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Abstract: People with diabetes are more likely to have severe COVID-19 compared to the general
population. Moreover, diabetes and COVID-19 demonstrate a certain parallelism in the mechanisms
and organ damage. In this work, we applied bioinformatics analysis of associative molecular networks
to identify key molecules and pathophysiological processes that determine SARS-CoV-2-induced
disorders in patients with diabetes. Using text-mining-based approaches and ANDSystem as a
bioinformatics tool, we reconstructed and matched networks related to hyperglycemia, diabetic
complications, insulin resistance, and beta cell dysfunction with networks of SARS-CoV-2-targeted
proteins. The latter included SARS-CoV-2 entry receptors (ACE2 and DPP4), SARS-CoV-2 entry
associated proteases (TMPRSS2, CTSB, and CTSL), and 332 human intracellular proteins interacting
with SARS-CoV-2. A number of genes/proteins targeted by SARS-CoV-2 (ACE2, BRD2, COMT,
CTSB, CTSL, DNMT1, DPP4, ERP44, F2RL1, GDF15, GPX1, HDAC2, HMOX1, HYOU1, IDE, LOX,
NUTF2, PCNT, PLAT, RAB10, RHOA, SCARB1, and SELENOS) were found in the networks of
vascular diabetic complications and insulin resistance. According to the Gene Ontology enrichment
analysis, the defined molecules are involved in the response to hypoxia, reactive oxygen species
metabolism, immune and inflammatory response, regulation of angiogenesis, platelet degranulation,
and other processes. The results expand the understanding of the molecular basis of diabetes and
COVID-19 comorbidity.

Keywords: diabetes; hyperglycemia; insulin resistance; beta cells; SARS-CoV-2; COVID-19; gene
networks; ANDSystem

1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic has had a huge impact on morbid-
ity and mortality worldwide. Globally, as of 30 May 2022, there have been 525,467,084 cu-
mulative cases of COVID-19, including 6,285,171 deaths, reported to the WHO [1]. During
the outbreak of the epidemic, individuals with diabetes turned out to be one of the most vul-
nerable cohorts. Though there is no strong evidence that diabetes predisposes to infection
with SARS-CoV-2, patients with diabetes demonstrated more severe COVID-19 and higher
intensive care unit admission and mortality rates [2,3]. Hyperglycemia has been repeatedly
recognized as a risk factor for poor outcomes from COVID-19 in patients with pre-existing
diabetes [4,5]. On the other hand, COVID-19 may cause hyperglycemia through the induc-
tion of insulin resistance and/or beta cell injury [6,7].

Being completely different in etiology, diabetes and COVID-19 demonstrate a certain
parallelism in their mechanisms and organ damage. Specifically, the SARS-CoV-2-induced
acute inflammatory response and acute tissue damage that may involve the cardiovascular
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system, kidneys, and brain correspond to chronic low-grade inflammation, macrovascular
disease, chronic kidney disease, neuropathy, and brain changes in diabetes. Hypercoagula-
bility, endothelial dysfunction, oxidative stress, and fibrosis are the common hallmarks of
both diseases [8].

In subjects with diabetes, post-COVID-19 syndrome, or long COVID-19, has become
a new challenge. The syndrome includes debilitating symptoms and signs that develop
during or after an infection consistent with COVID-19, persist for more than 12 weeks,
and cannot be explained by an alternative diagnosis [9]. Clinical manifestations of post-
COVID-19 syndrome are very diverse, with weakness, general malaise, fatigue, concen-
tration impairment, and breathlessness being the most common symptoms reported [10].
Although the hypothesis that patients with diabetes are more likely to develop post-
COVID-19 syndrome had not been confirmed [11], the association between the two disor-
ders indicates that they may be mutually aggravating [12]. Taken into account SARS-CoV-2-
induced pathophysiological changes, such as dysregulation of inflammatory and immune
response, oxidative stress, hypercoagulability, capillary damage, and tissue hypoxia [13],
as well as instability in glycemic control [14], one can assume that long COVID-19 may
contribute to the progression of diabetic complications. Identification of the molecular
mechanisms of metabolic disorders and organ damage in subjects with diabetes during
and after COVID-19 is an urgent task.

According to the Human Protein Atlas [15], human proteins related to SARS-CoV-2
can be divided into three groups: SARS-CoV-2 entry receptors, SARS-CoV-2 entry associated
proteases, and intracellular SARS-CoV-2 interacting proteins (https://www.proteinatlas.org/
humanproteome/sars-cov-2, accessed on 10 February 2022). The most known SARS-CoV-2
entry receptor is angiotensin-converting enzyme 2 (ACE2) [16]. Dipeptidyl peptidase-4
(DPP4) is also involved in the entry [17]. SARS-CoV-2 entry-associated proteases include
transmembrane protease, serine 2 (TMPRSS2) [18], cathepsin B (CTSB) [19], and cathepsin
L (CTSL) [20]. A set of 332 human intracellular proteins interacting with SARS-CoV-2 was
identified by Gordon et al. [21].

In modern biology and medicine, gene network analysis is considered a useful tool
for studying the molecular mechanisms of physiological processes and diseases [22]. Thus,
in this study, we matched the molecular networks of hyperglycemia and diabetic compli-
cations with the networks of human proteins related to SARS-CoV-2. To build molecular
(gene) networks, we used the ANDSystem, a bioinformatics tool that performs text-mining
of PubMed/Medline-indexed publications. The ANDSystem reconstructs molecular net-
works as data graphs with nodes including molecules and edges showing the types of
connections between nodes [23,24]. The system can be used for the analysis of molecular
mechanisms of human diseases and their associations [25,26]. Recently, we applied this tool
to reconstruct and analyze the gene networks of diabetic complications, glucose variability,
and hypoglycemia [27,28].

The aim of this study was to find key molecules and biological processes that mediate
the development of SARS-CoV-2-induced metabolic disorders and tissue damage in patients
with diabetes by matching the gene networks of hyperglycemia, diabetic complications,
insulin resistance, and beta cell dysfunction with the networks of human proteins targeted
by SARS-CoV-2.

2. Results and Discussion
2.1. Network Associated with Hyperglycemia

In the first step, we updated a previously reconstructed gene network associated with
hyperglycemia [27]. The updated network included 430 genes/proteins and 46,855 interac-
tions between them (Figure 1, Table S1).

The functional diversity of the molecules included in the network is presented in
Figure 2. Among the nodes of the network, hormones, receptors, enzymes, binding proteins,
cytokines, growth factors, cell adhesion molecules, receptors, transcription factors, signal
transducers, solute carriers, microRNAs, and other molecules were identified.

https://www.proteinatlas.org/humanproteome/sars-cov-2
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The variants of the associations between high glucose (HG) and identified genes are
presented in Figure 3. It was shown that hyperglycemia upregulates the expression of
179 genes and downregulates 75 genes. On the other hand, 44 molecules contribute to
hyperglycemia development and 54 demonstrate antihyperglycemic activity.
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Insulin (INS), interleukin-6 (IL6), tumor protein P53 (TP53), mitogen-activated protein
kinase 1 (MAPK1), tumor necrosis factor (TNF), glyceraldehydes-3-phosphate dehydroge-
nase (GAPDH), epidermal growth factor receptor (EGFR), signal transducer and activator of
transcription 3 (STAT3), matrix metalloproteinase-9 (MMP9), and leptin (LEP) genes were
the central hubs of the hyperglycemia-associated network with the highest betweenness
centrality values (Table S2). The betweenness centrality reflects the involvement of a node
(molecule) in signal transduction through a network. This measure is calculated based
on the number of the shortest paths connecting all pairs of nodes in the network that
go through the analyzed node. The high value of betweenness centrality means that the
node is a key player or a “bridge” between different parts of a network [29]. Products
of the identified genes with the highest betweenness centrality values participate in the
regulation of glucose and lipid metabolism (INS, GAPDH, LEP), cell cycle and apoptosis
(TP53, MAPK1, STAT3), immune and inflammatory response (IL6, TNF, MMP9), cell prolif-
eration, differentiation, and survival (INS, LEP, EGFR, STAT3). The role of these molecules
in glucose metabolism and hyperglycemia-related biochemical abnormalities have been
discussed previously [27,30].

We have also identified the genes with the highest crosstalk specificity (CTS) values.
The CTS is calculated as a number of neighbors of a particular node (molecule) in a network
divided by the number of all neighbors of the node in the global human gene network of
the ANDSystem. A higher CTS value means that a node is closely and specifically related to
a studied network [24,26–28]. The highest crosstalk specificity (CTS) values (Table S3) were
demonstrated by uncoupling protein 2 (UCP2), hydroxisteroid 11-beta dehydrohenase-1
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(HSD11B1), interleukin-19 (IL19), fatty acid binding protein 1 (FABP1), pyroglutamylated
RFamide peptide (QRFP), resistin (RETN), solute carrier family 2 member 2 (SLC2A2), leptin
receptor overlapping transport (LEPROT), endothelial cell-specific molecule 1 (ESM1), and
cholecystokinin (CCK) genes.

Mitochondrial uncoupling protein 2 (UCP2) is a member of the mitochondrial anion
carrier proteins family. It is involved in the separation of oxidative phosphorylation from
ATP synthesis with heat release. Hyperglycemia was shown to increase UCP2 levels [31,32]
that could be a compensatory effect to the elevated reactive oxygen species generation [33].
UCP2 was shown to negatively regulate insulin secretion. It was proposed as a key
factor in beta cell glucose sensing, and a critical interlayer connecting obesity, beta cell
dysfunction, and type 2 diabetes [34]. Hydroxysteroid 11-beta dehydrogenase 1 (HSD11B1)
catalyzes the bidirectional reaction of the conversion of cortisol to cortisone. The activity
of this enzyme is impaired in hyperglycemic conditions [35]. Interleukin-19 (IL19) is a
cytokine that can bind the IL20 receptor complex and lead to STAT3 activation. It is also
involved in apoptosis induction and inflammatory response. Long-term hyperglycemia
may increase IL19 expression in endothelial cells, resulting in local inflammation and
accelerated endothelial damage [36]. Fatty acid-binding protein 1 (FABP1) binds long-chain
fatty acids, bile acids, and other hydrophobic ligands; it is involved in fatty acid uptake,
transport, and metabolism. The expression of FABP1 increases during hyperglycemia [37].
Pyroglutamylated RFamide peptide (QRFP) is a precursor of the members of the RFamide
neuropeptides family, some of which are able to regulate blood pressure, reproduction,
and food intake. The 26RFa product of QRFP reduces glucose-induced hyperglycemia and
increases insulin sensitivity and insulin levels [38]. Resistin (RETN) is an adipokine that
reduces insulin sensitivity, enhances hepatic gluconeogenesis, and increases lipolysis and
serum-free fatty acid levels [39]. Solute carrier family 2 member 2 (SLC2A2) is an integral
plasma membrane glycoprotein of the liver, islet beta cells, intestine, and kidney epithelium
that mediates facilitated bidirectional glucose transport. It is also discussed as a glucose
sensor with low glucose affinity. The SLC2A2 level is increased in hyperglycemia and
decreased in hyperinsulinemia [40]. Leptin receptor overlapping transcript (LEPROT) is
involved in the expression of growth hormone and leptin receptors, which are associated
with hyperglycemia [41]. Endothelial cell-specific molecule 1 (ESM1) is regulated by
cytokines and could have a role in the endothelial dysfunction [42]. Cholecystokinin
(CCK) is further processed to multiple protein products such as cholecystokinin-8, -12,
-33 peptide hormones, which are able to regulate gastric acid secretion and food intake.
Cholecystokinin regulates postprandial hyperglycemia [43]; hyperglycemia, in its turn,
could influence the satiating effect of cholecystokinin [44].

The Gene Ontology (GO) enrichment analysis performed by DAVID [45] revealed
glucose homeostasis, inflammatory response, response to hypoxia, regulation of cell pro-
liferation, angiogenesis and apoptosis, aging, and response to drugs among the most
overrepresented biological processes associated with hyperglycemia (Table 1, Table S4).

These data demonstrate that hyperglycemia is associated with the upregulation or
downregulation of a large number of genes whose products are involved in a wide range
of physiological and pathophysiological processes. This may lead to an abnormal response
to other stressor factors, including a viral infection.

2.2. Networks Associated with Diabetic Complications, Insulin Resistance, and Beta-Cell Dysfunction

In this work, we operated on gene networks associated with cardiovascular disease
(CVD), diabetic nephropathy, diabetic retinopathy, and diabetic neuropathy that have been
reconstructed and described previously [27,28]. These networks include 494, 685, 424, and
130 genes/proteins, respectively (Table S5).

Gene networks associated with insulin resistance and beta-cell dysfunction were built
using the ANDSystem. These networks contain 1452 and 72 genes/proteins, respectively
(Tables S6 and S7).
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Table 1. Top 10 GO biological processes overrepresented for hyperglycemia-associated genes found
by DAVID (p-values with FDR correction < 0.05).

Gene Ontology
Biological Process

Gene Ontology
ID Genes p-Values with

FDR Correction

Glucose homeostasis GO:0042593
ADIPOQ, ADIPOR1, ADRA2A, CEBPA, CNR1, FBN1, G6PC1, GCGR, GCK, HIF1A,

HNF1A, IL6, INS, IRS1, LEP, LEPR, MTNR1B, NEUROD1, NGFR, PAX6, PDK4,
PDX1, POMC, PPARG, PRKAA1, PRKAA2, RBP4, SIRT6, SLC2A4, STAT3, STK11,

TCF7L2
7.92 × 10−23

Inflammatory
response GO:0006954

AGER, AOC3, CALCA, CCL11, CCL2, CD40LG, CRH, CRP, CXCL12, CXCL8, CXCR4,
CYBB, ECM1, F2R, FOS, FPR1, HMGB1, IL10, IL13, IL18, IL19, IL1A, IL1B, IL22, IL6,

NFATC3, NFE2L2, NGFR, NLRP3, NOX4, PIK3CD, PIK3CG, PRKD1, PTGER2,
PTGS2, RAC1, RELA, SELE, SELP, SPP1, TBXA2R, TGFB1, THBS1, TLR2, TLR4, TNF,

TNFRSF11B

6.69 × 10−17

Response to hypoxia GO:0001666
ADIPOQ, ADM, AGER, ANGPT2, ANGPTL4, CASP1, CASP3, CAT, CAV1, CCL2,
CDKN1B, CREB1, CXCL12, CXCR4, DPP4, EGR1, EPO, HIF1A, HMOX1, HSPD1,
LEP, MB, MMP2, NOS1, NOS2, NOX4, PLAT, PLAU, PPARA, PRKAA1, PRKCB,

RYR2, SOD2, TGFB1, THBS1, TLR2, UCP2, VCAM1, VEGFA, VEGFB
1.41 × 10−23

Positive regulation of
angiogenesis GO:0045766

ADM, ANGPT2, ANGPTL4, CCL11, CX3CL1, CXCL8, CYBB, DDAH1, ECM1, F3,
FGF2, GATA4, HGF, HIF1A, HMOX1, IL1A, IL1B, KDR, NFE2L2, NOS3, PRKCB,

PRKD1, PTGIS, SERPINE1, SIRT1, TBXA2R, THBS1, VEGFA
9.5 × 10−17

Positive regulation of
cell proliferation GO:0008284

ADM, ADRA2A, AR, ATF3, AVP, AVPR1A, BCL2, CCK, CCN2, CCND2, CD47, CDK2,
CDKN1B, CRH, CTF1, DPP4, EDN1, EGFR, EIF5A, EPO, ESM1, F2R, FABP1, FGF2,

FGF21, FN1, GDNF, GHRH, HGF, IFNG, IGF1, IGF1R, IGF2, IL2, IL6, INS, IRS1, IRS2,
KDR, LEP, MAPK1, MYC, NAMPT, NOTCH1, NRG1, NTN1, PDX1, PRKAA1, PTEN,

REG1A, RELA, S100B, SIRT1, STAT3, TGFB1, THBS1, VEGFA, VIP

2.86 × 10−21

Negative regulation of
apoptotic process GO:0043066

ALB, ANGPT1, ANGPTL4, AVP, BCL2, CASP3, CAT, CCND2, CD40LG, CD44,
CDKN1A, CDKN1B, DDAH2, EGFR, FABP1, FOXO1, GAS6, GCG, GDNF, GLO1,
GSK3B, HSPD1, IGF1, IGF1R, IL10, IL2, IL4, IL6, KDR, LEP, LTF, MAPK7, MMP9,

MPZ, MYC, NGF, NGFR, NQO1, PAX4, PIK3R1, PRKAA1, PRKAA2, PRNP, PTEN,
RELA, SIRT1, SNCA, SOCS3, SOD2, STAT3, THBS1, TP53, UCP2, VEGFA, VEGFB

1.69 × 10−19

Positive regulation of
protein kinase B

signaling
GO:0051897

ANGPT1, CD28, EGFR, F3, FGF2, GAS6, GPX1, HPSE, IGF2, IL18, IL6, INS, LEP,
MTOR, NOX4, NRG1, PIK3CG, RICTOR, TCF7L2, TGFB1, THBS1, TNF, TXN,

VEGFB
8.49 × 10−16

Positive regulation of
transcription from

RNA polymerase II
promoter

GO:0045944

APP, AR, ARNTL, ATF3, CD28, CEBPA, CREB1, CREM, CTNNB1, DCN, DDIT3,
EDN1, EGFR, EGR1, FGF2, FOS, FOXO1, FOXO3, GALR1, GATA4, GDNF, GSK3B,

HGF, HIF1A, HMGA1, HMGB1, HNF1A, IFNG, IGF1, IL10, IL18, IL1A, IL1B, IL2, IL4,
IL6, JUN, MAFA, MAFB, MAPK7, MEF2A, MEF2C, MEN1, MYC, NAMPT, NCK1,

NEUROD1, NEUROG3, NFAT5, NFATC3, NFE2L2, NLRP3, NOS1, NOTCH1, NR1H2,
NRG1, OGT, PARP1, PAX3, PAX6, PDX1, PIK3R1, POMC, PPARA, PPARG, PRKD1,
PTH, RELA, SERPINE1, SIRT1, SIRT2, SP1, SREBF1, STAT3, TCF7L2, TGFB1, TLR2,

TLR4, TNF, TP53, VEGFA

2.25 × 10−19

Aging GO:0007568
ADM, ADRB3, AGT, ARG1, CALCA, CAT, CCL2, CCN2, CNR1, COL3A1, CREB1,

DCN, EPO, FGF2, FOS, FOXO3, IGFBP1, IL10, IL6, JUN, KL, NFE2L2, NQO1, PTEN,
RELA, RETN, SERPINF1, SNCA, SOD1, SREBF1, STAT3, TGFB1, UCP2, VCAM1

2.47 × 10−18

Response to drug GO:0042493

ABCA1, ABCC8, APOA1, ARG1, BCL2, BGLAP, CASP3, CAT, CCND1, CDH1, CDH3,
CDKN1A, CDKN1B, CREB1, CRH, CTNNB1, CYBB, DUSP6, FOS, GATA4, GIP,

HSPD1, ICAM1, IFNG, IL10, IL4, IL6, JUN, KCNJ11, LCN2, LPL, MYC, NEUROD1,
PAX4, PDX1, PPARG, PTEN, PTGS2, PTH, RELA, SMPD1, SNCA, SOD1, SOD2,

SORD, SREBF1, SST, STAT3, TBXA2R, TGFB1, THBS1, TIMP4, TNFRSF11B, TXNIP,
VEGFB

1.44 × 10−27

2.3. Networks of Human Proteins Related to SARS-CoV-2
2.3.1. SARS-CoV-2 Entry Receptors
ACE2-Related Network

ACE2, a carboxypeptidase, mediates vasodilation by cleaving angiotensin II and takes
part in the negative regulation of the renin–angiotensin system. It was postulated that
ACE2 is the main target of SARS-CoV-2 that supports its entrance into the human cells [16].
Interestingly, the loss of ACE2 in mice results in alterations in glucose tolerance and reduces
the first phase of insulin secretion [46]. In db/db mice, the progression of type 2 diabetes
was accompanied by ACE2 depletion; ACE2 restoration improved glycemia [47].

According to the ANDSystem, ACE2 directly interacts with 147 genes/proteins in the
global human network (Table S8). Among them, 34 are participants of the hyperglycemia
network (Table 2). The enrichment of the hyperglycemia network with genes/proteins
interacting with ACE2 was statistically significant (p-value < 10−24).
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Table 2. Types of associations of the genes/proteins from hyperglycemia-related and ACE2-related
networks with high glucose (HG) and ACE2.

ACE2

HG Gene Expression is
Upregulated by HG

Gene Expression is
Downregulated by

HG

Molecules with
Hyperglycemic

Activity

Molecules with
Antihyperglycemic

Effect
Other

Relations

Molecules are upregulated
by ACE2

BCL2, CCND1, MMP2,
NOS1, NOS3, SOD1,

UCP2
BCL2, CDH1, NOS3 IL1B, NOS2 NPHS1, SIRT6

Molecules are
downregulated by ACE2

ANGPT2, CCL2, CCN2,
HMGB1, ICAM1,

MIR21, MMP9, STAT3,
VCAM1

VEGFA AGTR1 STAT3 ACE, ICAM1

Molecules upregulating
ACE2 HMGB1 INS

Molecules downregulating
ACE2 EDN1 SIRT1 AGTR1 INS, SIRT1 ACE, ALB,

APOE

Other relations AGT CAT, IRS1 GCG CALM1

It could be assumed that the interaction between SARS-CoV-2 and ACE2 disrupts
the function of ACE2 and activity of ACE2-interacting molecules (Table 2). Among these
molecules, of greatest interest are those that are upregulated by HG and downregulated by
ACE2. This group includes angiopoietin-2 (ANGPT2), monocyte chemoattractant protein 1
(CCL2), connective tissue growth factor (CCN2), high-mobility group protein B1 (HMGB1),
inter-cellular adhesion molecule 1 (ICAM1), vascular cell adhesion molecules 1 (VCAM1),
miRNA-21 (MIR21), matrix metalloproteinase-9 (MMP9), and signal transducer and ac-
tivator of transcription 3 (STAT3). As the binding of viral particles to ACE2 could lead
to attenuation of ACE2’s ability to downregulate these genes/proteins, the upregulation
can be assumed. In diabetes, HG can also upregulate the expression of these genes. This
double effect can significantly activate the synthesis of the products of these genes, creating
a background for comorbidity.

Some clinical evidence supports this assumption. It was shown that angiopoietin-
2 levels were increased in COVID-19 patients and demonstrated relations with the disease
severity, hypercoagulation, and mortality [48,49]. Monocyte chemoattractant protein 1
was also linked to COVID-19 severity; it was upregulated during the early phase of
SARS-CoV-2 infection and increased further at the late stages in fatal cases [50]. Con-
nective tissue growth factor is considered a fibrotic biomarker [51]. The serum levels
of ICAM-1 and VCAM-1 were elevated in patients with COVID-19, especially in severe
cases; the molecules demonstrated relations with coagulation disorders [52]. Enhanced
ICAM-1 concentration was an independent predictor of mortality in COVID-19 [53]. The
fibrosis-associated miRNA-21 was increased in the acute phase of COVID-19 infection and
its upregulation turned out to be a predictor of chronic myocardial damage and inflamma-
tion in COVID-19 survivors [54]. The levels of MMP-9 were higher in COVID-19 patients
and were considered an early indicator of respiratory failure and mortality [55,56]. It was
supposed that the hyperactivation of STAT3 participates in the induction of a cytokine
storm, the suppression of the antivirus interferon response, M2 macrophage polarization,
and lung fibrosis and thrombosis in COVID-19 [57]. The HMGB-1 is thought to initiate
inflammation in COVID-19 patients by triggering TLR4 pathway [58]; its serum level is
elevated in severe COVID-19 cases [59]. It is also important to mention that HMGB1 itself
is able to induce the expression of ACE2 in alveolar epithelial cells [58,59], forming a
positive feedback loop in a gene network and amplifying the pathological signals during
COVID-19 and hyperglycemia (Figure 4). Accordingly, HMGB1 inhibitors were discussed
as promising candidates for the treatment of COVID-19 [59].
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Among other components of the network, sirtuin 1 (SIRT1), angiotensin II receptor
type 1 (AGTR1), apolipoprotein E (APOE), and ACE (ACE) are also worth mentioning.
Hyperglycemia is known to induce the downregulation of SIRT1 [60]; in turn, sirtuin
1 downregulates ACE2 expression [61]. Thus, it could be suggested that hyperglycemia
can induce ACE2 by blocking its repressor, leading to the more effective entrance of viral
particles into the cells. Indeed, a deficiency of SIRT1 was linked with the hyperinflamma-
tory response and increased mortality in COVID-19 [62,63]. It was shown that AGTR1 is
normally downregulated by ACE2 [64] and possesses hyperglycemic activity [65]. The A/A
genotype of rs5183 SNP in the AGTR1 gene was associated with higher hospitalization risk
in patients with COVID-19 and comorbidities [66]. The apolipoprotein E ε4 allele (APOE4)
was associated with ACE2 reduction [67] and blood glucose level [68]. It was linked to
increased susceptibility to SARS-CoV-2 infection, severe COVID-19 course, post-COVID
mental fatigue, and COVID-19 mortality [69,70]. ACE is able to downregulate ACE2 [71]
and, in turn, it is downregulated by ACE2 [72]. This reciprocal regulation constitutes a loop
in the gene network that modulates the balance between vasoconstriction and vasodilation.
ACE rs4646994 SNP was shown to increase the risk of COVID-19 infection [73].

ACE2 is known as a critical participant in cardiovascular homeostasis and its altered
expression is associated with CVD [74]. The inhibition of ACE2 accelerates diabetic kidney
injury and renal ACE2 is downregulated in diabetic nephropathy [75]. The loss of ACE2 ag-
gravates diabetic retinopathy by promoting bone marrow dysfunction [76]. The absence of
ACE2 resulted in exaggerated glucose intolerance with insulin resistance [77].

The genes/proteins interacting with ACE2 were found in the gene networks of dia-
betes complications: there were 44 genes/proteins in the CVD network, 9 in the diabetic
neuropathy network, 51 in the diabetic nephropathy network, 40 in the diabetic retinopathy
network, 75 in the insulin resistance network, and 4 in the beta-cell dysfunction network.
All of these networks were enriched by ACE2-interacting genes/proteins with statistically
significant p-values less than 10−34, 10−6, 10−36, 10−32, 10−45, and 0.002, respectively.

According to the GO enrichment analysis, these genes are involved in the regulation
of cell migration, gene expression, cell proliferation, phosphatidylinositol 3-kinase signal-
ing, apoptosis, response to hypoxia and lipopolysaccharide, nitric oxide signaling, and
the regulation of vascular endothelial cell proliferation (Table 3). Moreover, there were
inflammatory response, blood vessel remodeling, angiogenesis, regulation of vascular tone
and blood pressure, fatty acid and glucose homeostasis, and aging (Table S9).
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Table 3. The most overrepresented GO biological processes that are common for the sets of genes
linked with ACE2 and associated with hyperglycemia, CVD, diabetic neuropathy, diabetic nephropa-
thy, diabetic retinopathy, and insulin resistance.

Gene Ontology
Biological Process

Gene Ontology
ID

p-Values with FDR Correction

Hyperglycemia CVD Diabetic
Neuropathy

Diabetic
Nephropathy

Diabetic
Retinopathy

Insulin
Resistance

Positive regulation
of cell migration GO:0030335 3.28 × 10−5 9.10 × 10−4 1.11 × 10−5 3.60 × 10−5 7.24 × 10−6 3.46 × 10−4

Negative regulation
of gene expression GO:0010629 6.51 × 10−7 2.68 × 10−7 0.0155 6.72 × 10−9 1.93 × 10−8 6.51 × 10−7

Positive regulation
of vascular smooth

muscle cell
proliferation

GO:1904707 1.28 × 10−4 3.12 × 10−4 0.0155 4.46 × 10−4 2.53 × 10−4 0.0213

Positive regulation
of phosphatidylinos-

itol 3-kinase
signaling

GO:0014068 3.28 × 10−5 0.0121 0.0277 1.62 × 10−4 8.03 × 10−5 8.51 × 10−4

Positive regulation
of cell proliferation GO:0008284 1.45 × 10−4 1.68 × 10−4 0.0494 4.29 × 10−4 0.0032 5.49 × 10−5

Negative regulation
of apoptotic process GO:0043066 1.32 × 10−4 0.0028 0.0489 6.47 × 10−5 0.0122 4.01 × 10−5

Response to
hypoxia GO:0001666 5.05 × 10−7 8.51 × 10−7 1.20 × 10−9 6.91 × 10−7 4.30 × 10−8

Response to
lipopolysaccharide GO:0032496 3.28 × 10−5 3.43 × 10−7 4.43 × 10−9 3.81 × 10−7 1.82 × 10−8

Nitric oxide
mediated signal

transduction
GO:0007263 6.11 × 10−6 1.63 × 10−7 2.08 × 10−5 3.63 × 10−4 1.85 × 10−6

Positive regulation
of vascular

endothelial cell
proliferation

GO:1905564 4.15 × 10−4 3.52 × 10−5 1.48 × 10−6 2.49 × 10−5 1.70 × 10−4

DPP4-Related Network

DPP4 is an enzyme involved in glucose and insulin metabolism, as well as in immune
regulation. It is thought to be a functional receptor of human coronavirus; it can directly
bind with the S protein of SARS-CoV-2 [17]. In the global human gene network of the
ANDSystem, DPP4 is linked with 251 genes/proteins (Table S10), and 48 of them are also
involved in the hyperglycemia network. The enrichment of the hyperglycemia network
with genes/proteins linked with DPP4 was statistically significant (p-value < 10−30).

The types of associations of the genes/proteins from hyperglycemia-related and
DPP4-related networks with HG and DPP4 are presented in Table 4. Some identified
genes, including CCL11, FGF2, HMGB1, and MMP9, are upregulated by HG [78–81] and
downregulated by DPP4 [82–85]. In COVID-19, the ability of DPP4 to downregulate these
genes could be attenuated. In COVID-19 patients, including those with long COVID
with cognitive symptoms, the level of eotaxin-1 encoded by CCL11 was significantly
increased [86,87]. Intradermal administration of eotaxin-1 upregulated DPP4 in rats [88],
constituting a regulatory loop. The elevation of the serum level of fibroblast growth
factor 2 (FGF2) in COVID-19 patients was closely associated with disease severity and
admission to an intensive care unit [89]. The clinical significance of MMP-9 and HMGB1 in
COVID-19 was mentioned above [55,56,59].

Tumor necrosis factor (TNF) and peroxisome proliferator-activated receptor gamma
(PPARγ) could be important players in the hyperglycemia–COVID-19 relationship (Figure 5).
Hyperglycemia induces the overproduction of TNF [90] and circulating plasma DPP4 lev-
els are significantly upregulated by this factor [91]. The cytokine storm in COVID-19,
associated with the severity of the disease, is characterized by the increase in TNF pro-
duction; TNF is upregulated in acute lung injury and facilitates SARS-CoV-2 interaction
with ACE2. Accordingly, TNF inhibitors were discussed as a therapeutic strategy in severe
COVID-19 [92].
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Table 4. Types of associations of the genes/proteins from hyperglycemia-related and DPP4-related
networks with high glucose (HG) and DPP4.

DPP4

HG
Gene Expression Is
Upregulated by HG

Gene Expression Is
Downregulated by

HG

Molecules with
Hyperglycemic

Activity

Molecules with
Antihyperglycemic

Effect
Other

Relations

Genes are upregulated by
DPP4

CD36, CD8A, CRP, IL6,
MMP2, SPP1 CD44, HIF1A, VEGFA PPARG PLAT

Genes are downregulated
by DPP4

CCL11, FGF2, HMGB1,
MMP9, NPY, THBS1,

VIP
PPY CREB1, EGR1, GCG,

GIP
ADIPOQ, EPO, GLP1R,

INS, SERPINF1
CXCL12,
GHRH,
NPHS1

Molecules that upregulate
DPP4

CCL11, EGFR, IFNG,
TNF INS IL2, IL13

Molecules that
downregulate DPP4 NPY, TLR4 MYC PTH, TFPI

Other relations CXCR4, FN1 CDH1 GCG, NOS2 CAV1, KL HNF1A,
LGALS3
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PPAR-γ has therapeutic potential against hyperglycemia [93], and its expression is
increased by DPP4 [94]. In lung biopsies from patients with COVID-19, the gene enrichment
patterns were similar to that of PPARG-knockout macrophages. There was a relation
between the disease severity and reduced expression of several members of the PPARγ
complex [95]. If DPP4 function is reduced by viral expansion, the expression of PPARG
could be lowered, promoting insulin resistance and hyperglycemia.

DPP4 and the genes/proteins interacting with it were also found in the analyzed
gene networks of diabetes complications. Sixty genes/proteins were identified in the CVD
network, 23 in the network of diabetic neuropathy, 79 in the diabetic nephropathy network,
56 in the diabetic retinopathy network, 126 in the insulin resistance network, and 6 in the
beta-cell dysfunction network. All of these networks were enriched by DPP4-interacting
genes/proteins with statistically significant p-values less than 10−42, 10−19, 10−54, 10−40,
10−76, and 0.0003, respectively.

The GO enrichment analysis revealed the response to hypoxia, regulation of ERK1 and
ERK2 cascade, phosphatidylinositol 3-kinase signaling, interleukin-8 production, lipid stor-
age and smooth muscle cell proliferation, aging, cellular response to lipopolysaccharide,
and acute-phase response among principal biological processes regulated by the genes
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linked to DPP4, hyperglycemia, and diabetic complications (Table 5). The regulation of
insulin secretion, glucose homeostasis, regulation of MAPK cascade, vasodilation, inflam-
matory response, and regulation of cytokine production added to the list of overrepresented
processes (Table S11).

Table 5. Most overrepresented GO biological processes that are common for the sets of genes linked
with DPP4 and are associated with hyperglycemia, CVD, diabetic neuropathy, diabetic nephropathy,
diabetic retinopathy, insulin resistance, and beta-cell dysfunction.

Gene
Ontology
Biological

Process

Gene
Ontology ID

p-Values with FDR Correction

Hyperglycemia CVD Diabetic
Neuropathy

Diabetic
Nephropathy

Diabetic
Retinopathy

Insulin
Resistance

Beta-Cell
Dysfunction

Response to
hypoxia GO:0001666 3.68 × 10−13 2.00 × 10−7 1.50 × 10−5 8.14 × 10−13 1.93 × 10−9 3.71 × 10−10

Positive
regulation of

ERK1 and
ERK2 cascade

GO:0070374 1.78 × 10−9 7.39 × 10−5 3.06 × 10−6 2.13 × 10−10 1.14 × 10−8 1.10 × 10−10

Positive
regulation of

smooth
muscle cell

proliferation

GO:0048661 1.78 × 10−9 2.23 × 10−4 1.55 × 10−4 1.47 × 10−6 2.11 × 10−7 2.41 × 10−4

Response to
activity GO:0014823 1.28 × 10−8 8.42 × 10−5 1.03 × 10−4 7.24 × 10−6 5.26 × 10−4 9.71 × 10−4

Positive
regulation of
interleukin-

8 production

GO:0032757 3.34 × 10−5 9.36 × 10−6 0.0022 4.08 × 10−8 1.48 × 10−7 1.20 × 10−6

Aging GO:0007568 2.59 × 10−4 0.0016 1.94 × 10−4 5.18 × 10−5 5.14 × 10−6 1.87 × 10−4

Positive
regulation of

phos-
phatidylinosi-

tol 3-kinase
signaling

GO:0014068 0.0012 4.54 × 10−4 1.94 × 10−4 1.09 × 10−8 5.43 × 10−7 5.45 × 10−4 3.07 × 10−4

Negative
regulation of
lipid storage

GO:0010888 8.41 × 10−5 5.31 × 10−6 0.0022 4.58 × 10−6 1.71 × 10−6 2.52 × 10−5

Cellular
response to
lipopolysac-

charide

GO:0071222 2.59 × 10−4 2.00 × 10−7 0.0022 7.19 × 10−7 5.14 × 10−6 6.64 × 10−8

Acute-phase
response GO:0006953 1.51 × 10−4 6.18 × 10−4 8.12 × 10−4 4.08 × 10−5 8.33 × 10−6 0.0039

2.3.2. SARS-CoV-2 Entry-Associated Protease Receptors
TMPRSS2-Related Network

TMPRSS2, a serine protease, is involved in SARS-CoV-2 host cells entry by S protein
priming [18]. In the ANDSystem global human gene network, TMPRSS2 was linked to
52 genes/proteins (Table S12). Among these molecules, the androgen receptor (AR) was
the only one that was also present in the hyperglycemia network. It was shown that high
glucose downregulates AR mRNA and protein levels in LNCaP cells through NF-κB acti-
vation [96]. In turn, AR stimulates TMPRSS2 expression [97], facilitating the SARS-CoV-2
entry (Figure 6). It was postulated that the sex differences in COVID-19 severity could be
related to androgen sensitivity [98].
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Figure 6. The regulation loop in the TMPRSS2-related network involves AR. The red arrows corre-
spond to the up-regulation and the blue arrow corresponds to the down-regulation.

Some genes/proteins linked with TMPRSS2 were also present in the networks of
diabetic complications and diabetes-related impaired insulin sensitivity and insulin secre-
tion. Only 3 genes/proteins were found in the CVD network, 4 in the network of diabetic
neuropathy, 10 in the diabetic nephropathy network, 6 in the diabetic retinopathy network,
12 in the insulin resistance network, and 1 in the network of beta-cell dysfunction. Except
for the gene networks of CVD and beta-cell dysfunction, there was some enrichment of
the analyzed networks with the TMPRSS2-interacting genes/proteins with p-values less
than 0.0004 for diabetic neuropathy, 10−5 for diabetic nephropathy, 0.0008 for diabetic
retinopathy, and 0.0003 for the insulin resistance network.

According to the obtained results, the role of TMPRSS2 in the crosstalk between
diabetes-related metabolic disorders, diabetic complications, and COVID-19 seems to be
modest.

CTSB-Related Network

Cathepsin B (CTSB), a cysteine protease, facilitates the entry of SARS-CoV-2 into the
target host cells by the activation of the viral surface protein S [19]. CTSB was directly linked
to 329 genes/proteins in the global human network reconstructed by the ANDSystem
(Table S13). Among these molecules, 48 were the components of the hyperglycemia-
related network (Table 6). The enrichment of hyperglycemia network with genes/proteins
interacting with CTSB was statistically significant (p-value < 10−25).

Table 6. Types of associations of the genes/proteins from hyperglycemia-related and cathepsin B
(CTSB)-related networks with high glucose (HG) and cathepsin B (STSB).

CTSB

HG Gene Expression Is
Upregulated by HG

Gene Expression Is
Downregulated by

HG

Molecules with
Hyperglycemic

Activity

Molecules with
Antihyperglycemic

Effect

Other
Relations

Genes are upregulated by
cathepsin B

BAX, BCL2, BDNF,
CASP1, CASP3, CASP8,

CCL2, CXCL8, DCX,
IL18, MMP9, MTOR,
NLRP3, PRL, PTEN

BCL2, CCK, VEGFA PRL IL4, IL18, MTOR APOE, HSPG2

Genes are downregulated
by cathepsin B APP, FN1 BGLAP, SIRT1 CDKN1B SIRT1

Molecules that upregulate
CTSB

CASP8, CXCL8, IL6,
PRL, SP1, STAT3, TLR4,

TNF
CCK, NTN1 PRL SMPD1, STAT3 CXCL12,

SNCA, SP1

Molecules that
downregulate CTSB TGFB1 VEGFA IL10

Other relations ANXA2, EGFR,
HMGB1, MKI67, TP53 APOA1, KDR, PLAU IL1B CAV1, HGF FOXO3
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The associations of the gene/proteins from hyperglycemia-related and cathepsin B
(CTSB)-related networks with HG and cathepsin B are presented in Table 6. As shown in
Figure 7, the expression of caspase 8 (CASP8), interleukin-6 (IL6), interleukin-8 (CXCL8),
Sp1 transcription factor (SP1), toll-like receptor 4 (TLR4), TNF, STAT3, and prolactin (PRL)
are upregulated by hyperglycemia [99–106] and are known to induce cathepsin B [107–114].
In COVID-19, the inflammatory response and cell death are triggered via caspase 8 activa-
tion [115] and cathepsin B is able to activate this enzyme [116]. Interleukin-8 participates
in the signaling axis, determining the severity of COVID-19 [117]. Interleukin-6 was pro-
posed as a biomarker for the development of fatal severe acute respiratory syndrome in
COVID-19 [118]. It was reported that prolactin serum levels are increased in COVID-19 pa-
tients [119]. Cathepsin B stimulates prolactin release [120]. The excess of prolactin can
contribute to hyperglycemia by the reduction of insulin sensitivity [121]. On the other
hand, prolactin may reduce the hyperinflammatory status in COVID-19 as it has an anti-
inflammatory activity [119]. The Sp1 transcription factor could be linked with cytokine
expression and the inflammatory response in COVID-19 via miR-155-5p [122]. STAT3 hy-
peractivation is related to the cytokine storm in COVID-19 [57]. TLR4 was discussed as a
prime regulatory factor associated with the immunity and pathogenesis of SARS-CoV-2
infection [123].
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Some other genes/proteins listed in Table 6 have been studied in COVID-19 [124–147].
It was shown that serum brain-derived neurotrophic factor (BDNF) is associated with
poor prognosis of the disease [124]. The activation of caspase 1 (CASP1) was related to a
severe course of COVID-19 [125]. In red blood cells obtained from COVID-19 patients, the
levels of caspase-3/7 were elevated [126] and the CASP3 gene was a prognostic marker
for COVID-19 severity [127]. The level of interleukin-18 (IL18) was significantly higher in
patients with severe COVID-19 than in those with milder disease [128]. A dramatic and
early rise in IL-10 was observed in severe SARS-CoV-2 infection [129]. It was reported
that a TGFB1-related chronic immune response is induced in severe COVID-19 [130]. The
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levels of anti-ANXA2 antibodies predicted mortality among hospitalized COVID-19 pa-
tients [131,132].

It was found that cathepsin B participates in the conversion of proinsulin to insulin.
It is also involved in some diabetic complications, including CVD [148,149]. The down-
regulation of CTSB suppresses autophagy and promotes apoptosis contributing to the
development of proliferative diabetic retinopathy [150]. The insulin resistance causes the
downregulation of CTSB [151].

The genes/proteins interacting with CTSB were found in the analyzed gene networks:
59 genes/proteins were revealed in the CVD network, 23 in the diabetic neuropathy, 84 in
the diabetic nephropathy, 58 in the diabetic retinopathy, 124 in the insulin resistance, and
12 in the beta-cell dysfunction network. All of these networks were enriched by CTSB-
interacting genes/proteins with statistically significant p-values (less than 10−32, 10−16,
10−48, 10−35, 10−56, and 10−8 respectively).

According to the GO enrichment analysis, the genes linked with CTSB and incor-
porated in the discussed networks were involved in the regulation of cell proliferation,
gene expression, protein phosphorylation, and interleukin-8 production, protein kinase
B and lipopolysaccharide-mediated signaling pathways, response to drug, and apoptosis
(Table 7). The insulin secretion, inflammatory response, regulation of cytokine production,
and response to hypoxia were also overrepresented (Table S14).

Table 7. Most overrepresented GO biological processes that are common for the sets of genes linked
with CTSB and associated with hyperglycemia, CVD, diabetic neuropathy, diabetic nephropathy,
diabetic retinopathy, insulin resistance, and beta-cell dysfunction.

Gene Ontology
Biological

Process

Gene
Ontology

ID

p-Values with FDR Correction

Hyperglycemia CVD Diabetic
Neuropathy

Diabetic
Nephropathy

Diabetic
Retinopathy

Insulin
Resistance

Beta-Cell
Dysfunction

Positive
regulation of cell

proliferation
GO:0008284 4.03 × 10−9 1.92 × 10−5 0.0011 2.85 × 10−10 6.20 × 10−9 1.92 × 10−11 1.03 × 10−4

Positive
regulation of gene

expression
GO:0010628 5.24 × 10−10 4.48 × 10−8 7.49 × 10−8 1.68 × 10−11 5.09 × 10−10 4.75 × 10−11 0.006

Positive
regulation of

protein
phosphorylation

GO:0001934 8.99 × 10−9 8.17 × 10−7 2.68*10−4 1.31 × 10−8 6.19 × 10−8 6.81 × 10−8 0.0062

Lipopolysaccharide-
mediated
signaling
pathway

GO:0031663 2.08 × 10−6 4.81 × 10−6 6.83 × 10−4 2.57 × 10−5 5.29 × 10−6 3.06 × 10−7 0.0062

Negative
regulation of

apoptotic process
GO:0043066 3.53 × 10−9 1.75 × 10−6 0.0011 3.36 × 10−13 2.88 × 10−7 4.87 × 10−11 0.006

Positive
regulation of glial
cell proliferation

GO:0060252 5.50 × 10−6 2.71 × 10−7 0.0052 3.82 × 10−5 1.23 × 10−5 1.13 × 10−7 0.0031

Protein kinase B
signaling GO:0043491 3.02 × 10−6 2.13 × 10−4 8.72 × 10−4 1.63 × 10−6 8.27 × 10−6 1.93 × 10−4 0.0074

Response to drug GO:0042493 1.38 × 10−9 1.20 × 10−6 0.0072 3.64 × 10−6 9.35 × 10−5 6.81 × 10−8 0.0017

Positive
regulation of

protein kinase B
signaling

GO:0051897 2.83 × 10−5 4.95 × 10−7 0.0085 2.60 × 10−8 1.51 × 10−9 6.81 × 10−8 0.0031

Positive
regulation of
interleukin-

8 production

GO:0032757 2.09 × 10−5 6.03 × 10−9 0.002 9.11 × 10−7 3.52 × 10−9 7.49 × 10−11 0.0139

CTSL-Related Network

Cathepsin L, a lysosomal cysteine proteinase encoded by the CTSL gene, was shown
to cleave the SARS-CoV-2 spike protein and enhance virus entry. Its circulating level is
elevated in SARS-CoV-2 infection and it is positively correlated with the disease course and
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severity [20]. In the global human network estimated by the ANDSystem, CTSL is directly
linked to 212 genes/proteins (Table S15). Among them, 22 molecules were also revealed in
the hyperglycemia network (Table 8). The enrichment of the hyperglycemia network with
genes/proteins interacting with CTSL was statistically significant (p-value < 10−8).

Table 8. Types of associations of the genes/proteins from hyperglycemia-related and cathepsin L
(CTSL)-related networks with high glucose (HG) and cathepsin L (STSL).

CTSL

HG Gene Expression Is
Upregulated by HG

Gene Expression Is
Downregulated by

HG

Molecules with
Hyperglycemic

Activity

Molecules with
Antihyperglycemic

Effect
Other

Relations

Genes are upregulated by
cathepsin L BCL2, CXCL8, HPSE BCL2

Genes are downregulated
by cathepsin L CDKN1A, LEPR CDH1 IGFBP3 LEPR, TF

Molecules that upregulate
CTSL

FGF2, FOXO1, HPSE,
IL6, JUN, MAPK1 INS, MYC FOS

Molecules that
downregulate CTSL CDKN1A, TGFB1

Other relations CCL2, F3, TP53 PLAU POMC

As shown in Table 8, FGF2, IL6, FOXO1, HPSE, JUN, and MAPK1 are upregulated
by hyperglycemia [79,101,152–155] and can activate the cathepsin L [156–161]. For some
of these molecules, there is clinical evidence of an association with COVID-19 (Figure 8).
Specifically, the levels of fibroblast growth factor 2 (FGF2), interleukin-6 (IL6), and hep-
aranase (HPSE) were associated with COVID-19 disease severity [89,118,162]. The activa-
tion of the MAPK1 signaling pathway was involved in cytokine production in SARS-CoV-2
[163]. Cadherin 1 (CDH1) is downregulated by both HG [164] and cathepsin L [165]. It
was found that in cells infected by SARS-CoV-2, the expression of CDH1 was significantly
lowered [166].
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Figure 8. The regulation loop in the CTSL-related network involves FGF2, IL6, FOXO1, HPSE, JUN,
and MAPK1.

Some data indicate the involvement of cathepsin L in the pathogenesis of diabetic
kidney disease [167–169]. In proliferative diabetic retinopathy, the protein level of cathepsin
L is significantly downregulated [150]. The comparative analysis of the CTSL-related gene
network and networks of diabetic complications and metabolic abnormalities showed the
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presence of 47 CTSL-related genes/proteins in the CVD network, 14 genes/proteins in the
diabetic neuropathy network, 47 in diabetic nephropathy, 30 in diabetic retinopathy, 83 in
insulin resistance, and 7 in the beta-cell dysfunction network. All analyzed networks were
enriched by CTSL-interacting genes/proteins with statistically significant p-values (less
than 10−30, 10−9, 10−24, 10−15, 10−39, and 10−4, respectively).

According to the GO enrichment analysis, the identified genes are involved in the
regulation of cell proliferation and migration, chemotaxis, gene expression, protein phos-
phorylation, the MAPK cascade, protein kinase B signaling, lipopolysaccharide-mediated
signaling, protein import into the nucleus, and silencing by miRNA (Table 9). Other im-
portant processes include angiogenesis, the reactive oxygen species metabolic process,
glucose homeostasis, acute-phase response, regulation of vascular endothelial growth
factor production, apoptotic process, inflammatory response, and aging (Table S16).

Table 9. Most overrepresented GO biological processes that are common for the sets of genes linked
with CTSL and associated with hyperglycemia, CVD, diabetic neuropathy, diabetic nephropathy,
diabetic retinopathy, and insulin resistance.

Gene Ontology
Biological Process

Gene Ontology
ID

p-Values with FDR Correction

Hyperglycemia CVD Diabetic
Neuropathy

Diabetic
Nephropathy

Diabetic
Retinopathy

Insulin
Resistance

Positive regulation
of gene expression GO:0010628 7.19 × 10−6 0.0012 0.003 7.98 × 10−4 1.25 × 10−4 4.44 × 10−4

Chemotaxis GO:0006935 8.06 × 10−4 0.0033 0.0021 0.0027 0.0146

Positive regulation
of protein

phosphorylation
GO:0001934 0.0167 0.0115 1.25 × 10−4 5.80 × 10−4

Positive regulation
of MAPK cascade GO:0043410 0.0165 0.0069 0.012 0.006 4.87 × 10−5 0.0086

Negative regulation
of cell proliferation GO:0008285 5.96 × 10−5 0.0414 0.0123 6.86 × 10−4 0.0041

Positive regulation
of protein kinase B

signaling
GO:0051897 8.49 × 10−4 0.023 0.0184 2.07 × 10−4 0.0163

Positive regulation
of cell migration GO:0030335 0.0058 0.0271 0.026 0.0027

Lipopolysaccharide-
mediated signaling

pathway
GO:0031663 0.0173 0.0128 0.0103 0.033

Positive regulation
of protein import

into nucleus
GO:0042307 0.0195 0.0167 7.98 × 10−4 0.0438

Positive regulation
of production of

miRNAs involved
in gene silencing by

miRNA

GO:1903800 0.0034 0.0271 0.0039 0.0228 0.048

2.3.3. Intracellular Proteins Targeted by SARS-CoV-2
Network of Intracellular Proteins Targeted by SARS-CoV-2

According to Gordon et al. [21], 332 human proteins are targeted by SARS-CoV-2. We
reconstructed a gene network for these proteins (Figure 9) and found 1664 interactions
within it (Table S17).
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Figure 9. Gene network of human proteins targeted by SARS-CoV-2.

Most of the nodes in the network (203 of 332) turned out to be proteins with binding
activity. The network included the molecules that bind RNAs, macromolecular complexes,
chaperones, enzymes, microtubules, guanosine triphosphate (GTP), and other molecules.
There were some proteins with ATPase and GTPase activity, oxidoreductases, metalloen-
dopeptidases, kinases, nucleoporins, and fibrillins (Figure 10).
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Figure 10. Molecules in the network of human proteins targeted by SARS-CoV-2.

As expected, viral process and intracellular transport were identified among enriched
GO biological processes in which SARS-CoV-2-targeted proteins participate (Table 10). The
list of overrepresented processes included protein transport, folding and heterotrimeriza-
tion, protein targeting to mitochondrion, tRNA and mRNA transport, regulation of the
mitotic cell cycle, regulation of cellular response to heat, and others. In addition, we found
the regulation of glucose transport among the overrepresented processes.
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Table 10. Overrepresented GO biological processes for SARS-CoV-2-targeted human proteins found
by DAVID (p-values < 0.05 with FDR correction).

Gene Ontology
Biological Process

Gene Ontology
ID Genes p-Values with

FDR Correction

Viral process GO:0016032 BRD4, CCDC86, CRTC3, CUL2, EIF4H, ELOC, MFGE8, NLRX1, NUP210, NUP214,
NUP54, NUP58, NUP62, NUP88, NUP98, POLA1, RAE1, RALA, RBX1, RHOA 0.0011

Intracellular transport
of virus GO:0075733 NUP210, NUP214, NUP54, NUP58, NUP62, NUP88, NUP98, RAE1 0.0079

Protein transport GO:0015031
AKAP8, ARF6, CENPF, CHMP2A, ERC1, GORASP1, HOOK1, JAKMIP1, LMAN2,
NUP210, PLEKHF2, PPT1, RAB14, RAB18, RAB2A, RAB5C, RAB7A, TIMM10B,

TIMM8B, TIMM9, TMED5, WASHC4, YIF1A
0.0013

Protein folding GO:0006457 BAG5, CSNK2A2, CSNK2B, CWC27, DNAJC19, ERO1B, ERP44, FKBP10, FKBP15,
FKBP7, GNB1, GRPEL1, MOGS, PPIL3, QSOX2, SIL1, TBCA 4.05 × 10−4

Regulation of glucose
transport GO:0010827 NUP210, NUP214, NUP54, NUP58, NUP62, NUP88, NUP98, RAE1 7.74 × 10−4

Mitotic nuclear
envelope disassembly GO:0007077 NEK9, NUP210, NUP214, NUP54, NUP58, NUP62, NUP88, NUP98, RAE1 7.74 × 10−4

tRNA export from
nucleus GO:0006409 NUP210, NUP214, NUP54, NUP58, NUP62, NUP88, NUP98, RAE1 7.74 × 10−4

Regulation of cellular
response to heat GO:1900034 BAG5, HSBP1, NUP210, NUP214, NUP54, NUP58, NUP62, NUP88, NUP98, RAE1 0.0022

G2/M transition of
mitotic cell cycle GO:0000086 AKAP9, CDK5RAP2, CEP135, CEP250, CEP43, CIT, CNTRL, NINL, PCNT, PRKACA,

PRKAR2B, RAB8A 0.0087

Protein
heterotrimerization GO:0070208 COL6A1, GNB1, NUP54, NUP58, NUP62 0.0142

mRNA export from
nucleus GO:0006406 NUP210, NUP214, NUP54, NUP58, NUP62, NUP88, NUP98, RAE1, SLU7, UPF1 0.0142

U4 snRNA 3’-end
processing GO:0034475 EXOSC2, EXOSC3, EXOSC5, EXOSC8 0.0387

Chaperone-mediated
protein transport GO:0072321 TIMM10, TIMM8B, TIMM9, TOR1A 0.0387

Protein targeting to
mitochondrion GO:0006626 DNAJC19, TIMM10, TIMM10B, TIMM8B, TIMM9, TOMM70 0.0418

Nuclear-transcribed
mRNA catabolic

process,
exonucleolytic, 3’-5’

GO:0034427 EXOSC2, EXOSC3, EXOSC5, EXOSC8 0.0497

We identified mov10 RISC complex RNA helicase (MOV10), Golgi reassembly stack-
ing protein 1 (GORASP1), nucleoporin 62 (NUP62), cullin 2 (CUL2), golgin A2 (GOLGA2),
OS9 endoplasmic reticulum lectin (OS9), Ras homolog family member A (RHOA), G3BP
stress granule assembly factor 1 (G3BP1), RAB7A, member RAS oncogene family (RAB7A),
and centrosomal protein 250 (CEP250) as the network components with the highest be-
tweenness centrality values (Table S18). Among them, products of G3BP1, MOV10, RAB7A,
and RHOA pose hydrolase activity; CEP250 and NUP62 regulate the protein localization
to centrosomes; GOLGA2 and GORASP1 are associated with transport through the Golgi
complex; and CUL2 and OS9 are involved in the protein ubiquitination.

The NADH: ubiquinone oxidoreductase complex assembly factor 1 (NDUFAF1),
TM2 domain containing 3 (TM2D3), fatty acyl-CoA reductase 2 (FAR2), centrosomal protein
68 (CEP68), golgin A7 (GOLGA7), nucleolar protein 10 (NOL10), nucleoporin 58 (NUP58),
centrosomal protein 112 (CEP112), nucleoporin 54 (NUP54), and quiescin sulfhydryl ox-
idase 2 (QSOX2) genes demonstrated the highest crosstalk specificity values (Table S19).
The functions of the molecules encoded by these genes are quite diverse: nucleoporins
are responsible for the transport of molecules across the nuclear envelope; fatty acyl-CoA
reductase 2 is a fatty acid to fatty alcohols-converting enzyme; quiescin sulfhydryl oxi-
dase 2 is an enzyme catalyzing the oxidation of sulfhydryl groups in peptide and protein
thiols to disulfides with the reduction of oxygen to hydrogen peroxide; centrosomal pro-
teins are components of the human centrosomes and are involved in cell division control;
NADH: ubiquinone oxidoreductase complex assembly factor 1 is involved in the mito-
chondrial respiratory chain catalyzing the transfer of electrons from NADH to ubiquinone;
TM2 domain-containing 3 regulates the signal cascades of cell death/proliferation; golgin
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A7 participates in the transport of proteins from the Golgi complex to the cell surface; and
finally, nucleolar protein 10 is associated with late ribosomal RNA-processing events and
the assembly of ribosomal particles [170].

Therefore, the key players of the network of SARS-CoV-2-targeted proteins are in-
volved in the protein transport, ubiquitination and cleavage, biogenesis of ribosomes,
response to reactive oxygen species and mitochondrial respiration and signal cascades of
cell death/proliferation.

Comparative Analysis of the Network of Hyperglycemia and Network of Human Proteins
Targeted by SARS-CoV-2

At the next step, we performed the mapping and comparative analysis of both recon-
structed networks with assessment of network centralization, average number of neighbors,
and network density. Among these parameters, the network centralization is a measure
of how the nodes with high to low centrality are distributed. The centralization is higher
if there are many clustered hubs in a network. The average number of neighbors reflects
the overall connectivity of the nodes in a network. The network density describes the pro-
portion of all possible links between nodes that are in fact observed in a network. A high
network density measure shows the signal transduction effectiveness in a network [171].

It was revealed that molecules that make up the hyperglycemia-associated network
are more tightly interconnected than those in the network of SARS-CoV-2-targeted proteins.
The network centralization values were 0.61 and 0.046, average numbers of neighbors
84.764 and 4.322, and network density values 0.1 and 0.007, respectively. The obtained
results indicate that the hyperglycemia-associated network represents close interactions
between genes/proteins and it could be considered as a single module in the global human
gene network. Oppositely, the participants of the network of SARS-CoV-2-targeted proteins
seem to be not so tightly connected to each other. This is consistent with the potential of
the virus to affect a huge number of cellular and physiological processes [172,173].

The intersection of the two analyzed networks revealed that eight genes (DNMT1,
FBN1, GDF15, GPX1, HMOX1, IDE, PLAT, and RHOA) are common for them. The proteins
encoded by these genes are very different in functional specialization.

DNA methyltransferase 1 encoded by DNMT1 gene transfers methyl groups to DNA
cytosine nucleotides that are responsible for maintaining DNA methylation patterns. Hy-
perglycemia increases the enzyme levels in retinal endothelial cells [174]. In turn, the
changes in the retinal DNA methylation machinery induced by high glucose are involved
in mitochondrial damage and persist after normoglycemia is restored, and therefore may
be involved in the metabolic memory in diabetes [175]. It was shown that transient hy-
perglycemia directly upregulated DNMT1 expression, leading to the hypermethylation
of angiopoietin-1, long-lasting activation of NF-κB, and endothelial dysfunction [176]. In
cultured SARS-CoV-2-infected lung epithelial cells, DNMT1 was downregulated; however,
this inhibition was not detected in COVID-19 patient’s lung tissues [177].

The fibrillin 1 gene (FBN1) encodes a preproprotein that further processes to fibrillin-1,
an extracellular matrix glycoprotein, and a hormone asprosin. Fibrillin-1 is a structural
component of calcium-binding microfibrils of the connective tissue. Asprosin, a fasting-
induced glucogenic hormone, is secreted by white adipose tissue and is recruited to the liver,
where it stimulates rapid glucose release into the circulation via the G protein-cAMP-PKA
pathway. Humans and mice with insulin resistance show dramatically elevated plasma
asprosin levels [178]. Under hyperglycemia conditions, the expression of FBN1 is increased
in the kidneys and decreased in the heart due to the epigenetic modifications [179]. A
decrease in asprosin serum levels has been reported in patients with COVID-19 [180].

Growth differentiation factor 15 (GDF15) is a secreted ligand that binds to various
transforming growth factor beta (TGF-β) receptors resulting in SMAD transcription factor
activation. In addition to the signaling patterns of TGF-β, it also acts as a pleiotropic
cytokine that participates in the response to cellular injury. Some data demonstrate that
GDF-15 is involved in the regulation of inflammation, endothelial cell function, insulin
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sensitivity, and weight gain [181]. In COVID-19, GDF15 levels are associated with the
disease severity and progression [182,183].

Glutathione peroxidase 1 (GPX1) is a selenium-dependent antioxidant enzyme es-
sential for cell survival in oxidative stress. The GPX1 expression is induced by hyper-
glycemia [184]. The increased GPX1 activity in hyperglycemic conditions could be adaptive
and aimed at compensating a decrease in the enzyme protein level due to enhanced pro-
teasome degradation [185]. Recent experimental data indicate the dual role of GPX1 in
glucose and lipid metabolism: GPX1 overexpression in the beta cells and insulin-responsive
tissues lead to metabolic phenotypes similar to type 2 diabetes; meanwhile, Gpx1−/− mice
develop insulin-dependent diabetes [186].

Heme oxygenase 1 (HO-1, HMOX1) is a key rate-limiting enzyme in the process
of degradation of heme, the iron-containing molecule. HO-1 acts as antioxidant, anti-
inflammatory, antiapoptotic and angiogenic factor through its by-products carbon monox-
ide (CO) and bilirubin, and can affect multiple cellular pathways involved in endothelial
dysfunction and oxidative stress [187]. HO-1 demonstrates antiviral activity by interfer-
ing with the replication or activation of the interferon pathway [188]. It was shown that
quercetin, a HO-1 inducer, reduced SARS-CoV-2 spike protein expression in kidney cell
lines [189]. High glucose decreases HMOX1 expression and protein activity in endothe-
lial cells [190]. In turn, the induction of HO-1 alleviated oxidative and inflammatory
response and endoplasmic reticulum stress induced by high glucose in cultured endothelial
cells [191]. In different diabetic models, upregulating the HO system increases insulin
secretion and reduces hyperglycemia. Similarly, CO also enhances insulin production and
improves glucose metabolism [192].

Tissue-type plasminogen activator (tPA) encoded by the PLAT gene is a secreted serine
protease that converts the proenzyme plasminogen to plasmin, a fibrinolytic enzyme. It is
also involved in cell migration and tissue remodeling. The abnormal activity of the enzyme
causes the disruptions in fibrinolysis, leading to excessive bleeding or thrombosis. The
decreased activity of tPA could be a risk factor for type 2 diabetes [193]; its dysregulation
can aggravate adverse cardiovascular events in hyperglycemia [194]. It was estimated that
COVID-19 is associated with increased plasma thrombin generation [195]. Plasma tPA is
elevated in COVID-19 patients. At the same time, the plasminogen activator inhibitor-1
(PAI-1) level is reduced [196] and is associated with increased mortality [197].

Insulin-degrading enzyme (IDE) is a zinc metallopeptidase that breaks down the
intracellular insulin; it is also able to degrade glucagon, amylin, β-amyloid, and bradykinin.
Moreover, IDE behaves as a heat shock protein and modulates the ubiquitin–proteasome
system. Current data indicate that IDE acts as a regulator of insulin secretion and hepatic
insulin sensitivity, and may participate in the crosstalk between the liver and beta cells.
There is increasing evidence that improper IDE function, regulation, or trafficking might be
involved in the pathogenesis of metabolic diseases [198,199].

Ras homolog family member A (RhoA, RHOA) is a small GTPase that regulates cell
shape, attachment, and motility by promoting the reorganization of the actin cytoskeleton.
RhoA participates in the regulation of smooth muscle tone and activates many downstream
kinases. It was revealed that the RhoA/Rho-kinase pathway plays an important role in
endothelial function and is implicated in cardiovascular disease, erectile dysfunction [200],
and diabetic nephropathy [201]. Hyperglycemia causes the increase in RHOA expression in
smooth muscles [202]. RHOA was identified among the hub genes playing a central role in
COVID-19 immunopathogenesis [203].

Recently, Sardar et al. identified HMOX1, DNMT1, PLAT, GDF1, and ITGB1 as hub
genes that are involved in the host–virus interactions in SARS-CoV-2 infection [204]. Ac-
cording to our results, three of them (HMOX1, DNMT1, and PLAT) are common for the
networks of hyperglycemia and SARS-CoV-2-targeted proteins.

We revealed, by the comparative analysis of two networks, that SARS-CoV-2-targeted
proteins directly interact with 381 gene/proteins of the hyperglycemia network, i.e., al-
most all of them (Table S20). Among these interactions, there were a large number of
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protein–protein interactions, as well as regulatory relationships that concern the regulation
of protein activity, expression, transport, and degradation. The GO enrichment analysis
showed the involvement of these genes/proteins in the response to hypoxia, the apoptotic
process, inflammatory response, regulation of angiogenesis, nitric oxide-mediated signal
transduction, regulation of reactive oxygen species metabolism, response to tumor necrosis
factor, immune response, leukocyte migration, platelet degranulation, regulation of en-
dothelial cell functions, and others processes (Table S21). These findings are in consistence
with the estimated pathophysiological abnormalities, such as hypercoagulability, endothe-
lial dysfunction, oxidative stress, and dysregulation of the inflammatory and immune
response, which characterize acute and long COVID-19 (Figure 11).
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Comparative Analysis of the Networks of Diabetic Complications and Network of Human
Proteins Targeted by SARS-CoV-2

In this work, we revealed some intersections between genes/proteins associated with
diabetes complications and those of SARS-CoV-2-targeted proteins (Figure 12). Seven
molecules were found when assessing the CVD network (COMT, GDF15, GPX1, HMOX1,
LOX, PLAT, and SELENOS), eight in the network of diabetic nephropathy (DNMT1, F2RL1,
GDF15, HDAC2, HMOX1, HYOU1, LOX, and RHOA), three in the network of diabetic
retinopathy (HMOX1, NUTF2, and PLAT), and two in the diabetic neuropathy network
(HMOX1 and PLAT).

The role of DNMT1, GDF15, GPX1, HMOX1, PLAT, and RHOA were considered in
the previous section. We identified HMOX1 as a shared hub for all analyzed networks.
This corresponds to the broad biological functions of HO-1. The beneficial effects of HO-
1 and its reaction products in diabetic vascular complications include anti-inflammatory,
antiproliferative, antiapoptotic, and immunomodulatory activity [205]. It was revealed
that polymorphism in the HMOX1 promoter is associated with CVD in subjects with dia-
betes [206]. The serum levels of HO-1 are reduced in patients with diabetic retinopathy [207].
In mice, HO-1 deficiency contributes to diabetic kidney disease [208]. Accordingly, the
induction of the enzyme demonstrated a protective effect in diabetic nephropathy [209].
HO-1 mitigates cytokine storm and lung injury in mouse models of sepsis and may exert
antivirus activity [210]. Therefore, it could be speculated that the suppression of HO-1 in
hyperglycemia is a promoting mechanism for diabetic complications and a more severe
COVID-19 course.
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The PLAT gene was found in the networks of hyperglycemia, CVD, diabetic neu-
ropathy, and retinopathy. This is consistent with data on the important role of fibrinolysis
disorders in the development of diabetic vascular complications [211] and COVID-19 [212].

We found GDF15 in the networks of CVD and diabetic nephropathy. In type 2 diabetes,
GDF15 is associated with both macrovascular and microvascular complications [213,214].
At the same time, GDF-15 is considered an indicator of COVID-19 severity [182,183].

The lysyl oxidase gene (LOX) was also revealed in the networks of CVD and dia-
betic nephropathy. The enzyme is involved in the crosslinking of collagens and elastin,
and is supposed to be involved in the impairment of the elastic component of lungs in
COVID-19 [215]. The LOX gene polymorphisms are associated with CVD [216] and it was
proposed as a drug target for CVD therapy [217]. An enhanced LOX expression in the
kidneys was found in rats with diabetic nephropathy [218].

Selenoprotein S (SELENOS), which was found in the network of CVD, is a trans-
membrane protein involved in the degradation of misfolded proteins in the endoplasmic
reticulum; it is involved in inflammation, oxidative stress, endoplasmic reticulum stress,
and glucose metabolism [219]. Selenoprotein S is highly expressed in the blood vessels [220]
and is supposed to be a target in diabetic macroangiopathy [219].

Three more genes (F2RL1, HDAC2, and HYOU1) identified in the diabetic nephropa-
thy network deserve to be mentioned. F2R-like trypsin receptor 1, or protease-activated
receptor 2 (F2RL1), is a G-protein coupled receptor; it stimulates vascular smooth muscle
relaxation, the dilation of blood vessels, and increases blood flow; it is also involved in the
inflammatory and immune response. F2R-like trypsin receptor 1 was shown to aggravate
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diabetic nephropathy progression [221]. SARS-CoV-2 viral protein ORF9c directly interacts
with PAR2 with F2R-like trypsin receptor 1; moreover, it was speculated that the activation
of protease-activated receptors by proteases plays a role in COVID-19-induced hyperin-
flammation [222]. Histone Deacetylase 2 (HDAC2) determines the acetylation status of
histones and plays an important role in diabetic nephropathy via the excessive accumula-
tion of the extracellular matrix in the kidneys and epithelial-to-mesenchymal transition of
renal tubular epithelial cells [223,224]. Hypoxia Upregulated 1 (HYOU1) is a heat shock
protein accumulated in the endoplasmic reticulum under hypoxic conditions, which is
important for protein folding and secretion in the endoplasmic reticulum and is associated
with apoptosis. In patients with diabetic nephropathy, HYOU1 was upregulated in tubular
epithelial cells [225].

Nuclear transport factor 2 (NUTF2), identified in the diabetic retinopathy network, is
a cytosolic factor that facilitates the transport of the proteins into the nucleus. The level
of the factor was lower in patients with diabetic retinopathy; its overexpression showed a
protective effect against diabetic retinopathy [226].

The participants of the gene networks of diabetic complications were directly linked
to some SARS-CoV-2-targeted proteins (Table S22). It turned out that SARS-CoV-2-targeted
proteins had interactions with 415, 583, 339, and 110 genes/proteins in the network of CVD,
diabetic nephropathy, diabetic retinopathy, and diabetic neuropathy, respectively. The
most overrepresented GO biological processes for these gene sets were cytokine-mediated
signaling, response to hypoxia, inflammatory response, regulation of blood pressure and
angiogenesis, regulation of cell proliferation, migration and apoptosis, as well as protein
kinase B, ERK1 and ERK2, and phosphatidylinositol 3-kinase signaling (Table 11 and S23).

Table 11. Most overrepresented GO biological processes for the sets of genes linked with SARS-CoV-
2-targeted human proteins and associated with CVD, diabetic neuropathy, diabetic nephropathy, and
diabetic retinopathy.

Gene Ontology Biological Process Gene Ontology
ID

p-Values with FDR Correction

CVD Diabetic
Neuropathy

Diabetic
Nephropathy

Diabetic
Retinopathy

Cytokine-mediated signaling pathway GO:0019221 3.79 × 10−23 1.92 × 10−11 4.53 × 10−37 2.35 × 10−20

Response to hypoxia GO:0001666 3.16 × 10−16 7.16 × 10−10 3.50 × 10−27 5.42 × 10−25

Positive regulation of gene expression GO:0010628 1.25 × 10−18 1.71 × 10−9 1.59 × 10−30 2.56 × 10−24

Positive regulation of phosphatidylinositol 3-kinase
signaling GO:0014068 4.48 × 10−17 1.89 × 10−8 2.91 × 10−24 7.80 × 10−22

Inflammatory response GO:0006954 7.23 × 10−25 1.53 × 10−33 3.86 × 10−26

Positive regulation of cell proliferation GO:0008284 1.86 × 10−8 6.54 × 10−25 1.09 × 10−22

Positive regulation of smooth muscle cell
proliferation GO:0048661 1.01 × 10−16 2.09 × 10−8 8.79 × 10−23

Positive regulation of protein kinase B signaling GO:0051897 2.57 × 10−16 4.87 × 10−23

Aging GO:0007568 1.14 × 10−16 9.23 × 10−11

Positive regulation of ERK1 and ERK2 cascade GO:0070374 6.15 × 10−9 6.70 × 10−24

Negative regulation of apoptotic process GO:0043066 4.70 × 10−28

Positive regulation of angiogenesis GO:0045766 1.47 × 10−25

Cellular response to lipopolysaccharide GO:0071222 3.00 × 10−19

Positive regulation of protein phosphorylation GO:0001934 4.30 × 10−19

Positive regulation of cell migration GO:0030335 5.16 × 10−19

Response to xenobiotic stimulus GO:0009410 3.10 × 10−17

Regulation of blood pressure GO:0008217 3.16 × 10−16

Positive regulation of peptidyl-tyrosine
phosphorylation GO:0050731 1.71 × 10−9

Positive regulation of apoptotic process GO:0043065 6.15 × 10−9
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Comparative Analysis of the Networks of Insulin Resistance, Beta-Cell Dysfunction, and
Human Proteins Targeted by SARS-CoV-2

The gene network associated with insulin resistance contained 1452 genes/proteins
(Table S6). The intersection of this network with the network of human proteins targeted by
SARS-CoV-2 included 13 genes/proteins: HMOX1, PLAT, GDF15, DNMT1, F2RL1, GPX1,
SELENOS, IDE, BRD2, ERP44, PCNT, RAB10, and SCARB1. Among them, HMOX1, PLAT,
GDF15, DNMT1, F2RL1, GPX1, SELENOS, and IDE were also involved in the networks of
diabetic complications and hyperglycemia.

It was found that the induction or overexpression of HMOX1 improves the insulin
sensitivity and glucose tolerance [227,228]. The elevated levels of PLAT and GDF15 were
associated with insulin resistance [229–231]. The inverse correlation of DNMT1 expres-
sion with insulin sensitivity was observed in adipose tissue [232]. The lack of F2rl1 in
mice was associated with the protection from the insulin resistance induced by a high-fat
diet [233]. The overexpression of GPX1 was shown to cause insulin resistance [234,235]. The
expression of SELENOS and a number of SNPs in it were associated with the homeostasis
model assessment of insulin resistance [219,236]. The IDF inhibition improves insulin
sensitivity [237] and the upregulation of IDE could be used as a treatment for insulin
resistance [238].

Bromodomain-containing 2 (BRD2) is a transcriptional regulator that participates in
mitosis. BRD2 can induce insulin resistance through the mTOR/Akt signaling pathway
and an inflammatory response in adipose tissue [239]. Endoplasmic Reticulum Protein
44 (ERP44) is a pH-regulated chaperone and could participate in protein quality control
at the endoplasmic reticulum–Golgi interface. The decreased cellular level of ERP44 is
associated with insulin resistance [240]. Pericentrin (PCNT) is an integral component of the
pericentriolar material and is involved in the functioning of the centrosomes, cytoskeleton,
and cell-cycle progression. Mutations in PCNT are associated with severe insulin resistance
and diabetes [241]. RAB10 is a member of the RAS oncogene family and a small GTPase
that regulates intracellular vesicle trafficking. The adipose RAB10 is involved in systemic
insulin sensitivity, as RAB10 is required for insulin-stimulated GLUT4 translocation to the
plasma membrane that is responsible for glucose uptake [242]. Scavenger receptor class B
member 1 (SCARB1) is a high-density lipoprotein cholesterol plasma membrane receptor
and the polymorphisms in this gene are associated with insulin resistance [243,244].

In the gene network associated with insulin resistance, there were 1163 genes/proteins
directly linked with participants of the network of proteins targeted by SARS-CoV-2
(Table S24). The GO enrichment analysis showed that these genes are involved in the
cytokine-mediated signaling pathway, apoptotic process, response to inflammation and
hypoxia, and other processes (Table S24).

The gene network associated with beta-cell dysfunction included 72 genes/proteins
(Table S7). Fifty-four of them demonstrated interactions with the proteins targeted by
SARS-CoV-2 (Table S25). These 54 genes/proteins are involved in the GO biological
processes related to the cytokine-mediated signaling pathway, apoptotic process, release
of cytochrome c from mitochondria, T cell homeostasis, cell proliferation, and others
(Table S25). Among the identified genes, TNF and CASP3 were associated with COVID-19-
related networks [92,127].

2.4. Discussion

The results of our study indicate that in patients with diabetes, SARS-CoV-2 triggers a
cascade of molecular events that can be considered in terms of molecular networks with a
number of positive and negative feedback loops, bypasses, and parallel regulatory path-
ways. In diabetes, HG induces a wide range of changes in the gene expression, forming a
pathophysiological basis for an inappropriate response to stressors including SARS-CoV-2.
According to our data, the hyperglycemia-related network includes 430 genes/proteins
that are involved in the inflammatory pathways, response to hypoxia, regulation of cell
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proliferation, angiogenesis, apoptosis, and other processes. The virus can induce further dis-
turbances in the biochemical and pathophysiological processes induced by hyperglycemia.

We have shown that the networks of SARS-CoV-2 entry-supporting proteins (ACE2,
DPP4, CTSB and CTSL) are significantly enriched with the genes/proteins associated with
hyperglycemia. In addition, the molecules forming the networks of human proteins related
to SARS-CoV-2 were found to be significantly overrepresented in the gene networks of
the diabetes complications (CVD, diabetic neuropathy, diabetic nephropathy, and diabetic
retinopathy), as well as in the insulin resistance and beta-cell dysfunction networks. These
findings are consistent with clinical data on more severe courses and poorer outcomes of
COVID-19 in subjects with diabetes [2,3] and give further support to notion of parallels
between COVID-19 and diabetes pathology [8].

The clinical evidence supports the role of some molecules revealed in this work in
COVID-19 pathogenesis: ANGPT2 [48,49], CCL2 [50], ICAM1 [52,53], VCAM-1 [52], MIR21 [54],
MMP9 [55,56], STAT3 [57], HMGB1 [58,59], SIRT1 [62,63], AGTR1 [66], APOE4 [69,70], ACE [73],
CCL11 [86,87], FGF2 [89], TNF [92], PPAR-γ [95], CASP8 [115], IL8 [117], IL6 [118], PRL [119],
SP1 [122], TLR4 [123], BDNF [124], CASP1 [125], CASP3 [126,127], IL18 [128], IL10 [129],
TGFB1 [130], ANXA2 [131,132], HPSE [162], MAPK1 [163], CDH1 [166], FBN1 [180],
GDF15 [182,183], PLAT [195–197], RHOA [203], HMOX1 [204], LOX [215], and others.

According to the GO enrichment analysis, the molecules associated with the pro-
teins related to SARS-CoV-2 are involved in the immune and inflammatory response,
acute-phase response, interleukin-8 production, oxidative stress, regulation of cytokine
production, response to hypoxia, regulation of vascular endothelial cell proliferation, glu-
cose homeostasis, fibrinolysis, extracellular matrix formation, tissue remodeling, apoptosis,
regulation of cell proliferation and migration, angiogenesis, aging, gene expression, phos-
phatidylinositol 3-kinase signaling, protein kinase B signaling, DNA methylation, and
protein phosphorylation. These processes could provide a pathophysiological basis for a
more severe clinical course of COVID-19 in subjects with diabetes [172,173].

2.5. Study Limitations

Our study is not without limitations. The gene network reconstruction was based
on the text-mining of PubMed/Medline-indexed publications only. Therefore, we cannot
exclude that some relevant information has been missed or some of the revealed interactions
are false-positive. The study is a hypothesis-generating one. The role of some identified
genes/proteins as mediators of a more severe clinical course and worse outcomes of
COVID-19 in patients with diabetes needs further experimental verification.

3. Materials and Methods

The study design is presented as a flowchart in Figure 13.
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The gene networks were automatically reconstructed by the ANDSystem [23,24],
version: 22.0118b686_2022 (ICG SB RAS, Novosibirsk, Russia), available online at http:
//www-bionet.sscc.ru/and/cell/ (accessed on 10 January 2022).

The structural characteristics of the studied networks were analyzed by the ANDSys-
tem function “Statistics” of the “Analysis” section. It was used to find the betweenness
centrality coefficients, the network centralization, the average number of neighbors, the net-
work density, and the CTS values. The CTS reflects the degree to which a particular node is
specifically involved in the studied network. CTS is calculated as following: CTS = Ki/Mi,
where Ki stands for the number of interactions of a particular i-th gene in the analyzed
gene network and Mi stands for the number of interactions of this i-th gene in the global
human gene network of the ANDSystem [24,26].

The enrichment of the analyzed gene networks by lists of selected genes was assessed
according to the hypergeometric distribution by the “hypergeom.sf” function of the “scipy”
library of the Python programming language [245].

The GO enrichment analysis for gene sets was performed by the web-tool DAVID,
version 6.8 (LHRI, Frederick, MD, USA) [45]. It is available online: https://david.ncifcrf.
gov/home.jsp (accessed on 20 February 2022). The used parameters were: organism,
“Homo sapiens”; Gene_Ontology, “GOTERM_BP_DIRECT”; the cut-off for the statistical
significance was set as p-values with FDR correction lower than 0.05.

The information on the function of the identified genes was obtained from the database
GeneCards [170]. It is available online at https://www.genecards.org/ (accessed on
25 February 2022).

The Venn diagram demonstrating the interactions of genes from the gene networks
(Figure 11) was made by the BioVenn web application (available at https://www.biovenn.
nl/index.php, accessed on 18 February 2022). The Venn diagram showing the interactions of
the gene lists associated with the diabetes complications and the proteins targeted by SARS-
CoV-2 (Figure 12) was made by the “Bioinformatics & Evolutionary Genomics” resource
(available online at http://bioinformatics.psb.ugent.be/webtools/Venn/, accessed on
19 February 2022).

4. Conclusions

In this work, we have demonstrated, for the first time, that the hyperglycemia net-
work and the networks of SARS-CoV-2-targeted proteins have a number of paths that
interact with each other. We revealed that SARS-CoV-2-targeted proteins directly regulate
physical interactions with 381 gene/proteins of the hyperglycemia network, i.e., almost
all of them. The proteins associated with hyperglycemia and targeted by SARS-CoV-2
proteins are involved in glucose homeostasis, fibrinolysis, extracellular matrix forma-
tion, cell migration, tissue remodeling, DNA methylation, response to cellular injury,
hypoxia, immune response, inflammation, and oxidative stress. We identified HMOX1
as a shared hub for all analyzed networks. The PLAT gene could be a possible hub that
links hyperglycemia, COVID-19, and negative cardiovascular events. Most elements of the
hyperglycemia-associated network demonstrate protein–protein or regulatory links with
the SARS-CoV-2-targeted proteins. The involvement of these interactions in the cytokine
network, inflammation and immunity, angiogenesis and response to hypoxia, oxidative
stress, apoptosis, and endothelial cell functions seems to form a pathogenic basis for a more
a severe course of COVID-19 in subjects with diabetes.

A number of genes/proteins targeted by SARS-CoV-2 (ACE2, BRD2, COMT, CTSB,
CTSL, DNMT1, DPP4, ERP44, F2RL1, GDF15, GPX1, HDAC2, HMOX1, HYOU1, IDE, LOX,
NUTF2, PCNT, PLAT, RAB10, RHOA, SCARB1, and SELENOS) were found in the networks
of vascular diabetic complications and insulin resistance. According to the GO enrichment
analysis, the identified molecules are involved in cytokine-mediated signaling, response to
hypoxia, inflammatory response, regulation of blood pressure and angiogenesis, regulation
of cell proliferation, migration and apoptosis, as well as protein kinase B, ERK1 and ERK2,
and phosphatidylinositol 3-kinase signaling, and other processes.

http://www-bionet.sscc.ru/and/cell/
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The results obtained contribute to the deeper understanding of the molecular patho-
physiology of COVID-19-induced disorders in subjects with diabetes. The functional
significance of the identified hub molecules and their potential value as therapeutic targets
requires further research.
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