where the curve is around the 1-1 line). In scenario 2, the antibiotics
synergize in both species, but because the most susceptible species differs in each antibiotic, the
synergism is weakened (though still present) in coculture. In scenario 3, the antibiotics antagonize in
both species. However, in E. coli, antibiotic B antagonizes antibiotic A (i.e., as the concentration of B
increases, the MIC of A also increases), but not vice versa (i.e., the MIC of B does not change as the
concentration of A increases). In S. enterica, antibiotic A antagonizes antibiotic B but not vice versa. This
leads to a “cancelling out” of the antagonistic interactions in coculture and causes the antibiotics to
interact independently. In scenario 4, E. coli is the most susceptible species in both antibiotics. Therefore,
the coculture antibiotic interaction pattern exactly matches that of E. coli. We then calculated FICs and
FICIs for these predicted coculture plates and compared them to our observed data. We then used a
Mann-Whitney U test to compare predicted versus observed FICIs for our cocultures, as we had
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insufficient sample sizes to determine whether our data were normally distributed (a necessary assump-
tion for performing a t test).
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